用于c4球中均匀电流密度的金属布线结构的制作方法

文档序号:6944335阅读:247来源:国知局
专利名称:用于c4球中均匀电流密度的金属布线结构的制作方法
技术领域
本发明涉及半导体结构,更具体地,涉及接合焊垫的金属布线结构及其制造方法。
背景技术
一旦半导体装置和半导体晶片(衬底)上的互连的形成完成,半导体晶片被划分 为半导体芯片,或者“裸芯”。功能性的半导体芯片随后被封装以便有利于电路板上的安装。 封装是提供机械保护和对于上层组件系统(例如电路板)的电连接的半导体芯片的支撑 元件。一种典型封装技术是受控坍塌芯片连接(Controlled Collapse Chip Connection) (C4)封装,它采用C4球,各个C4球接触半导体芯片上的C4焊垫和封装衬底上的另一 C4焊 垫。封装衬底可以随后被组装于电路板上。各C4焊垫是典型地由半导体制造工序期间金属互连结构的最后的金属层形成的 接触金属焊垫。各C4焊垫大到足以容纳C4球的底部。接合焊垫结构指的是包含这样的C4 焊垫和下面的连接结构的结构。例如C4球的金属结构包括金属离子晶格和非局部化的自由电子。当电流穿过C4 球流动时,金属离子受到归因于金属离子的电荷和金属离子所暴露的电场的静电力。此外, 由于电子在电流传导期间的散射,电子转移动量至导电材料的晶格中的金属离子。静电力 的方向在电场的方向,即在电流的方向,并且归因于电子的动量转移的力的方向在电子的 流动的方向,即在电流的反方向。但是,归因于电子的动量转移的力通常比静电力大。因而, 金属离子受到在电流反方向,或者在电子流动方向的净力。由电流引起的质量输运,或者归 因于电流的导电材料的移动,在本领域中被冠名以电迁移。一旦通过电迁移在C4球中形成空泡,则在关键导电路径或者“热点”的电流密度 增加,因为空泡减小了导电路径的面积。较高的电流密度因而加速了电迁移过程,由此使空 泡增长。相互加强的恶性循环增加了空泡的尺寸和电流密度最终导致电路径的有效断开, 引起电迁移故障。电迁移故障是对于C4球的主要可靠性考量。因而,存在减小C4球的电迁移故障从而提高C4连接的可靠性的需求。

发明内容
本发明通过提供促进C4球内均勻电流密度分布的金属布线结构而提高了 C4球的
可靠性。在本发明中,金属结构的焊垫下组件被提供,它直接位于金属焊垫下面。焊垫下组 件包括邻接金属焊垫的上层金属线结构,位于上层金属线结构下面的下层金属线结构,和 提供位于上层金属线结构下面的和下层金属线结构之间的电连接的金属通路孔组。金属通 路孔组被分布以便在金属焊垫的中心部提供比在接触C4球的金属焊垫的周边部高的电流 密度。在C4球被接合至金属焊垫之后,焊垫下组件的几何形状引起更多的电流穿过金属焊 垫的中心使得在C4球中的电流密度变得均勻,由此减小了其中的电迁移。根据本发明的一方面,提供了一种结构,它包括布置于金属互连结构上方的金属焊垫;邻接金属焊垫的上层金属线结构;位于上层金属线结构下面的下层金属线结构;和 金属通路孔组,其中金属通路孔组在金属焊垫的中心区下面比在金属焊垫的周边区下面具 有更高的水平截面的面密度。金属通路孔组至少沿一水平方向在相邻的金属通路孔之间具有非均勻的间距。水 平方向对于金属通路孔组内的一组一维阵列可以是相同的。作为替代,水平方向可以是从 中心点的径向,并且一维阵列组可以在许多不同方向被取向。此外,金属通路孔组可以具有 在水平平面中两个不同方向相邻金属通路孔之间的不均勻的间距,其中相邻金属通路孔之 间的间距在两个方向都被调制。在金属通路孔组中相邻金属通路孔之间的不均勻间距被分 布,使得在金属焊垫和C4球之间的接触区的中心区中截面的整体密度比在接触区的周边 区中的截面的整体密度大。根据本发明的另一方面,提供了形成结构的方法,它包括在衬底上形成包括下层 金属线结构的金属互连结构;直接在下层金属线结构上形成金属通路 孔组;直接在金属通 路孔组上形成上层金属线;并且在上层金属线上形成金属焊垫,其中金属通路孔组布置为, 在金属焊垫的中心区的下面比在金属焊垫的周边区的下面具有更高的导电水平截面的面
也/又。此外,本发明通过提供具有被分区并且被分布的整体金属通路孔的组的金属焊垫 结构,从而促进C4球内的均勻电流密度分布,而提高了 C4球的可靠性。多个金属通路孔中 截面的面密度在金属焊垫的中心部比在金属焊垫的平面部的周边部高。在C4球被接合至 金属焊垫之后,截面的面密度的改变的分布引起更多的电流通过金属焊垫的中心,使得在 其上的C4球中电流密度变得均勻,由此减小了 C4球内的电迁移。根据本发明的一方面,提供了一种结构,它包括一体构造的金属焊垫,被布置于 金属互连结构的上方并且包括上平面部和向下延伸的多个金属通路孔;和邻接多个金属通 路孔的底表面的金属线结构,其中多个金属通路孔在金属焊垫的中心区的下面比在金属焊 垫的周边区下面具有更高的水平截面的面密度。多个金属通路孔至少沿一水平方向在相邻金属通路孔之间具有不均勻的间距。水 平方向对于多个金属通路孔内的多个一维阵列可以是相同的。