镍氢蓄电池的制作方法

文档序号:6866914阅读:235来源:国知局
专利名称:镍氢蓄电池的制作方法
技术领域
本发明涉及镍氢(nickel-metal hydride)蓄电池。
背景技术
近年来,已提议将各种类型的镍氢蓄电池用作便携式装置或设备的电源,或者用作电动车辆或混合电动车辆的电源(例如,参考专利文件1和专利文件2)。
专利文件1日本未审的专利公开No.8-148135(1996)专利文件2日本未审的专利公开No.5-325930(1993)通常将镍氢蓄电池设计为具有大于正极容量的负极容量。因此,通过正极容量调节电池的放电容量(此后,称作“正极容量调节”)。该正极调节可以抑制在过量充电或过量放电期间的内压力增大。注意,将可用于充电的负极超额容量称作充电预留量(charge reserve),并将可用于放电的负极超额容量称作放电预留量。
同时,在镍氢蓄电池中,由于反复使用,负极的氢吸收合金易于腐蚀,引起氢吸收合金吸收氢的副反应。因此,在镍氢蓄电池中,特别是包括金属壳的情况,氢吸收合金的氢吸收量逐渐增加。结果,负极的放电预留量增加而充电预留量减少,这导致在充电期间电池中的内压力增大。而且,随着放电预留量的增加,电池容量降低。当用于氢电动车辆等时,这种电池会引起燃料效率降低或其它问题。
长期使用会引起充电预留量不足,这导致来自负极的大量氢气等的产生,在例如完全充电状态下电池中的内压力上升。由此,打开安全阀以释放来自电池的氢气而抑制内压力的过度增长。但是,电解液也与氢气一起被排出。电解液量的减少导致电池特性的严重降低。具有金属壳的镍氢蓄电池具有上述由于氢吸收合金的长期腐蚀引起的电池特性降低的问题。在将这种电池用作需要电池寿命超过十年的电动车辆或者混合电动车辆的电源的情况下,上述电池特性的降低是非常严重的问题。
考虑到上述情况而实施本发明,并且本发明的目的是提供能够抑制负极的放电预留量增大而由此防止电池特性降低的镍氢蓄电池。

发明内容
为解决上述问题,本发明提供的镍氢蓄电池包括电池主体;容纳所述电池主体的壳;以及安全阀装置,具有当所述壳中的内压力超过预定值时通过从所述壳排出气体来防止所述壳中的内压力过度上升的超量压力防止功能,其中所述壳包括贯通所述壳形成以在所述壳的内部和外部之间提供连通的释放孔,所述安全阀装置包括阀构件,所述阀构件密封地覆盖所述释放孔并包括形成与所述释放孔连通的阀内部空间的壁,并且除了所述超量压力防止功能外,所述安全阀装置还具有即使当所述壳中的内压力为所述预定值或更小时也允许所述壳中的氢气泄漏到所述电池外部的氢泄漏功能。
在本发明的镍氢蓄电池中,安全阀装置包括阀构件,该阀构件密封地覆盖释放孔并包括形成与释放孔连通的阀内部空间的壁。由此,允许壳中产生的氢气通过释放孔进入阀内部空间。与使用不具有阀内部空间的阀(例如,实心圆柱形的阀)的情况相比,这种结构对于已进入阀内部空间的氢气可提供与阀构件(具体地,阀构件的形成阀内部空间的壁)更大的接触面积。
而且,即使当壳中的内压力为预定值或更小时,该安全阀装置具有允许壳中产生的氢气通过阀内部空间泄漏出电池的氢泄漏功能。因此,即使在壳中的内压力不过量上升的情况下,也允许壳中的氢气通过具有暴露到氢气的大接触面积的阀构件的阀内部空间漏出。与使用不具有阀内部空间的阀构件(例如,实心圆柱形的阀构件)的情况相比,这可通过泄漏容易地从壳释放氢气,从而可确保氢的适当泄漏量。
这种安全阀装置可以包括具有例如安全阀构件的安全阀装置,该安全阀构件具有从壳向外突出并形成阀内部空间的壁,以允许从壳释放的氢气进入阀内部空间以渗透穿过阀构件的形成阀内部空间的凸壁(protrudingwall),由此允许氢气泄漏出电池。在这种情况下,如上所述,阀构件具有相对于氢气形成阀内部空间的壁的大接触面积,从而可提供大的氢可渗透面积。该结构可增加允许渗透穿过阀构件的氢的量,由此便于氢气从壳泄漏到外部。因此,可以提供氢的适当泄漏量。
而且,安全阀构件可以示出为如此配置的实例,以便阀构件(具体地,形成阀内部空间的壁)由多个组件(例如,由通过插入模制(insert molding)以环形或圆柱形整体模制的金属构件和橡胶构件制成的阀构件)构成,用于通过形成阀内部空间的组件之间将氢气泄漏到外部。因此,允许进入阀内部空间的从壳释放的氢气通过构成组件之间适当漏出。具体地,可调整或选择形成阀内部空间的构成组件的组合、材料、以及组件的数量以调节通过构成组件被排出到外部的氢气的泄漏量,由此确保适当的氢泄漏量。
如上,在本发明的镍氢蓄电池中,即使在壳内压力未达到超量压力的情况下,安全阀装置仍可提供适当的氢泄漏量。因此可适当地抑制由负极的氢吸收合金的腐蚀导致的电池中的氢的增加。因此,可抑制负极的放电预留量的增加并由此防止电池特性的降低。
如果将安全阀装置设置为允许氢气渗透穿过阀构件的形成阀内部空间的壁以泄漏出电池,则优选阀构件由例如氢可渗透橡胶制成。具体地,在使用碱性电解液的镍氢蓄电池中,优选使用高耐碱的氢可渗透树脂(橡胶)(例如,EPDM)。
可以如此设置本发明的镍氢蓄电池,以便除了安全阀装置外的适当的组件(例如,壳)如同安全阀装置一样允许氢气泄漏。在这种情况下,允许壳中的氢气通过安全阀装置和适当的组件泄漏出电池。
此外,电池主体设置在壳中以实施电池功能,并包括例如电极、分隔件和电解液。
此外,在上述镍氢蓄电池中,优选壳由金属制成。
在本发明的镍氢蓄电池中,壳由金属制成。因此该电池可具有优良的冷却特性以防止电池温度的过度升高。
同时,在具有金属壳的常规镍氢蓄电池中,特别地,很难通过使氢气渗透穿过壳的壁而从壳中排出氢气。因此,负极的放电预留量增加而其充电预留量减少,这在长期使用后会导致电池特性的严重降低。
另一方面,在本发明的镍氢蓄电池中,安全阀装置具有如上所述的氢泄漏功能。这使得即使在壳由金属制成的情况下也可以抑制负极的放电预留量的增加,由此防止电池特性的降低。
此外,在上述镍氢蓄电池的任意一者中,优选地,形成壁的阀构件的壁包括允许阀内部空间的氢气通过氢渗透漏出的氢可渗透部件(part)。
在本发明的镍氢蓄电池中,通过阀构件的氢可渗透部件(允许氢气渗透穿过其的部分),允许氢气适当地从阀内部空间泄漏到外部。可以在形成阀内部空间的整个或部分壁(例如,从壳向外突出并形成阀内部空间的整个壁)中提供氢可渗透部件。
