储能电容器制备方法

文档序号:7148744阅读:137来源:国知局
专利名称:储能电容器制备方法
技术领域
本发明涉及一种高效储能与换能元器件的制备方法,尤其涉及一种储能电容器的制备方法。
背景技术
众所周知,传统电容器虽然功率密度大,但电容量小、能量密度低;蓄电池虽然能量密度高,但功率密度小;超级电容器虽然兼具高功率密度和高能量密度之优势,但单元超级电容器的工作电压受电解液分解电压限制,其工作电压一般不超过1. 5 3. 5V。虽然可将多个超级电容器串联以获得数百伏特的电压,但由于各个单元的性能参数不一致而容易导致电压分配不均,从而引起个别单元击穿失效而造成整体损坏。为了均衡电压就必须需设置能量控制电路,不仅电源系统复杂,而且串联会导致体系内阻增加,从而导致最大输出功率和电源系统的可靠性下降。因此亟需开发一种具有高工作电压的高效储能与换能元器件,以适应电动车储能与换能的需求。专利号为“536卯47”的美国专利、专利号为“ZL200420035723. 7”的实用新型专禾U、以及公开号为“CN1963966A”的发明专利文献分别为公开了一类以钽电解电容器的阳极体作为阳极、以超级电容器电极作为阴极的混合电容器,它兼具钽电解电容器的高工作电压和超级电容器的高容量优势。无定形二氧化钌(常被简称为氧化钌)是制作超级电容器电极的理想材料,其理论比容量高于1000F/g,实际比容量也可达500F/g以上。此外,氧化钌还具有宽的电位窗和优异的循环稳定性等优势,是一种被公认为性能最优异的超级电容器电极材料。目前,制作超级电容器电极的方法通常是先利用化学法制备氧化钌活性材料,然后再加入粘结剂和导电剂等添加剂后涂覆在集电极表面(如公开号为CN101269851A和 CN101271767A的发明专利)。该方法的缺点是1)加入了电气绝缘的粘结剂会增加电极材料的内阻,从而降低最大输出功率密度;2)添加导电剂虽然可以降低内阻而缓解这一问题,但导电剂和粘结剂会降低电极材料中活性物质的含量而使电极的比容量降低;幻粘结剂在长期使用过程中、特别是在高温环境下易失效,使氧化钌粉末从电极上脱落而导致器件失效。因此,该方法制备的钽钌混合电容器的寿命和可靠性难以得到保障。公开号为 “CN1012^5829A”的发明专利公开了另一种制备氧化钌阴极的方法,它是采用钛金属为电极基体,氯化钌、氯化铱及钛酸四丁酯的混合溶液为反应前驱体,采用多次浸渍、烘干和380°C 下烧结处理获得氧化钌阴极。该方法虽然避免了粘结剂带来的一系列问题,但在380°C烧结处理时会使无定形水合氧化钌部分脱水、结晶,从而降低其比容量;并且钛金属基体在高温下会和电容器的电解液(硫酸溶液)发生反应,限制了电容器的使用温度范围;此外,该方法需要将电极基体在含钌溶液中数十次浸渍、烘干和烧结,工艺复杂。专利号为“4766522” 的美国专利公开了一种在钽基底上制备氧化钌的方法,它是在三氯化钌的异丙醇溶液中加入三氯化钽和浓盐酸,通过多次喷涂或浸渍后在30(TC高温下分解获得氧化钌。该方法的缺点是不仅浓盐酸受热逸出的氯化氢会污染空气,而且残留在电极上的Cl_会缩短产品的使用寿命和降低其可靠性,并且需要多次涂布-热分解过程,工艺非常耗时。公开号为 “CN1017^084A”的发明专利公开了另一种在钽基底上制备氧化钌阴极的方法,它是将含钌浆料的溶液涂覆在钽箔上,采用乙酸等酸性化合物或氢氧化钠等碱性化合物代替浓盐酸;该方法虽然污染小,但制备的氧化钌附着力较低。专利号为“ZL200810068913. 1”的发明专利公开了一种阳极氧化膜的制造方法,它是将阳极块在70 90°C的磷酸溶液中形成介质膜,然后再在140 170°C的磷酸溶液中再次制备介质膜。该方法对质量较小的阳极块(7g 以下)有显著效果,但对质量大的阳极块(IOg以上)其介质膜的漏电流较大(达到毫安级)。