作为替代,水平方向可以是 从中心点的径向,并且多个一维阵列可以在许多不同的方向取向。此外,多个金属通路孔可 以在水平平面中两个不同方向的相邻金属通路孔之间具有不均勻的间距,其中相邻金属通 路孔之间的间距在两个方向都被调制。多个金属通路孔中相邻金属通路孔之间不均勻的间 距被分布,使得在金属焊垫和C4球之间的接触区的中心区的整体截面密度比在接触区的 周边区的整体截面密度高。根据本发明的另一方面,提供了形成结构的方法,它包括在衬底上形成包括金属 线结构的金属互连结构;在金属线结构上形成钝化电介质层;在金属互连结构上方形成一 体构造并且包括上平面部和向下延伸并且接触金属线结构的多个金属通路孔的金属焊垫, 其中多个金属通路孔在金属焊垫的中心区下面比在金属焊垫的周边区下面具有更高的水 平截面的面密度,并且其中上平面部在钝化电介质层的顶表面上方形成并且多个金属通路 孔在侧面被钝化电介质层所包围。


图1A、1B、1C、1D、和IE分别是根据本发明的采用第一金属通路孔组和第一下层金 属线结构的第一典型结构的沿平面A-A’、B-B’、C-C’、D-D’、和E-E,的截面图。图IA是垂 直截面图,并且图1B-1E是水平截面图。图2是根据本发明 的采用对应于图ID的平面中的第二金属通路孔组的第二典型 结构的水平截面图。图3是根据本发明的采用对应于图ID的平面中的第三金属通路孔组的第三典型 结构的水平截面图。图4是根据本发明的采用对应于图ID的平面中的第四金属通路孔组的第四典型 结构的水平截面图。图5是根据本发明的采用对应于图IE的平面中的第二下层金属线结构的第五典 型结构的水平截面图。图6是根据本发明的采用对应于图IE的平面中的第三下层金属线结构的第六典 型结构的水平截面图。图7是根据本发明的采用对应于图IE的平面中的第四下层金属线结构的第七典 型结构的水平截面图。图8是在下层金属线结构的形成之后的第一典型半导体结构的垂直截面图。图9是在下层金属线结构和包含通路孔的通路孔层电介质层的形成之后第一典 型半导体结构的垂直截面图。图10是在通路孔层电介质层内金属通路孔组的形成之后第一典型半导体结构的 垂直截面图。图11是上层金属线结构的形成之后第一典型半导体结构的垂直截面图。图12是在钝化电介质层和其中的开口形成之后第一典型半导体结构的垂直截面图。图13是在金属焊垫形成之后第一典型半导体结构的垂直截面图。图14是在最顶上的电介质层和其中的开口形成之后第一典型半导体结构的垂直 截面图。图15A-15D分别是根据本发明的采用包括第一类型的金属通路孔阵列的金属焊 垫的第八典型结构的沿平面44’、83’、(-(’、和0-0’的截面图。图15A是垂直截面图,并 且图15B-15D是水平截面图。图16A-16C分别是根据本发明的采用包括第二类型的金属通路孔阵列的金属焊 垫的第九典型结构的沿平面44’、83’、和(-(’的截面图。图16A是垂直截面图,并且图 16B和16C是水平截面图。图17是根据本发明的采用对应于图15C或者图16C的平面中的包括第三类型的 金属通路孔的阵列的金属焊垫的第十典型结构的水平截面图。图18是根据本发明的采用对应于图15C或者图16C的平面中的包括第四类型的 金属通路孔的阵列的金属焊垫的第十一典型结构的水平截面图。图19是根据本发明的采用对应于图15C或者图16C的平面中的包括第五类型的 金属通路孔的阵列的金属焊垫的第十二典型结构的水平截面图。图20是金属线结构形成之后第八典型半导体结构的垂直截面图。
图21是通路孔层电介质层和其中的通路孔阵列形成之后的第八典型半导体结构的垂直截面图。图22是金属焊垫形成之后第八典型半导体结构的垂直截面图。图23是电介质掩模层开口形成之后第八典型半导体结构的垂直截面图。
具体实施例方式如上所述,本发明涉及接合焊垫的金属布线结构及其制造方法,它们现在接合附 图被详细描述。应当注意相似和对应的元件由相似的参考标号所指称。图未按比例。参考图1A-1E,根据本发明的第一实施例的第一典型结构被示出。第一典型结构包 括衬底10和形成于其中的至少一半导体装置12。衬底10可以是半导体衬底,其包括半导 体材料,例如硅、硅锗合金、硅、锗、硅-锗合金、硅碳合金、硅锗碳合金、砷化镓、砷化铟、砷 化铟镓、磷化铟、硫化铅、其它III-V化合物半导体材料、和II-VI化合物半导体材料。衬底 可以是单晶半导体衬底。至少一半导体装置12可以包括至少一场效应晶体管、双极晶体管、二极管、电阻 器、电容器、和电感器。至少一电介质层20位于至少一半导体装置12上。至少一电介质层 20可以包括例如氧化硅的电介质氧化物、例如氮化硅的电介质氮化物、低介电常数(低k) 化学气相沉积(CVD)电介质材料、或者旋涂低k电介质材料。金属互连结构被嵌入于至少 一电介质层20中。金属互连结构可以包括互连层金属通路孔22和互连层金属线24。第一下层金属线结构30被嵌入于至少一电介质层20的最顶上的层中。第一下层 金属线结构30可以,或者可以不包括孔,它们被典型地称为“奶酪孔”。金属互连结构提供 了至少一半导体装置12和第一下层金属线结构30之间的导电路径。