此外,在上述镍氢蓄电池中,优选地,阀构件的氢可渗透部件包括具有至少一个弯曲(bend)和折叠(fold)的面积增加部件,用于增加面对阀内部空间的内部接触面积和暴露到外部空气的外部接触面积。
在本发明的镍氢蓄电池中,阀构件的氢可渗透部件(允许氢气渗透穿过其的部分)包括具有至少一个弯曲和折叠的面积增加部件,用于增加接触阀内部空间的内部接触面积和接触外部空气的外部接触面积。因此,与氢可渗透部件不具有弯曲和折叠(例如,平板形或封闭端圆柱形的氢可渗透部件)的情况相比,可大大地提供上述的内部接触面积和外部接触面积(即,氢可渗透面积)。这可以进一步增加允许渗透穿过阀构件的氢量,允许壳中的氢气容易地漏出。因此,在安全阀装置中,可确保适当的氢泄漏量,由此适当地抑制电池中的氢的增加。
而且,在上述镍氢蓄电池的任意一者中,优选地,阀构件的氢可渗透部件包括薄于其周围部分的薄壁部分。
在本发明的镍氢蓄电池中,阀构件的氢可渗透部件(允许氢气渗透穿过其的部件)包括具有小于其周围部分的厚度的薄壁部分。因此,与凸壁具有均匀厚度而没有这种薄壁部分的情况相比,允许氢更容易地渗透穿过薄壁部分。这增加了允许渗透穿过阀构件的氢量。因此可以更容易地允许壳中的氢气漏出。
此外,在上述镍氢蓄电池的任意一者中,优选地,阀构件包括保持与位于壳的释放孔周围的孔周围部分(hole surrounding portion)紧密接触的密封部件,该安全阀装置包括保持构件,该保持构件将阀构件的密封部件压向壳的孔周围部分,以通过密封部件自身的弹性保持密封部件的密封表面与孔周围部分紧密接触,并保持密封部件的从壳向外突出的预定高度,并且该密封部件为这样的形状,以通过当壳中的内压力超过预定值时引起的密封部件的至少部分的弹性形变,在密封表面和孔周围部分之间提供连通通道以将释放孔连通到外部。
在本发明的镍氢蓄电池中,保持构件将阀构件的密封部件压向壳的孔周围部分,以保持密封部件的密封表面与孔周围部分紧密接触。而且,当壳中的内压力超过预定值时,由于密封部件的至少部分的弹性形变,在密封部件和孔周围部分之间产生使释放孔连通到外部的连通通道。当壳中的内压力为预定值或更小时,阀构件的密封表面可以保持与孔周围部分紧密接触,以防止壳中的气体被排出到外部。另一方面,当壳中的内压力超过预定值时,通过由密封部件的至少部分的弹性形变产生的连通通道排出壳中的气体,以防止壳中的内压力过量增长。
另外,用保持构件紧压密封部件,以维持密封部件的到壳外部的预定突出高度。由于密封部件自身的弹性,密封表面保持与孔周围部分紧密接触。因此,与使用弹性构件如盘簧以将密封部件的密封表面压向孔周围部分的结构相比,可减少部件或组件的数量并获得尺寸缩小的安全阀装置(具体地,具有减小的从壳表面的突出高度)。
阀构件可以为例如橡胶模制件。特别地,本发明的电池为镍氢蓄电池,因此优选由高耐碱的橡胶(NBR、EPDM等)制成的橡胶模制件。
而且,在上述镍氢蓄电池的任意一者中,优选地,阀构件包括与壳的围绕气体释放孔的部分保持紧密接触的密封部件,并且形成阀内部空间的壁为用作氢可渗透部件的从密封部件突出到壳外而形成的凸壁。
在本发明的镍氢蓄电池中,阀构件的形成阀内部空间的壁是用作氢可渗透部件的、从密封部件向壳外部突出的凸壁。换句话说,安全阀装置的阀构件包括凸壁,该凸壁从密封部件突出,由此形成与释放孔连通的阀内部空间,并且该凸壁允许阀内部空间中的氢气渗透穿过凸壁自身而漏出。由于阀构件具有这种氢可渗透凸壁,因此阀构件相对于从壳释放进入阀内部空间的氢气具有大的接触面积(氢可渗透面积)。这可以增加允许渗透穿过阀构件的氢的量,由此允许壳中的氢气容易地通过安全阀装置漏出。
此外,优选地,上述镍氢蓄电池的任意一者包括覆盖凸壁的帽构件,该帽构件被设置为与阀构件的至少凸壁的部分外表面紧密接触,并且其中帽构件包括贯通帽构件形成以暴露凸壁的部分外表面的一个或多个通孔。
本发明的镍氢蓄电池包括覆盖凸壁的帽构件,该帽构件与阀构件的凸壁的至少部分外表面紧密接触。因此可防止阀构件变形(膨胀等)。
此外,该帽构件包括贯通帽构件自身而形成的的一个或多个通孔,以暴露凸壁的部分外表面。这可以允许渗透穿过阀构件的凸壁的氢气通过帽构件的通孔适当地漏出。特别地,通过帽构件的通孔的阀构件的凸壁的暴露部分非常容易地允许氢的渗透,由此流畅地将氢泄漏到外部。
根据上述结构,根据帽构件的通孔的数量、尺寸、位置等控制氢气的泄漏量(泄漏速率)。因此,帽构件的通孔的数量、尺寸、位置等的调整可适当抑制负极的放电预留量的变化(增加和减少),由此适当地防止电池特性的降低。
而且,在上述镍氢蓄电池中,优选地,将阀构件的凸壁和帽构件配置为在其间提供与帽构件的通孔连通的间隙。
在本发明的镍氢蓄电池中,在阀构件的凸壁和帽构件之间提供间隙以便间隙与帽构件的通孔连通。这种结构允许已通过阀构件的凸壁的氢气通过凸壁和帽构件之间的间隙,然后经由间隙通过帽构件的通孔流畅地漏出。
可选地,在上述镍氢蓄电池中,优选地,阀构件的形成阀内部空间的壁包括氢可渗透部件,通过该氢可渗透部件,允许阀内部空间中的氢气通过氢渗透漏出,阀构件的氢可渗透部件包括具有弯曲和折叠的至少一个的面积增加部件,用于增加面对阀内部空间的内部接触面积和暴露到外部空气的外部接触面积,并且该面积增加部件和密封部件具有这样的形状,以便在比较相对于孔周围部分从壳向外突出的高度时,面积增加部件低于或等于密封部件。
根据本发明的镍氢蓄电池,与氢可渗透部件不具有弯曲或折叠(例如平板形状)的情况相比,大大地提供了上述内部接触面积和外部接触面积。这可以进一步增加允许渗透穿过阀构件的氢的量,使壳中的氢气容易地漏出。因此,在安全阀装置中,可确保适当的氢泄漏量,由此适当地抑制电池中的氢的增加。另外,如此配置阀构件的面积增加部件和密封部件,以便在比较相对于孔周围部分突出高度时,面积增加部件的高度低于或等于密封部件的高度。换句话说,形成具有面积增加部件而不从密封部件突起(不提供凸壁)的阀构件。因此,阀构件可以具有从壳的表面(孔周围部分)的低的突出高度同时保持良好的氢渗透性。这可有利于降低安全阀装置的从壳的表面的突出高度,由此获得尺寸减小的电池。
此外,在上述镍氢蓄电池的任意一者中,优选地,阀构件的形成阀内部空间的壁包括两个或多个组件,并且该壁包括组件之间的界面,该组件之间的界面用于通过组件之间允许氢气从阀内部空间漏出。
根据本发明的镍氢蓄电池,允许从壳释放进入阀内部空间的氢气通过形成阀内部空间的构成组件之间容易并适当地漏出。这样的阀构件(具体地,形成阀内部空间的壁)可以为例如通过插入模制由环形或圆柱形金属构件和橡胶构件构成的整体模制件。


图1是实施例1到3中的镍氢蓄电池100到300的局部剖面透视图;图2是实施例1中的安全阀装置101的纵向截面图;
图3是实施例2中的镍氢蓄电池200的纵向截面图,示出了安全阀装置201以及其周围;图4是实施例2中的阀构件210的顶视图;图5是实施例3中的安全阀装置301的纵向截面图;图6是实施例4中的镍氢蓄电池600的分解透视图;图7是实施例4中的阀构件610的顶视图;图8是实施例4中的阀构件610的前视图;图9是沿图7的线B-B截取的实施例4中的阀构件610的截面图;图10是沿图6的线A-A截取的实施例4中的安全阀装置601的示意性截面图;图11是另一修改例中的阀构件410的半截面侧视图;图12是沿图11的线A-A截取的阀构件410的截面图;图13是在另一修改例中的阀构件510的半截面侧视图;图14是实施例5中的镍氢蓄电池700的局部剖面透视图;图15是沿图14的线H-H截取的实施例5中的安全阀装置701的(沿垂直于图2的方向的)纵向截面图;图16是实施例5中的安全阀装置701的(沿图14的线H-H截取的)纵向截面图,示出了壳中的内压力超过了预定值的状态;图17是实施例5中的阀构件710的透视图;图18是实施例6中的镍氢蓄电池800的安全阀装置801的纵向截面图;图19是在另一修改例中的阀构件910的透视图;图20是实施例7中的安全阀装置1101的纵向截面图;图21是安全阀装置1101的阀构件1110的透视图;图22是实施例8中的镍氢蓄电池1000的局部剖面透视图;图23是实施例8中的阀构件1010的透视图;图24是沿图22的线G-G截取的实施例8中的安全阀装置1001的(沿与图2中的相同方向的)纵向截面图;以及图25是实施例8中的安全阀装置1001的(沿图22的线G-G截取的)纵向截面图,示出了壳中的内压力超过预定值的状态。
参考标号说明100、200、300、600、700、800、1000、1100 镍氢蓄电池101、201、301、601、701、801、1001、1101 安全阀装置102、602 壳110、210、310、410、510、610、710、810、910、1010、1110 阀构件118、218、318、418、518 凸壁部分(形成阀内部空间的壁,氢可渗透部件)120、620 密封盖121 孔周围部分122、622 气体释放孔130 电池外壳150 电池主体170、270 帽构件175、275 通孔212c、214c 薄壁部分312、412 周围壁(面积增加部件)513 面积增加部件115、215、315、615、715、815、915、1015、1115 密封部件718、818、918、1018、1118 氢可渗透部件(形成阀内部空间的壁)740、1040 安全阀壳(保持构件)C 阀内部空间D、E 间隙F 连通通道具体实施方式
将参考附图对本发明的优选实施例(实施例1到8)进行下面的描述。
实施例1如图1所示,实施例1中的镍氢蓄电池100为包括具有密封盖120和电池外壳130的壳102、安全阀装置101、以及电极板组(electrode plategroup)150和容纳在壳102(电池外壳130)中的电解液(未示出)的矩形密封镍氢蓄电池。
电极板组150包括正极151、负极152、和袋形(bag-shaped)分隔件153。将正极151一对一地插入袋形分隔件153中。插入分隔件153中的正极151和负极152交替排列。集电这些正极151和负极152以分别连接到正端子和负端子。将本发明的实施例(实施例1到4)中的每个镍氢蓄电池设计为具有6.5Ah的正极容量和11.0Ah的负极容量。因此,在本发明中的实施例(实施例1到4)中的每个镍氢蓄电池在正极调节中具有6.5Ah的电池容量。
正极151可由例如包括包含氢氧化镍的活性材料和活性材料载体如泡沫镍的电极板形成。负极152可由例如包含氢吸收合金作为负极构成材料的的电极板形成。分隔件153可由例如由进行了亲水处理的合成纤维制成的无纺布形成。电解液可包括例如具有1.2到1.4的比重并包含KOH的碱性溶液。
电池外壳130由形成为矩形箱形状的金属(具体地,镍镀敷的钢板)制成。密封盖120由形成为大致平板矩形形状的金属(具体地,镍镀敷的钢板)制成。如图2所示,密封盖120具有气体释放孔122,通过该气体释放孔122,壳102的内部和外部连通。将该密封盖120置于电池外壳130的开口端131上并对其在其整个周边范围内焊接,使电池外壳130的开口132封闭。利用这种结构,密封盖120和电池外壳130之间无间隙地整体连接以形成壳102。在实施例1中,壳102完全由金属(仅为金属壁)制成,电池可以具有优良的冷却特性以防止电池温度的过度上升。
如图2所示,安全阀装置101具有阀构件110、帽构件170、盘簧160、基板180、和安全阀壳140。基板180由形成为环状平板形状的金属(具体地,镍镀敷的钢板)制成,其固定在密封盖120的外表面127上。帽构件170由具有基本上圆形的凸缘171、圆柱形侧壁(peripheral wall)172、和盘形顶壁174的金属(具体地,镍镀敷的钢板)制成。侧壁172和顶壁174形成为具有许多通孔175。
阀构件110由橡胶(具体地,EPDM)制成并包括基本上圆形的凸缘111和从凸缘111突出的凸壁118(圆柱形侧壁112和盘形顶壁114)。阀构件110具有与帽构件170的内表面170b匹配的外形。将装配在帽构件170中的该阀构件110设置在密封盖120的外表面127上以及基板180的内侧。在实施例1中,阀构件110形成为具有0.5mm的壁厚。
安全阀壳140由形成为封闭端、基本上圆柱形形状的金属(具体地,镍镀敷的钢板)制成。该安全阀壳140的顶壁144形成为具有通孔144b,该通孔144b的直径大于帽构件170的侧壁172的外径。将该安全阀壳140固定在基板180上。盘簧160为具有图2中的向下减小的直径的螺旋形。以将小直径部分161置于帽构件170的凸缘171上同时通过安全阀壳140的顶壁144沿图2的向下方向按压大直径部分162的方式,以压缩状态将该盘簧160置于安全阀壳140中。