第一下层金属线结构 30包括导电金属。第一下层金属线结构30可以具有从20微米至200微米的横向尺寸,尽 管在此也考虑较小或者较大的尺寸。在下金属线结构30具有矩形形状的情形中,下金属线 结构30的宽度和长度可以分别是从20微米至200微米。第一下层金属线结构30的厚度 典型地是从150nm至l,500nm,尽管在此也考虑较小和较大的厚度。第一下层金属线结构 30包括至少一金属。第一下层金属线结构30可以基本由铜或者铝构成。优选,第一下层金 属线结构30可以基本由铜构成。通路孔层电介质层40位于第一下层金属线结构30的上方。通路孔层电介质层40 可以包括电介质氧化物、电介质氮化物、低k CVD电介质材料、低k旋涂电介质材料、或者其 组合。优选,通路孔层电介质层40包括电介质氧化物、电介质氮化物、或者其组合以便减小 氧或者潮气对于位于下面的至少一电介质层20的进入。金属通路孔50A和互连通路孔50B 的第一组被嵌入于通路孔层电介质层40中。金属通路孔50A和互连通路孔50B的第一组 的厚度典型地从150nm至1,500nm,尽管在此也考虑较小和较大的厚度。第一金属通路孔 50A和互连通路孔50B的组包括至少一金属。金属通路孔50A和互连通路孔50B的第一组 可以基本由铜或者铝构成。优选金属通路孔50A和互连通路孔50B的第一组可以基本由铜 构成。线层电介质层60位于通路孔层电介质层40的上方。线层电介质层60可以包括 电介质氧化物、电介质氮化物、低k CVD电介质材料、低k旋涂电介质材料,或者其组合。优 选线层电介质层60包括电介质氧化物、电介质氮化物、或者其组合,以便减小氧或者潮气对于位于下面的至少一电介质层20的进入。
上层金属线结构70A和上层金属布线70B被嵌入于线层电介质层60中。上层金 属线结构70A可以具有从20微米至200微米的横向尺寸,尽管在此也考虑较小和较大的尺 寸。在上层金属线结构70A具有矩形形状的情形中,上层金属线结构70A的宽度和长度可以 分别是从20微米至200微米。上层金属线结构70A的厚度典型地是从150nm至1,500nm, 尽管在此也考虑较小和较大的厚度。上层金属线结构70A和上层金属布线70B包括至少一 金属。上层金属线结构70A和上层金属布线70B可以基本由铜或者铝构成。优选上层金属 线结构70A和上层金属布线70B基本由铜构成。钝化电介质层80和金属焊垫90位于线层电介质层60、上层金属线结构70A、和上 层金属布线70B的上方。钝化电介质层80包括电介质氧化物、电介质氮化物、或者其组合。 优选电介质层80包括电介质氧化物和电介质氮化物的堆叠叠层。典型地,钝化电介质层80 具有从300nm至3,OOOnm的厚度,尽管在此也考虑较小和较大的厚度。金属焊垫90包括至少一通路孔部和上平面部。至少一通路孔部侧面被钝化电介 质层80所包围并且邻接上层金属线结构70A。上平面部位于钝化电介质层80上和上方并 且在下通路孔部的周边上。金属焊垫90包含至少一金属。在一情形中,金属焊垫90可以 基本由铝构成,并且各上层金属线结构70A、第一组金属通路孔50A、和第一下层金属线结 构30可以基本由铜构成。金属焊垫90的厚度可以从1. 0微米至5. 0微米,尽管在此也考 虑较小和较大的厚度。具有开口的电介质掩模层95位于金属焊垫90和钝化电介质层80的顶表面的上 方。开口的边界位于金属焊垫80的区域内。电介质掩模层95包括例如聚酰亚胺的电介质 材料。在一些情形中,聚酰亚胺可以是光敏的以便可以不采用额外的光敏材料进行光刻印 刷。C4球99位于电介质掩模层95的开口内并且接触金属焊垫90。C4球的直径可以是从 30微米至200微米,尽管在此也考虑较小和较大的直径。第一组金属通路孔50A中各金属通路孔垂直邻接上层金属线结构70A和第一下层 金属线结构30。金属焊垫90通过上层金属线结构70A、第一组金属通路孔50A、和第一下层 金属线结构30被电阻性地耦合至至少一半导体装置12。第一组金属通路孔50A包括基本相同尺寸的金属通路孔。第一组金属通路孔50A 在金属焊垫90的中心区CR的下面比在金属焊垫的周边区ra下面具有更高的水平截面的 面密度。中心区CR包括金属焊垫90和C4球99之间的接触区的中心点。在本发明中,中 心区CR被界定为比接触区的闭合的边界更接近于金属焊垫90和C4球99之间的接触区的 中心点的上层金属线结构70A的区域的子集。在接触区是圆的情形中,中心区CR的半径是 接触区的半径r的一半。在上层金属线结构70A具有凸多边形或者凸曲线形的情形中,中 心区CR的面积可以是金属焊垫60和C4球99之间的接触区的面积的四分之一。周边区I3R 是接触区内中心区CR的互补。周边区I3R是在接触区的闭合边界内并且在中心区CR外面 的区域。第一组金属通路孔50A中至少一些金属通路孔具有基本相同的尺寸,且被布置为 一维阵列,其中相邻金属通路孔之间的间距在中心区CR下面比在周边区ra下面小。第一组 金属通路孔50A可以被布置为单个一维阵列或者多个一维阵列。