因此,通过盘簧160在图2中向下压住阀构件110的凸缘111以及帽构件170的凸缘171。由此使阀构件110的凸缘111的密封部件115与位于释放孔122周围的密封盖120的孔周围部分121保持紧密接触。以这种方式,通过阀构件110可以密封地覆盖释放孔122。
将上述安全阀装置101设置为当壳102中的内压力超过预定值时从壳102向外部释放气体(氢气等),以防止壳102中的内压力的过量增大。更准确地,当壳102中的内压力超过预定值时,在图2中壳102中的气体将帽构件170连同阀构件110一起向上挤压。该压紧力使盘簧160被进一步压缩。由此,与密封盖120的孔周围部分121保持紧密接触的阀构件110的密封部件115从孔周围部分121分离。这允许壳102中的气体释放到阀构件110的外部,然后通过安全阀壳140的顶壁144的通孔144b释放到电池外部。如上,可防止壳102中的内压力的过量上升。
在实施例1中的安全阀装置101中,如图2所示,阀构件110由氢可渗透的橡胶(EPDM)制成的薄壁形成。因此,允许壳102中的氢气进入与释放孔122连通的阀内部空间C并渗透穿过阀构件110以通过帽构件170的通孔175泄漏出电池。具体地,除了防止壳102中的内压力的过量上升的超量压力防止功能外,安全阀装置101还具有允许壳102中的氢气逐渐泄漏出电池的氢泄漏功能。即使当壳102中的内压力没有过量上升,上述安全阀装置101也可以将氢气从壳102泄漏出电池。这可抑制由构成负极152的氢吸收合金的腐蚀产生的电池中的氢的增加。因此,可抑制负极152的放电预留量的增加并由此可防止电池特性的降低。
而且,在实施例1中,如图2所示,该阀构件110具有形成为从凸缘111(密封部件115)突出的凸起形状(具体地,封闭端圆柱形)的凸壁118(圆柱形侧壁112和盘形顶壁114。),形成与释放孔122连接的阀内部空间C。利用这种结构,对于从壳102流入到阀内部空间C的氢气,阀构件110可具有大的接触面积(可氢渗面积)。这可增加允许渗透穿过阀构件110的氢的渗透量,从而安全阀装置101可容易地将氢气从壳102泄漏到外部。
注意在实施例1中的镍氢蓄电池100中,凸壁118相当于形成阀内部空间C的壁,也相当于氢可渗透部件。
而且,在实施例1中,帽构件170形成为具有许多通孔175。阀构件110的凸壁118的外表面118c的一部分与帽构件170保持紧密接触,并且通过帽构件170的通孔175,外表面118c的其它部分暴露。由于凸壁118的外表面118c的一部分与帽构件170保持紧密接触,因此可防止阀构件110(凸壁118)变形(膨胀)。而且,由于通过帽构件170的通孔175,凸壁118的外表面118c的其它部分暴露,因此暴露部分的氢渗透性良好,并允许氢气渗透穿过该部分而流畅地漏出。
通过使凸壁118的外表面118c的一部分与帽构件170保持紧密接触,可防止阀构件110(凸壁118)的变形(膨胀)。但是,这劣化了氢渗透性并且也妨碍了渗透的氢气流畅地泄漏到外部。另一方面,通过帽构件170的通孔175,凸壁118的外表面118c的暴露部分的氢渗透性可以如此良好,以致渗透的氢气流畅地泄漏到外部。因此,在实施例1中的安全阀装置101中,可以将帽构件170不同地设计为具有不同数量、尺寸、位置等的通孔175,以控制氢气的泄漏量(漏出速率)。类似地,可以将阀构件110不同地设计为具有不同的厚度、形状等,以控制氢气的泄漏量(漏出速率)。因此,当适当地确定帽构件170的通孔175的数量、尺寸、位置等以及阀构件110的厚度、形状等,可适当地抑制负极152的放电预留量的变化(增大或减小),由此可恰当地防止电池特性的降低。
可以以下面方式制造实施例1中的镍氢蓄电池100。
首先,将正极151一对一地放入多个袋形分隔件153。交替排列每个都插入正极151的多个分隔件153和多个负极152,以形成电极板组150(参见图1)。随后,将该电极板组150设置在电池外壳130中,然后通过引线将正极151连接到未示出的正端子,并且通过引线将负极152连接到未示出的负端子。将单独制备的密封盖120置于电池外壳130的开口端131上并对其在整个外周范围内焊接,使电池外壳130的开口132封闭(参见图2)。因此,无缝隙地将密封盖120和电池外壳130装配为整体壳102。然后,通过密封盖120的释放孔122将作为电解液的具有约1.3的比重的碱性水溶液注入到壳102中。
另一方面,将阀构件110插入帽构件170。将盘簧160放入安全阀壳140,以便盘簧160的大直径部分162面对安全阀壳140的顶壁144。然后,将其中安装有阀构件110的帽构件170结合到安全阀壳140中,以便帽构件170的凸缘171与盘簧160的小直径部分161保持紧密接触。然后通过激光焊接将基板180固定到安全阀壳140的凸缘148。由此,制成安全阀装置101。将该安全阀装置101置于密封盖120的外表面127上,以便安全阀装置101与释放孔122轴向对准,并且通过激光焊接将安全阀装置101固定到密封盖120(壳120)。如上,可以制造实施例1中的镍氢蓄电池100。
实施例2参考图3和4,对实施例2中的镍氢蓄电池200进行下面的说明。实施例2中的镍氢蓄电池200与实施例1的镍氢蓄电池100相比不同之处在于阀构件和帽构件的形状,而其它部件或组件是相同的。实施例2中的帽构件270与实施例1中的帽构件170的不同之处在于通孔的数量。具体地,实施例1中的帽构件170在侧壁172和顶壁174中具有大量的通孔175(参见图2)。实施例2中的帽构件270仅在顶壁274的中心处具有单个通孔275(参见图3)。
而且,参考图2、3和4,阀构件200与实施例1中的阀构件110的不同之处在于凸壁218(侧壁212和顶壁214)的形状。尽管实施例1中的阀构件110的侧壁形成为具有平坦外周的圆柱形,但是如图4所示实施例2中的阀构件210的侧壁212具有波纹形外周,该波纹形外周具有在圆周方向上交替设置的多个凸起部分212b和薄壁部分212c。
如图4所示,在阀构件210的顶壁214上,以等间距圆周地间隔设置三个凸起部分214b。将除了凸起部分214b的顶壁214的部分称作薄壁部分214c。在该阀构件210中,侧壁212的薄壁部分212c的厚度和顶壁214的薄壁部分214c的厚度分别为0.3mm,比实施例1中的阀构件110的厚度(0.5mm)薄。由于阀构件具有如上的薄壁部分212c和214c,因此阀构件允许氢气容易地渗透穿过。
将上述阀构件210安装在帽构件270中(参见图3)。同时,阀构件210的侧壁212形成为如上所述的波纹形。因此使凸起部分212b与帽构件270的内表面270b接触(紧密接触)。因此,在薄壁部分212c和帽构件270的内表面270b之间可产生间隙D。而且,由于阀构件210的顶壁214具有凸起部分214b,因此在顶壁214的薄壁部分214c和帽构件270的内表面270b之间可产生间隙E。
如图3所示,上述间隙D和E与帽构件270的通孔275连通。这允许渗透穿过阀构件210的凸壁218(侧壁212和顶壁214)的氢气通过间隙D和E,经由间隙D和E通过帽构件270的通孔275流畅地漏出。
在实施例2中的镍氢蓄电池200中,凸壁218相当于形成阀内部空间C的壁并相当于氢可渗透部件。
实施例3参考附图5,对实施例3中的镍氢蓄电池300进行下面的说明。实施例3中的该镍氢蓄电池300与实施例2中的镍氢蓄电池200相比不同之处在于阀构件的形状,而其它部件或组件都相同。
实施例3中的阀构件310具有这样的侧壁312,其具有均匀厚度(0.5mm)并象手风琴地被轴向折叠。由于该手风琴式结构,侧壁312可提供面对阀内部空间C的增加的内部接触面积和暴露到外部空气的增加的外部接触面积。这可增加渗透穿过阀构件的氢的量,允许壳102中的氢气容易地漏出。因此,安全阀装置301可提供氢的适当泄漏量,并由此适当地防止电池中的氢的增加。
而且,在实施例3中,阀构件310的整个侧壁312相当于面积增加部件。在实施例3中的镍氢蓄电池300中,凸壁318(侧壁312和顶壁314)相当于形成阀内部空间C的壁,并相当于氢可渗透部件。
实施例4参考附图6到10,对实施例4中的镍氢蓄电池600进行下面的说明。实施例4中的镍氢蓄电池600与上述实施例1到3的不同之处在于安全阀装置的结构,而其它部件或组件基本上相同。
如图6所示,实施例4中的镍氢蓄电池600具有包括密封盖620和电池外壳130的壳602、阀构件610、和止动板(retaining plate)640。密封盖620具有提供凹槽S的凹壁621,凹槽S相对于外表面627朝向电池外壳130向内形成。该凹壁621具有基本上半圆柱形形状,包括作为凹壁621的底部的凹底部625、连接凹底部625和外表面627的第一侧壁623,以及连接凹底部625和外表面627并与第一侧壁623相对的第二侧壁624。
凹底部625具有沿与连接第一侧壁623和第二侧壁624的方向(即,在图10中的左右方向)垂直的方向截取的U形(基本上半圆形)剖面。第一侧壁623具有贯通第一侧壁623形成以使壳602的内部与其外部连通的释放孔622。可以以例如压模(press-mold)预定尺寸的金属板以形成具有U形(接近半圆形)剖面的凹底部625的凹壁621并且在第一侧壁623中刺穿释放孔622的方式,制造如此配置的密封盖620。
如图7到9所示,阀构件610为包括第一阀构件612、第二阀构件614和第三阀构件613的整体模制件,第一阀构件612由形成为具有第一通孔612b的半圆柱形的橡胶(具体地,EPDM)制成,第二阀构件614由形成为具有第二通孔614b的金属(例如,镍镀敷的钢板)制成,第三阀构件613由形成为围绕第二阀构件614的半圆柱形的橡胶(具体地,EPDM)制成。换句话说,实施例4中的阀构件610为通过在第一阀构件612和第三阀构件613之间插入第二阀构件614的插入模制形成的橡胶模制件。
如图10所示,在密封盖620的凹槽S中安装该阀构件610,以便在图10的左右方向上压缩阀构件610。此时,第一阀构件612的第一通孔612b和第二阀构件614的第二通孔614b形成与释放孔622连通的阀内部空间C。注意将止动板640固定在(焊接到)密封盖620的外表面627上。因此,可防止阀构件610从凹槽S脱落。
在实施例4的镍氢蓄电池600中,阀构件610、在密封盖620中形成的凹壁621,以及止动板640构成安全阀装置601。如此配置该安全阀装置601,以便将阀构件610和其它部件设置为不从壳602(密封盖620)的外表面627突出。由此获得尺寸减小的电池。
这里,说明安全阀装置601的阀开启操作。当壳602中的内压力低于预定值时,环形密封部件615与围绕释放孔622的第一侧壁623保持紧密接触,同时气体存在于阀构件610的阀内部空间C中。另一方面,当壳602中的内压力超过预定值时,通过存在于壳602和阀内部空间C中的气体,橡胶的第三阀构件613受到挤压,并且在图10中向右地弹性形变为压缩状态。因此,第二阀构件614和第一阀构件612沿与第一侧壁623分离的方向(即,图10中的右侧方向)移动,使密封部件615不与第一侧壁623接触,由此在密封部件615和第一侧壁623之间产生间隙。在这种状态下,可从壳602适当地排出气体。
同时,如此设置阀构件610,以便橡胶的第一阀构件612和金属的第二阀构件614彼此接触,同时,橡胶的第三阀构件613和金属的第二阀构件614彼此接触。换句话说,在第一阀构件612和第二阀构件614之间以及在第三阀构件613和第二阀构件614之间提供界面,以允许通过该界面将氢气从阀内部空间C泄漏到外部。
与实施例1到3中的安全阀装置101到301一样,包括上述阀构件610的安全阀装置601允许壳602中的氢气泄漏出电池。具体地,进一步允许已从壳602流到阀构件610的阀内部空间C中的氢气通过橡胶的第一阀构件602和金属的第二阀构件614之间以及橡胶的第三阀构件613和金属的第二阀构件614之间的间隙,从而泄漏出电池。
更具体地,除了防止壳602中的内压力过度增大的超量压力防止功能外,实施例4中的安全阀装置601还具有允许壳602中的氢气泄漏出电池的氢泄漏功能。即使当壳602中的内压力没有过度地增大,上述安全阀装置601也允许壳602中的氢气泄漏出电池。这可抑制由构成负极152的氢吸收合金的腐蚀导致的电池中的氢的增加。因此,可以抑制负极152的放电预留量的增加并由此可防止电池特性的降低。
在实施例4中的镍氢蓄电池中,第一阀构件612、第二阀构件614和第三阀构件613构成内部空间C。