在第一组金属通路孔50A 被布置于具有相同取向的多个一维阵列中的情形中,相邻金属通路孔之间的间距在各多个一维阵列的中间部中比在端部中小。各一维阵列的方向在此被称为第一方向,并且分离一 维阵列的方向在此被称为第二方向。各一维阵列的方向的间距在此被称为第一间距,它是 沿第一方向的间距,并且相邻一维阵列之间的间距在此被称作第二间距,它是沿第二方向 的间距。相邻金属通路孔之间的第一间距沿第一方向在中心区CR下面比在周边区ra下面 小。相邻金属通路孔之间的第二间距沿不同于第一方向的第二方向,在第一组金属通路孔 50A之间基本相同。第一组金属通路孔50A中的各金属通路孔可以具有圆或者矩形的截面。通常,第 一组金属通路孔50A中的各金属通路孔可以具有任何多边形或者曲线的闭合形状。在替代实施例中不同类型的金属通路孔可以被采用替代第一组金属通路孔中的 金属通路孔的类型。参考图2,示出了根据本发明第二实施例的第二典型结构。第二典型结 构通过对于第一实施例的第一组金属通路孔50A替代以第二组金属通路孔52而从第一典 型实施例导出。图2是对应于第一典型结构的图ID的平面中第二典型结构的水平截面图。第二组金属通路孔52中的各金属通路孔具有被拉长的水平截面。水平宽度,即垂 直于被拉长方向的方向的金属通路孔的横向尺寸,随着在各第二组金属通路孔52中距中 心点的距离d而单调减小。中心点可以是各第二组金属通路孔52中金属通路孔的水平区 域的形状的几何中心。水平宽度可以沿第二组金属通路孔52中各金属通路孔的拉长的方向随距中心点 的距离步进减小。第二组金属通路孔52可以沿水平宽度方向被布置为一维阵列,即沿垂直 于第二组金属通路孔52中金属通路孔的长度方向的方向。参考图3,示出了根据本发明第三实施例的第三典型结构。第三典型结构通过对于 第一实施例的第一组金属通路孔50A替代以第三组金属通路孔54而从第一典型结构导出。 图3是在对应于第一典型结构的图ID的平面中的第三典型结构的水平截面图。第三组金属通路孔54被布置为二维阵列,其包括在中心区CR下面在中心点相互 交叉的径向的多个一维阵列。第三组金属通路孔54的相邻金属通路孔之间的间距在各多 个一维阵列的中心区CR下面比在周边区I3R下面小。参考图4,示出了根据本发明第四实施例的第四典型结构。第四典型结构通过对于 第一实施例的第一组金属通路孔50A替代以第四组金属通路孔56而从第一典型结构中导 出。图4是对应于第一典型结构的图ID的平面中的第四典型结构的水平截面图。第四组金属通路孔56包括具有不同尺寸的金属通路孔。具体地,位于中心区CR 下面的金属通路孔具有比位于周边区I3R下面的金属通路孔大的水平截面。第四组金属通 路孔56中的金属通路孔的尺寸可以沿一方向(例如,沿平面A-A’的方向)或者从中心点 径向两维地变化。在上面描述的所有实施例中,金属通路孔组的导电区的面密度在金属焊垫90和 C4球之间的接触区的中心区CR下面比在周边区ra下面大。优选,金属通路孔组的电阻比 上层金属线结构70A的电阻大。金属通路孔的电阻典型地是上层金属线结构70A的电阻的 1. 5至40倍,优选从3至10倍大,尽管在此也考虑较小或者较大的倍数。提供在中心区CR的下面比周边区I^R下面的导电区的更大面密度的效应是引导较 高份额的电流穿过上层金属线结构70A至C4球99的内部并且减小沿C4球99表面的电流。 该电流的再分布具有使穿过C4球99的电流密度相等的效应,由此减小在半导体芯片工作期间C4球99中的电迁移。根据本发明的第五实施例,第五典型结构通过对于第一下层金属线结构30替代 以第二下层金属线结构32而从任一第一至第四典型结构导出。参考图5,示出了对应于第 一实施例的图IE的平面中的第五典型结构的水平截面图。第二下层金属线结构32可以具 有与第一下层金属线结构30基本相同的横向尺寸和厚度。第二下层金属线结构32包括孔,它们典型地被称为“奶酪孔”。各奶酪孔被填充以 电介质材料部21A,它具有与至少一电介质层20的最顶层相同的成 份。奶酪孔的配置是这 样的使得第二下层金属线结构32包括不受阻碍的直导电路径,其在长度方向(沿平面A-A’ 的方向)中延伸至由多个奶酪孔区所分离的第二下层金属线结构32的中心部。金属通路孔 组可以是本发明的第一至第四实施例的第一至第四组金属通路孔(50A、52、54、56)之一, 覆盖多个奶酪孔区。在奶酪孔区内金属通路孔的放置与不受阻碍的路径的接合促进了第二 下层金属线结构32的内区和接触区之间的电流的流动,接触区在第二下层金属线结构32 和金属互连结构(22,24 ;见图1A)之间,金属互连结构可以存在于第二下层金属线结构32 的周边。因而,更多的电流可以穿过C4球99的内区流动。根据本发明的第六实施例,第六典型结构通过对于第一下层金属线结构30替代 以第三下层金属线结构34而从任一第一至第四典型结构导出。参考图6,示出了对应于第 一实施例的图IE的平面中的第六典型结构的水平截面图。第三下层金属线结构34可以具 有与第一下层金属线结构30基本相同的横向尺寸和厚度。