实施例5参考附图14到17,对实施例5中的镍氢蓄电池700进行下面的说明。实施例5中的镍氢蓄电池700与上述实施例1到3的不同之处在于安全阀装置的结构,而其它部分或组件相同。
如图14所示,实施例5中的镍氢蓄电池700具体地包括安全阀装置701。如图15所示,该安全阀装置701包括阀构件710和安全阀壳740。安全阀壳740由形成为封闭端、基本上椭圆和圆柱形的金属(具体地,镍镀敷的钢板)制成。安全阀壳740的顶壁744形成为具有两个圆形通孔744b。侧壁742也形成为在相对位置处具有两个近似矩形的通孔742b。将该安全阀壳740固定在密封盖120的外表面127上。
如图17所示,阀构件710由橡胶(具体地,EPDM)制成并包括基本上为椭圆环形的密封部件715和形成在密封部件715内部的氢可渗透部件718。密封部件715为包括两个平行直部分715c和两个弯曲部分715d的基本上长方体形状,其中两个弯曲部分715d形成为连接到每个直部分715c的两端的基本上半圆形。每个弯曲部分715d在高度方向上在其中心处凹入,显示为图15中所示的心形剖面。
此外,在沿密封盖120的表面方向上(即,在图中的左右方向上)延伸的氢可渗透部件718为象手风琴地折叠的薄壁形,具体地说,以随着从弯曲部分715d的一端延伸到另一端,与密封盖120的距离重复变化的方式象手风琴地折叠。如图15所示,如此设置安全阀构件710,其中在靠近密封盖120的释放孔122的位置处通过安全阀壳740从上方弹性压缩的密封部件715。由此,密封部分715的密封表面715b与围绕密封盖120的释放孔122的孔周围部分121保持紧密接触,由此密封地覆盖释放孔122。在实施例5的镍氢蓄电池700中,安全阀壳740相当于保持构件。
如上,在实施例5中,与实施例1到3不同,由于密封部件715自身的弹性通过密封表面715b挤压孔周围部分121,从而密封表面715b与孔周围部分121保持紧密接触。比较图2到4与图15发现,与实施例1到3相比,实施例5可以不使用盘簧160、帽构件170等,并且可获得尺寸减小的安全阀装置(具体地,自壳表面的突出高度减小)。
将这种安全阀装置701设置为当壳102的内压力超过预定值时从壳102排出气体(氢气等),以防止壳102值的内压力过度增加。更具体地,当壳102中的内压力如此上升以致超过预定值时,通过壳102中的气体向上地挤压阀构件710的密封部件715的具有心形部分的弯曲部分715d。通过这种压紧力,弯曲部分715d被压缩并向上地变形。因此,在密封盖120的孔周围部分121和与孔周围部分121保持紧密接触的密封部件715的每个弯曲部分715d之间产生连通通道F。由此释放孔122与外部连通。通过该连通通道F,将壳102中的气体排出到阀构件710的外部,然后通过安全阀壳740的通孔742b排出到电池外部。如上,可防止壳102中的内压力过度上升。
如图15所示,安全阀装置701的阀构件710还具有由薄壁(厚度约0.4mm)的橡胶(EPDM)材料制成的氢可渗透部件718。因此,允许壳102中的氢气从与释放孔122连通的阀内部空间C渗透穿过氢可渗透部件718,然后通过安全阀壳740的通孔744b泄漏出电池。换句话说,即使当壳102中的内压力为预定值或更小时,安全阀装置701也允许壳102中的氢气逐渐漏出电池。这可抑制由构成负极152的氢吸收合金的腐蚀导致的氢的增加。由此,可抑制负极152的放电预留量的增加,并由此可防止电池特性的降低。
在实施例5中,具体地,象手风琴地折叠氢可渗透部件718。因此该氢可渗透部件718具有面对阀内部空间C的大的内部接触面积以及暴露到外部空气的大的外部接触面积。这可增加允许渗透穿过阀构件的氢的量,允许壳102中的氢气容易地漏出。因此,安全阀装置701可提供适当的氢泄漏量,并因此恰当地防止电池中的氢的增加。
在实施例5中,阀构件710的整个氢可渗透部件718相当于面积增加部件。而且,氢可渗透部件718和密封部件715相当于形成阀内部空间C的壁。
另外,在实施例5的安全阀装置701中,如图15所示,如此配置阀构件710,以便相对于孔周围部分121使氢可渗透部件(面积增加部件)718在高度上低于密封部件715。换句话说,与实施例1到3中的不同,阀构件710是提供未从密封部件715突出(即,没有形成凸壁)的氢可渗透部件(面积增加部件)的形状。因此,可提供具有自壳的表面(孔周围部分121)的较低突出高度的阀构件,同时具有良好的氢渗透性。因此与实施例1到3中的相比,该安全阀装置可具有自壳的表面的较低突出高度,由此有利于尺寸减小的电池。
实施例6如图18所示的实施例6中的镍氢蓄电池800与实施例5中的镍氢蓄电池700相比不同之处在于阀构件的氢可渗透部件的形状,而其它部分或组件是相同的。具体地,在实施例5中的阀构件710中,如图15所示,氢可渗透部件718形成为在沿密封盖120的表面的方向上(即,图中的左右方向上)延伸的象手风琴的折叠形状。另一方面,在实施例6中中的阀构件810具有如图18所示的在垂直于密封盖120的表面的方向上延伸的象手风琴地折叠的氢可渗透部件818。更确切地,从上方观察,氢可渗透部件818为从阀构件810的中心沿径向向外侧延伸、沿径向向内侧折转,并进一步沿径向向外侧折转以延伸到密封部件815的形状。
与实施例5中的氢可渗透部件718一样,如此配置的氢可渗透部件818也可具有面对阀内部空间C的增加的内部接触面积和暴露到外部空气的增加的外部接触面积。这可增加允许渗透穿过阀构件的氢的量,允许壳102中的氢气容易地漏出。因此,安全阀装置801可以提供适当的氢泄漏量并由此恰当地防止电池中的氢的增加。
在实施例6中,阀构件810的整个氢可渗透部件818相当于面积增加部件。而且,氢可渗透部件818和密封部件815相当于形成阀内部空间C的壁。
另外,在实施例6中的安全阀装置801中,与实施例5中的阀构件710一样,如此配置阀构件810,以便相对于孔周围部分121使氢可渗透部件(面积增加部件)818在高度上低于密封部件815。换句话说,与实施例1到3中的不同,阀构件810形成为提供未从密封部件815突出(即,不形成凸壁)的氢可渗透部件(面积增加部件)的形状。因此,可提供具有自壳的表面(孔周围部分121)的较低突出高度的阀构件,同时具有良好的氢渗透性。因此与实施例1到3中的相比,该安全阀装置可具有自壳的表面的较低突出高度,由此有利于尺寸减小的电池。