下层金属布线33提供第三下层 金属线结构34和金属互连结构(22,24;见图1幻之间的导电路径。根据本发明的第七实施例,第七典型结构通过对于第一下层金属线结构30替代 以第四下层金属线结构36并且采用下层金属布线33以便提供第二下层金属线结构32和 金属互连结构(22,24)之间的导电路径,而从任一第一至第四典型结构导出。参考图7,示 出了对应于第一实施例的图IE的平面中第七典型结构的水平截面图。第四下层金属线结 构36可以具有与第一下层金属线结构30基本相同的横向尺寸和厚度。参考图8,示出了形成本发明的第一典型结构的方法。至少一半导体装置12形成 于本领域中所熟知的衬底10中。衬底10可以是上述的半导体衬底。至少一电介质层20和包括互连层金属通路孔22和互连层金属线24的金属互连 结构通过沉积和构图的连续的半导体工艺步骤而形成。第一下层金属线结构30形成于至 少一电介质层20的最顶上的层内并且被平坦化。平坦化之后,获得跨过至少一电介质层 20 (它包括最顶层)和第一下层金属线结构30的基本平坦的表面。第一下层金属线结构 30可以,或者可以不包括如同上面所讨论的奶酪孔。参考图9,通路孔层电介质层40形成于第一下层金属线结构30上方。通路孔层电 介质层40随后被构图从而形成第一通路孔和第二通路孔。第一通路孔49A具有第一组金 属通路孔50A的图案。作为替代,第一通路孔可以具有第二组金属通路孔52、第三组金属通 路孔54、第四组金属通路孔56、或者在其它实施例中其组合的图案。第二通路孔49B是选 择性的并且可以被采用以便提供对于后续形成的下层金属线结构的附加的电布线。参考图10,第一通路孔49A被填充以导电金属,例如铜。第一通路孔49A中的金属 填充材料被平坦化以便形成第一组金属通路孔50A。互连通路孔50B可以选择性地通过用 导电金属填充第二通路孔49B而形成。
参考图11,上层金属线结构70A通过线层电介质层60的沉积,线层电介质层60的 构图,用导电金属填充线层电介质层60中的凹入区,并且平坦化导电金属而形成。选择性 地,上层金属布线70B可以同时形成。参考图12,钝化电介质层80被沉积并且构图以便在上层金属线结构70A上方在其 中形成至少一开口。参考图13,金属焊垫90通过沉积例如铝层的金属层并且光刻构图金属层而形成。 金属焊垫90的区域包括钝化电介质层80中的整个开口区。参考图14,电介质掩模层95被沉积于金属焊垫90和钝化电介质层80上方。电介 质掩模层95中的开口形成于金属焊垫90的区内。随后,C4球99被放置于金属焊垫90的 被暴露的表面上以便形成在图1A-1E中所示出的结构。尽管第一典型结构被采用以便示出制造根据本发明的第一典型结构的方法,但是 相同的方法也可以被采用以便形成根据本发明所有其它实施例的结构。 参考图15A-15D,示出了根据本发明的第八实施例的第八结构。第八典型结构包 括衬底610和其中形成的至少一半导体装置612。衬底610可以是包括半导体材料的半导 体衬底,半导体材料例如硅、硅锗合金、硅、锗、硅_锗合金、硅碳合金、硅-锗-碳合金、砷化 镓、砷化铟、砷化铟镓、磷化铟、硫化铅、其它III-V化合物半导体材料、和II-VI化合物半导 体材料。衬底可以是单晶半导体衬底。至少一半导体装置612可以包括场效应晶体管、双极晶体管、电阻器、电容器、和 电感器的至少之一。至少一电介质层620位于至少一半导体装置612上。至少一电介质层 620可以包括例如氧化硅的电介质氧化物、例如氮化硅的电介质氮化物、低介电常数(低k) 化学气相沉积(CVD)电介质材料、或者旋涂低k电介质材料。金属互连结构被嵌入于至少 一电介质层620中。金属互连结构可以包括互连层金属通路孔622和互连层金属线624。 金属互连结构还可以包括具有与至少一电介质层620的最顶上的表面共面的顶表面的最 顶上的互连通路孔50。线层电介质层660位于至少一电介质层620上方。线层电介质层660可以包括电 介质氧化物、电介质氮化物、低k CVD电介质材料、低k旋涂电介质材料、或者其组合。优选 线层电介质材料层660包括电介质氧化物、电介质氮化物、或者其组合以便减小氧或者潮 气进入至位于下面的至少一电介质层620。金属线结构670A和金属布线670B被嵌入于线层电介质层660中。金属线结构 670A可以具有从20微米至200微米的横向尺寸,尽管在此也考虑较小和较大的尺寸。在 金属线结构670A具有矩形形状的情形中,金属线结构670A的宽度和长度可以分别是从20 微米至200微米。金属线结构670A的厚度典型地是从150nm至1,500nm,尽管在此也考虑 较小和较大的厚度。金属线结构670A和金属布线670B包括至少一金属。金属线结构670A 和金属布线670B可以基本由铜或者铝构成。优选金属线结构670A和金属布线670B基本 由铜构成。金属线结构670A可以包括孔,它们典型地被称为“奶酪孔”。各奶酪孔被填充以 电介质材料部621A,它具有与线层电介质层660相同的成份。钝化电介质层680和金属焊垫690位于线层电介质层660、金属线结构670A、和金 属布线670B上方。钝化电介质层680包括电介质氧化物、电介质氮化物、或者其组合。优 选钝化电介质层680包括电介质氧化物和电介质氮化物的叠层。典型地,钝化电介质层680具有从300nm至3,OOOnm的厚度,尽管在此也考虑较小和较大的厚度。