实施例7如图20所示的实施例7中的镍氢蓄电池1100与实施例5中的镍氢蓄电池700相比不同之处在于阀构件的氢可渗透部件的形状,而其它部分或组件是相同的。具体地,在实施例5中的阀构件710中,氢可渗透部件718形成为如图15所示的象手风琴的折叠形状。另一方面,实施例7中的阀构件1110具有包括多个向下凸起部分1118b的氢可渗透部件1118,该多个向下凸起部分1118的每个都形成为如图20和21所示的具有上开口1118c的封闭端圆柱形形状。与实施例5中的氢可渗透部件718一样,氢可渗透部件1118整体具有薄壁部分(厚度约0.4mm)。
与实施例5中的氢可渗透部件一样,如此配置的氢可渗透部件1118也可具有面对阀内部空间C的增加的内部接触面积和暴露到外部空气的增加的外部接触面积。这可增加允许渗透穿过阀构件的氢的量,允许壳102中的氢气容易地漏出。因此,安全阀装置1101可以提供适当的氢泄漏量并由此恰当地防止电池中的氢的增加。
在实施例7中,阀构件1110的氢可渗透部件1118的凸起部分1118b相当于面积增加部件。而且,氢可渗透部件1118和密封部件1115相当于形成阀内部空间C的壁。
另外,如此配置该阀构件1110,以便相对于孔周围部分121,氢可渗透部件(面积增加部件)1118在高度上低于密封部件1115。换句话说,阀构件1110形成为提供未从密封部件1115突出(即,不形成凸壁)的氢可渗透部件(面积增加部件)1118的形状。因此,可提供具有自壳的表面(孔周围部分121)的较低突出高度的阀构件,同时具有良好的氢渗透性。因此与实施例1到3中的相比,该安全阀装置可具有自壳的表面的较低突出高度,由此有利于尺寸减小的电池。
实施例8实施例8中的镍氢蓄电池1000与实施例5中的镍氢蓄电池700相比不同之处仅在于安全阀装置,而其它部件或组件是相同的。具体地,如图22所示,实施例8中的安全阀装置1001包括安全阀壳1040。该安全阀壳1040与实施例5中的安全阀壳740的不同之处仅在于形成在侧壁中的通孔的位置,而其它的部件和组件都相同。具体地,实施例8中的安全阀壳1040形成为在纵向上延伸的侧壁742的相对位置处具有两个基本上为矩形的通孔1042b。
而且,如图23所示,实施例8中的阀构件1010与实施例5中的阀构件740(参见图17)的不同之处在于密封部件以及氢可渗透部件的形状。更具体地,实施例8中的阀构件1010包括具有基本上为矩形、环状的密封部件1015以及位于该密封部件1015内部的氢可渗透部件1018。
该密封部件1015包括一对基本上为长方体形状的第一直平行部分1015c,和一对基本上为长方体形状的第二直平行部分1015d,以及位于连接第一直部分1015c和第二直部分1015d的密封部件1015的拐角处的连接部分1015e。该连接部分1015e在沿密封表面1015b的方向上的厚度大于第一和第二直部分1015c和1015d的厚度。而且,该密封部件1015(第一直部分1015c、第二直部分1015d、和连接部分1015e)在高度方向上(在与密封表面1015b垂直的方向上)在中心处具有向内侧弯曲的凹槽,如图24所示示出了基本上为心形的剖面。
与实施例5中的阀构件710的氢可渗透部件718一样,氢可渗透部件1018形成为如图24所示的薄壁(厚度约0.4mm)和象手风琴的折叠形状,具体地说,以随着从第一直部分1015c的一个延伸到1015c的另一个时与密封盖120的距离重复变化的方式象手风琴地折叠。尽管实施例5中的氢可渗透部件形成为在阀构件710的纵向上延伸的象手风琴地折叠的形状(参见图17),但是实施例8中的氢可渗透部件形成为在较短边方向上(沿第二直部分1015d)延伸的象手风琴地折叠的形状。
如图24所示,如此设置该阀构件1010,其中在靠近密封盖120的释放孔122的位置处通过安全阀壳1040从上方弹性地压缩密封部件1015。由此,密封部件1015的密封表面1015b与密封盖120的释放孔122周围的孔周围部分121保持紧密接触,由此密封地覆盖释放孔122。即使当如上使用阀构件1015时,通过密封部件1015自身的弹性,密封表面1015b可以与孔周围部分121保持紧密接触,倾向于通过密封表面1015b压向孔周围部分121。在实施例8中的镍氢蓄电池1000中,安全阀壳1040相当于保持构件。
当壳102中的内压力超过预定值时,阀构件1010的密封部件1015,具体地,具有基本上为心形剖面的第一直部分1015c被壳102中的气体向上挤压,由此被压缩并向上变形。因此,在密封盖120的孔周围部分121和与孔周围部分121保持紧密接触的密封部件1015的每个第一直部分1015c之间产生连通通道F。释放孔122由此与外部连通。通过该连通通道F,将壳102中的气体排出到阀构件1010的外部,然后通过安全阀壳1040的通孔1042b排出到电池外部。如上,可防止壳中的内压力上升到超量压力。
即使当壳102中的内压力为预定值或更小时,安全阀装置1001也允许壳102中的氢气从与释放孔122连通的阀内部空间C渗透穿过氢可渗透部件1018,由此通过安全阀壳1040的通孔1044b泄漏出电池。并且,如在实施例5中,象手风琴地折叠的氢可渗透部件1018可具有面对阀内部空间C的增加的内部接触面和暴露到外部空气的增加的外部接触面积,由此提供良好的氢渗透性。因此,安全阀装置1001可提供适当的氢泄漏量并由此恰当地防止电池中的氢的增加。在实施例8中,阀构件1010的整个氢可渗透部件1018相当于面积增加部件。而且,氢可渗透部件1018和密封部件1015相当于形成阀内部空间C的壁。
另外,如此设置阀构件1010,以便相对于孔周围部分121,氢可渗透部件(面积增加部件)1018在高度上低于密封部件1015。换句话说,阀构件1010形成为提供未从密封部件1015突出(即,不形成凸壁)的氢可渗透部件(面积增加部件)的形状。因此,可提供具有自壳的表面(孔周围部分121)的较低突出高度的阀构件,同时具有良好的氢渗透性。因此与实施例1到3中的相比,该安全阀装置可具有自壳的表面的较低的突出高度,由此有利于尺寸减小的电池。
如上,在实施例1到8中说明了本发明,但在不脱离本发明的本质特征的情况下,也可以以其它具体形式实施本发明。