金属焊垫690包括上平面部和向下延伸的多个金属通路孔690V。金属焊垫690是 一体和单一的构造,即为一片,并且可以被布置于金属互连结构(622、624、650)上方。多个金属通路孔690V侧面被钝化电介质层680包围并且邻接金属线结构670A。金属焊垫690 的上平面部指的是位于钝化电介质层680的顶表面上面的金属焊垫690的部分。上平面部 位于钝化电介质层680和多个金属通路孔690V上和上面。金属焊垫690包含至少一金属。 在一情形中,金属焊垫690可以基本由铝构成,并且金属线结构670A可以基本由铜构成。金 属焊垫690的厚度可以从1. 0微米至5. 0微米,尽管在此也考虑较小和较大的厚度。
具有开口的电介质掩模层695位于金属焊垫690和钝化电介质层680的顶表面上 方。开口的边界位于金属焊垫690的区内。电介质掩模层695包括例如聚酰亚胺的电介质 材料。在一些情形中,聚酰亚胺可以是光敏的以便使得可以不采用附加的光敏材料进行光 刻印刷。C4球699位于电介质掩模层695中的开口内并且接触金属焊垫690。C4球的直径 可以是从30微米至200微米,尽管在此也考虑较小和较大的直径。金属焊垫690通过金属 线结构670A和金属互连结构(622、624、650)电阻性地耦合至至少一半导体装置612。金属线结构670A邻接多个金属通路孔690V的底表面。多个金属通路孔690V在 金属焊垫690的中心区CR下面比在金属焊垫的周边区ra下面具有更高的水平截面的面密 度。中心区CR包括金属焊垫690和C4球699之间的接触区的中心点。在本发明中,中心 区CR被界定为比接触区的闭合边界更接近于金属焊垫690和C4球699之间的接触区的中 心点的上层金属线结构670A的区的子集。在接触区是圆的情形中,中心区CR的半径是接 触区的半径的一半。在上层金属线结构670A具有凸多边形或凸曲线性的情形中,中心区CR 的面积可以是金属焊垫690和C4球699之间的接触区的面积的i^一分之一。周边区I3R是 接触区内中心区CR的互补。周边区I3R是在接触区的闭合的区内并且在中心区CR外面的 区。多个金属通路孔690V可以包括基本相同尺寸的金属通路孔。至少一些基本相同 尺寸的金属通路孔可以被布置为一维阵列,其中相邻金属布线之间的间距在中心区CR下 面比在周边区I3R下面小。多个金属通路孔690V内基本相同尺寸的金属通路孔可以被布置 为具有相同取向的多个一维阵列,例如,在图IC中平面A-A’的方向。各一维阵列的方向在此被称为第一方向,并且分离一维阵列的方向在此被称为第 二方向。在各一维阵列的方向中的间距在此被称为第一间距sl,它是沿第一方向的间距,并 且相邻一维阵列之间的间距在此被称为第二间距s2,它是沿第二方向的间距。相邻金属通 路孔之间的第一间距sl沿第一方向在中心区CR下面比在周边区ra下面小。相邻金属通路孔之间的第一间距Sl在各多个一维阵列中在中心部比在端部小。 多个金属通路孔690V中的各金属通路孔可以具有圆或者矩形的截面。通常,多个金属通路 孔690V中的各通路孔可以具有任何多边形或者曲线的闭合形状。多个金属通路孔690V可以被布置为二维阵列,其中相邻金属通路孔之间的第一 间距si沿第一方向在中心区CR下面比在周边区ra下面小。相邻金属通路孔之间的第二 间距S2沿第二方向在多个金属通路孔690V之中基本相同,第二方向不同于第一方向并且 可以垂直于第一方向。不同类型的金属通路孔可以被采用来替代第八典型结构的多个金属通路孔690V。参考图16A-16C,根据本发明的第九实施例的第九典型结构被示出。第九典型结构通过对于 第八实施例的多个金属通路孔690V替代以多个不同类型的金属通路孔690W而从第八实施 例导出。金属焊垫690包括至少一通路孔部690W和上平面部。至少一通路孔部690W被钝 化电介质层 680侧面包围并且邻接金属线结构670A。上平面部可以位于钝化电介质层680 上和上面并且在至少一通路孔部690W的周边上。上平面部可以包括在至少一通路孔部690 上面的区中的孔,如果金属焊垫在至少一通路孔部690W上面从上平面部的最顶上的表面 被凹入。金属焊垫690包含在第八实施例中的至少一金属。在一情形中,金属焊垫690可 以基本由铝构成,并且金属线结构670A可以基本由铜构成。金属焊垫690的厚度可以是从 1. 0微米至5. 0微米,尽管在此也考虑较小和较大的厚度。多个金属通路孔690W中的各金属通路孔具有被拉长的水平截面。水平宽度是垂 直于被拉长的方向的方向的金属通路孔的横向尺寸,其随距各多个金属通路孔690W的中 心点的距离d单调减小。中心点可以是各多个金属通路孔690W中金属通路孔的水平区的 形状的几何中心。水平宽度可以沿多个金属通路孔690W中各金属通路孔的被拉长的方向随距中心 点的距离d步进减小。多个金属焊垫690W可以沿水平宽度的方向,即沿垂直于多个金属通 路孔690W中金属通路孔的长度方向的方向,被布置为一维阵列。参考图17,示出了本发明的第十实施例的第十典型结构。第十典型结构通过对于 第八实施例的多个金属通路孔690V或者对于第九实施例的多个金属通路孔690W替代以不 同类型的多个金属通路孔690X而从第八和第九典型结构导出。图17是对应于第八典型结 构的图15C或者第九实施例的图16C的平面中第十典型结构的水平截面图。多个第十实施例的金属通路孔690X被布置为二维阵列,该二维阵列包括在中心 区CR下面的中心点相互交叉的径向方向的多个一维阵列。多个金属通路孔690X的相邻金 属通路孔之间的间距在各多个一维阵列中在中心区CR下面比在周边区ra下面小。中心 区CR和周边区ra之和与金属焊垫690和C4球699之间的总接触面积相同(见图15A和 16A)。参考图18,示出了根据本发明的第十一实施例的第十一典型结构。第十一典型 结构通过对于第八实施例的多个金属通路孔690V或者对于第九实施例的多个金属通路孔 690W替代以不同类型的多个金属通路孔690Y而从第八或第九典型结构导出。图18是对 应于第八典型结构的图15C或者第九实施例的图16C的平面中第十一典型结构的水平截面 图。第十一实施例的多个金属通路孔690Y被布置为二维阵列,其中相邻通路孔之间 的间距在两个方向中被调制。此外,在一方向中的间距可以取决于沿水平截面的平面内的 另一方向的坐标。金属通路孔之中的间距的二维调制被实现,使得多个金属通路孔690Y在 金属焊垫690的中心区CR下面比在金属焊垫690的周边区下面具有更高的水平截面的面 密度。中心区CR和周边区I3R之和与金属焊垫690和C4球699之间的总接触区相同(见 图 15A 和 16A)。参考图19,示出了根据本发明的第十二实施例的第十二典型结构。第十二典型 结构通过对于第八实施例的多个金属通路孔690V或者对于第九实施例的多个金属通路孔690W替代以不同类型的多个金属通路孔690Z而从第八或第九典型结构导出。图19是对 应于第八典型结构的图15C或者第九实施例的图16C的平面中第十二典型结构的水平截面 图。多个金 属通路孔690Z包括具有不同尺寸的金属通路孔。具体地,位于中心区CR 下面的金属通路孔比位于周边区PR下面的金属通路孔具有更大的水平截面。多个金属通 路孔690Z中金属通路孔的尺寸沿一方向(例如,沿平面A-A’的方向)或者随距中心点径 向二维地变化。在上面所述的所有实施例中,多个金属通路孔(690V、690W、690X、690Y、或690Z) 的导电区的面密度在金属焊垫690和C4球之间的接触区的中心区下面比在周边区ra下面 大。优选多个金属通路孔的电阻大于金属线结构670A的电阻。多个金属通路孔的电阻典 型地是金属线结构670A的电阻的1. 0至40倍,并且优选从3至10倍大,尽管在此也考虑 较小或者较大的倍数。提供在中心区CR下面比在周边区ra下面大的导电区的面密度的效应是引导较高 份额的电流穿过金属线结构670A至C4球699的内部并且减小沿C4球699的表面的电流。 该电流的再分布具有使穿过C4球699的电流密度相等的效应,由此减小了半导体芯片工作 期间C4球699中的电迁移。参考图20,示出了形成本发明的第八典型结构的方法。至少一半导体装置612形 成于本领域中所熟知的衬底610中。衬底610可以是上述的半导体衬底。至少一电介质层620和金属互连结构通过沉积和构图的连续的半导体工艺步骤 而形成。金属互连结构可以包括互连层金属通路孔622、互连层金属线624、和最顶上的互 连通路孔50。最顶上的互连通路孔通过形成通路孔进入至少一电介质层620的最顶上的 表面并且例如通过电镀、物理气相沉积(PVD)、化学气相沉积(CVD)、无电镀、或者其组合来 沉积金属而形成。进行平坦化工艺以便去除至少一电介质层620的最顶上的表面上面的金 属。金属的保留的部分构成最顶上的互连通路孔50,它们具有与至少一电介质层620的最 顶上的表面共面的顶表面。线层电介质层660被沉积于最顶上的互连通路孔50和至少一电介质层620的顶 上。凹入区通过光刻构图并且用导电金属填充而形成于下层电介质层660中。导电金属被 平坦化以便形成金属线结构670A。选择性地,可以同时形成上层金属布线670B。参考图21,钝化电介质层680被沉积和构图以便在金属线结构670A上方在其中形 成多个开口。参考图22,金属焊垫690通过沉积例如铝层的金属层并且光刻构图金属层而形 成。金属焊垫690的区域包括钝化电介质层680中的整个开口区。在钝化电介质层的顶表 面的层下面延伸的金属焊垫的部分构成多个金属通路孔690V。多个金属通路孔690V和上 平面部是金属焊垫690内的多个金属通路孔690V的互补,且同时形成。参考图23,电介质掩模层695被沉积于金属焊垫690和钝化电介质层680上方。 电介质掩模层695中的开口形成于金属焊垫690的区域内。随后,C4球699被放置于金属 焊垫690的被暴露的表面上从而形成在图15A-15D中所示出的结构。尽管第八典型结构被采用以便示出制造根据本发明的第八典型结构的方法,但是 相同的方法也可以被用于形成根据本发明的其它所有实施例的结构。