例如,在实施例3中,象手风琴地折叠阀构件310的侧壁,以增加面对内部空间C的内部接触面积和暴露到外部空气的外部接触面积。可选地,用于增加内部接触面积和外部接触面积的形状不限于此。例如,作为图11和12中所示的阀构件410,侧壁412可以沿圆周方向Z字形弯曲。该形状也可通过侧壁412的内表面412b增加内部接触面积,并通过外部接触面积412c增加外部面积。这可增加允许渗透穿过阀构件的氢的量,允许壳102中的氢气容易地漏出。
在该阀构件410中,整个侧壁412相当于面积增加部件。而且,侧壁412和顶壁414相当于形成阀内部空间C的壁,也相当于氢可渗透部件。
可选地,作为图13所示的阀构件510,凸壁518(侧壁512和顶壁514)可具有在分散位置中的许多突出部513。该形状也可通过突出部513的内表面513b增加内部接触面积,并通过突出部513的外表面513c增加外部接触面积。这可增加允许渗透穿过阀构件的氢的量,允许壳102中的氢气容易地漏出。
在该阀构件510中,突出部513相当于面积增加部件。而且,凸壁518(侧壁512和顶壁514)相当于形成阀内部空间C的壁。
尽管在实施例1到4中壳102和602整个由金属制成,但是它们也可由金属和树脂的结合或者仅仅由树脂制成。
尽管在实施例2和3中仅仅帽构件270的顶壁274形成为具有通孔275,但是侧壁272也形成为具有如实施例1中的通孔。具有通孔的侧壁272使得氢气能够更容易泄漏出电池。
在实施例5中,如图17所示,阀构件710的氢可渗透部件718形成为在沿基本上为椭圆环形的密封部件715的直部分715c的方向上和在其内部上延伸的象手风琴地折叠的形状。但是,该氢可渗透部件不限于这种形状,也可以形成为如图19所示的在朝向椭圆中心的方向上和在基本上为椭圆环形的密封部件915的内部上象手风琴地折叠的形状(氢可渗透部件915)。该阀构件910也可提供良好的氢渗透性,并有利于安全阀装置的减小的突出高度。
权利要求
1.一种镍氢蓄电池,包括电池主体;容纳所述电池主体的壳;以及安全阀装置,具有当所述壳中的内压力超过预定值时通过从所述壳排出气体来防止所述壳中的内压力过度上升的超量压力防止功能,其中所述壳包括贯通所述壳形成以在所述壳的内部和外部之间提供连通的释放孔,所述安全阀装置包括阀构件,所述阀构件密封地覆盖所述释放孔并包括形成与所述释放孔连通的阀内部空间的壁,以及除了所述超量压力防止功能外,所述安全阀装置还具有即使当所述壳中的内压力为所述预定值或更小时也允许所述壳中的氢气泄漏到所述电池外部的氢泄漏功能。
2.根据权利要求1的镍氢蓄电池,其中所述壳由金属制成。
3.根据权利要求1或2的镍氢蓄电池,其中所述阀构件的形成所述阀内部空间的所述壁包括氢可渗透部件,所述氢可渗透部件允许所述阀内部空间的氢气通过氢渗透漏出。
4.根据权利要求3的镍氢蓄电池,其中所述阀构件的所述氢可渗透部件包括面积增加部件,所述面积增加部件具有用于增加面对所述阀内部空间的内部接触面积和暴露到外部空气的外部接触面积的弯曲和折叠中的至少一种。
5.根据权利要求3或4的镍氢蓄电池,其中所述阀构件的所述氢可渗透部件包括薄于其周围部分的薄壁部分。
6.根据权利要求1至5中任何一项的镍氢蓄电池,其中所述阀构件包括与位于所述壳的所述释放孔周围的孔周围部分保持紧密接触的密封部件,所述安全阀装置包括保持构件,所述保持构件将所述阀构件的所述密封部件压向所述壳的所述孔周围部分,以通过所述密封部件自身的弹性使所述密封部件的密封表面与所述孔周围部分保持紧密接触,并保持所述密封部件的从所述壳向外突出的预定高度,以及所述密封部件具有这样的形状,以通过在所述壳中的内压力超过所述预定值时引起的所述密封部件的至少部分的弹性形变,在所述密封表面和所述孔周围部分之间提供使所述释放孔连通到外部的连通通道。
7.根据权利要求3至6中任何一项的镍氢蓄电池,其中所述阀构件包括与所述壳的位于所述气体释放孔周围的部分保持紧密接触的所述密封部件,以及形成所述阀内部空间的所述壁是形成为从所述密封部件突出到所述壳外的凸壁,用作所述氢可渗透部件。
8.根据权利要求7的镍氢蓄电池,还包括覆盖所述凸壁的帽构件,所述帽构件被设置为与所述阀构件的至少所述凸壁的外表面的一部分紧密接触,以及其中所述帽构件包括单个或多个通孔,所述单个或多个通孔贯通所述帽构件形成以暴露所述凸壁的所述外表面的一部分。
9.根据权利要求8的镍氢蓄电池,其中所述阀构件的所述凸壁和所述帽构件配置为在其间提供与所述帽构件的所述通孔连通的间隙。
10.根据权利要求6的镍氢蓄电池,其中所述阀构件的形成所述阀内部空间的所述壁包括氢可渗透部件,通过所述氢可渗透部件,允许所述阀内部空间中的氢气通过氢渗透漏出,所述阀构件的所述氢可渗透部件包括面积增加部件,所述面积增加部件具有用于增加面对所述阀内部空间的内部接触面积和暴露到外部空气的外部接触面积的弯曲和折叠中的至少一种,以及所述面积增加部件和所述密封部件具有这样的形状,以便在比较相对于所述孔周围部分从所述壳向外突出的高度时,所述面积增加部件低于或等于所述密封部件。
11.根据权利要求1至6中任何一项的镍氢蓄电池,其中所述阀构件的形成所述阀内部空间的所述壁包括两个或多个组件,以及所述壁包括所述组件之间的界面,用于允许氢气通过所述组件之间从所述阀内部空间漏出。
全文摘要
提供能够抑制负极的放电预留量的增加并抑制电池特性降低的镍氢蓄电池。该镍氢蓄电池(100)包括电池主体(电极板组150、电解液等)、容纳该电池主体的壳(102),以及安全阀装置(101),该安全阀装置(101)具有当壳(102)中的内压力超过预定值时通过从壳(102)排出气体来防止壳(102)中的内压力过度增加的超量压力防止功能。安全阀装置(101)包括具有凸壁部分(118)的阀构件(110),该凸壁部分(118)形成与气体释放孔(122)连通的阀内部空间C。除了超量压力防止功能外,安全阀装置(101)还具有即使当壳(102)中的内压力不大于预定值时也允许壳(102)中的氢气通过阀内部空间C泄漏出电池的氢泄漏功能。
文档编号H01M10/30GK1977406SQ20058002171
公开日2007年6月6日 申请日期2005年6月29日 优先权日2004年7月2日
发明者浜田真治, 松浦智浩, 江藤丰彦, 宫本裕幸 申请人:丰田自动车株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1