尽管已经根据具体实施例描述了本发明,但是显然考虑到前面的描述对于本领域中的技术人员显见许多替代、改进和变更。因而,本发明试图涵盖所有这样的落在本发明和 所附权利要求的范围和精神内的替代、改进和变更。
权利要求
一种结构,包括布置于金属互连结构上方的金属焊垫;邻接所述金属焊垫的上层金属线结构;位于所述上层金属线结构下面的下层金属线结构;和金属通路孔组,其中所述金属通路孔组在所述金属焊垫的中心区下面比在所述金属焊垫的周边区下面具有更高的水平截面的面密度。
2.根据权利要求1的结构,其中在所述金属通路孔组中的各金属通路孔垂直邻接所述 上层金属线结构和所述下层金属线结构,其中所述金属焊垫包括铝并且各所述上层金属线 结构,所述金属通路孔组,和所述下层金属线结构包括铜,并且其中所述金属焊垫包括上平 面部和向下延伸并且邻接所述上层金属线结构的至少一通路孔部。
3.根据权利要求1的结构,其中所述金属通路孔组包括基本相同尺寸的金属通路孔。
4.根据权利要求3的结构,其中至少一些所述基本相同尺寸的所述金属通路孔被布置 为一维阵列,其中相邻金属通路孔之间的间距在所述中心区下面比在所述周边区下面小。
5.根据权利要求3的结构,其中所述基本相同尺寸的所述金属通路孔被布置为具有相 同取向的多个一维阵列,其中相邻金属通路孔之间的间距在各所述多个一维阵列的中心部 比端部中小。
6.根据权利要求3的结构,其中在所述金属通路孔组中的各金属通路孔具有圆或矩形 的截面。
7.根据权利要求3的结构,其中所述金属通路孔组中的各金属通路孔具有被拉长的水 平截面,并且其中水平宽度随在各所述金属通路孔组中距中心点的距离而单调减小。
8.根据权利要求7的结构,其中所述水平宽度沿被拉长方向随距所述中心点的距离而 步进减小。
9.根据权利要求7的结构,其中所述金属通路孔组沿所述水平宽度的方向被布置为一 维阵列。
10.根据权利要求3的结构,其中所述金属通路孔组被布置为二维阵列,其中相邻金属 通路孔之间的第一间距沿第一方向在所述中心区下面比在所述周边区下面小。
11.一种结构,包括一体构造并且布置于金属互连结构上方并且包括上平面部和向下延伸的多个金属通 路孔的金属焊垫;和邻接所述多个金属通路孔的底表面的金属线结构,其中所述多个金属通路孔在所述金 属焊垫的中心区下面比在所述金属焊垫的周边区下面具有更高的水平截面的面密度。
12.根据权利要求11的结构,其中所述多个金属通路孔中的各金属通路孔垂直邻接所 述金属线结构,并且其中所述金属焊垫包括铝,并且所述金属线结构包括铜。
13.根据权利要求11的结构,其中所述多个金属通路孔包括基本相同尺寸的金属通路孔。
14.根据权利要求13的结构,其中至少一些所述基本相同尺寸的金属通路孔被布置为 一维阵列,其中相邻金属通路孔之间的间距在所述中心区下面比在所述周边区下面小。
15.根据权利要求13的结构,其中所述基本相同尺寸的金属通路孔被布置于具有相同 取向的多个一维阵列,其中相邻金属通路孔之间的间距在所述多个一维阵列的中间部比端部小。
16.根据权利要求13的结构,其中在所述多个金属通路孔中的各金属通路孔具有圆或 者矩形的截面。
17.根据权利要求13的结构,其中在所述多个金属通路孔中的各金属通路孔具有被拉 长的水平截面,并且其中水平宽度随距各所述多个金属通路孔中的中心点的距离而单调减
18.根据权利要求17的结构,其中所述水平宽度沿拉长方向随距所述中心点的距离步 进减小。
19.根据权利要求17的结构,其中所述多个金属通路孔沿所述水平宽度的方向被布置 为一维阵列。
20.根据权利要求13的结构,其中所述多个金属通路孔被布置为二维阵列,其中相邻 金属通路孔之间的第一间距沿第一方向在所述中心区下面比在所述周边区下面小。
全文摘要
在一实施例中,金属结构的焊垫下组件直接位于金属焊垫下面。焊垫下组件包括邻接所述金属焊垫的上层金属线结构,位于上层金属线结构下面的下层金属线结构,和提供位于上层金属线结构和下层金属线结构之间的电连接的金属通路孔组。在另一实施例中,通过采用一组集成的金属通路孔的金属焊垫结构,金属通路孔被分段并且被分布从而促进C4球内均匀的电流密度分布,C4球的可靠性被提高。多个金属通路孔的截面的面密度在金属焊垫的中心部比在金属焊垫的平面部的周边部高。
文档编号H01L23/485GK101866898SQ201010163868
公开日2010年10月20日 申请日期2010年4月15日 优先权日2009年4月15日
发明者史蒂文·L·赖特, 埃德蒙·斯普罗吉斯, 沃尔夫冈·桑特, 蒂莫西·D·苏里万, 蒂莫西·H·多本斯佩克 申请人:国际商业机器公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1