发明内容
针对现有技术中存在的上述缺陷,本发明旨在提供一种储能电容器制备方法,该方法不仅工艺简单,而且制作的电容器比容量大、内阻小、输出功率密度大、适用温度范围广,阴极氧化钌涂层附着力强。为了实现上述目的,本发明采用的技术方案包括在阀金属阳极体上制备介质膜和在阴极板上制备氧化钌涂层;具体方法分别如下在阀金属阳极体上制备介质膜1)将阀金属阳极体浸入60 70°C、体积百分比浓度为10%的硝酸溶液中进行一次氧化,通以电流密度为50mA/g的直流电,直至电压升至电容器额定电压的1.5倍以上,保持该电压2小时;2)将上述阀金属阳极体取出,用去离子水煮洗干净;3)将洗净的阀金属阳极体放入300 350°C的烘箱中加热30分钟,然后取出放入低于-100°c的箱体中冷冻30分钟;4)将经过冷冻的阀金属阳极体用去离子水煮洗10分钟,烘干;5)将烘干的阀金属阳极体浸入90 95°C的磷酸溶液中进行二次氧化,通以电流密度为120 150mA/g的直流电,直至电压升至电容器额定电压的1. 5倍以上,保持该电压 2小时;所述磷酸溶液由质量百分比浓度为95%的磷酸、去离子水以及质量百分比浓度为 99%的乙二醇按1 90 9的体积比均勻混合而成;6)将经过二次氧化的阀金属阳极体用去离子水煮洗干净,烘干;在阴极板上制备氧化钌涂层7)将含钌化合物与阀金属粉按1 0.5 1.5的重量比混合均勻,得混合粉料;所述含钌化合物为商化钌、或水合商化钌、或二氧化钌、或水合二氧化钌、或商化钌与二氧化钌的混合物、或卤化钌与水合二氧化钌的混合物之一,所述卤化钌为三氯化钌或碘化钌;所述阀金属粉为平均粒径> 150目的电解电容器级钽粉或铌粉;8)将上述混合粉料与溶剂按1 0. 5 5的重量比混合调制成浆料;所述溶剂为水、或乙醇、或水与乙醇的混合物之一;9)将上述浆料均勻涂覆于所述阴极板表面,烘干;10)将烘干后的阴极板放入200 350°C的加热炉中,通入5 90kPa的蒸汽热分解1 10小时。本发明的优选技术方案为步骤5)中的电流密度为135mA/g,步骤7)中含钌化合物与阀金属粉的重量比为1 0.8 1.2,步骤8)中混合粉料与溶剂的重量比为1 1 4,步骤10)中加热炉温度为280°C、蒸汽的压力为30 70kPa、热分解时间为2 8小时。本发明进一步的优选技术方案为步骤7)中含钌化合物与阀金属粉的重量比为 1 1,步骤8)中混合粉料与溶剂的重量比为1 2 3,步骤10)中蒸汽压力为40 50kPa、热分解时间为4 6小时。
本发明的最佳技术方案为步骤8)混合粉料与溶剂的重量比为1 2. 5,步骤10) 中蒸汽压力为45kPa、热分解时间为5小时。在上述技术方案中,阀金属阳极体是由钽粉和铌粉按常规方法混合、塑型、煅烧而成的多孔体;所述阀金属阴极板为钽板或铌板。与现有技术比较,本发明由于采用了上述技术方案,对阀金属阳极体进行了两次高赋能电压氧化处理,因此在阀金属阳极体表面形成的介质膜更加致密、稳定,其漏电流系数可降低到0. 0008以下,工作电压可高于100V。由于在制备氧化钌的过程中避免使用粘结剂,因此彻底克服了电容器内阻大、粘结剂易失效而导致元器件可靠性差等缺陷。另外,由于采用了水汽保护热分解的方法来制备无定形水合二氧化钌阴极,因此能够避免二氧化钌脱水和结晶,从而可获得较高比容量的氧化钌阴极,能够充分引出阳极体的容量和等效串联电阻值,进而获得较高容量。由于采用了金属钽或铌制作的阴极,因此电容器的工作温度范围较宽。采用钽粉或铌粉煅烧而成的多孔体替代三氯化钽,因而能够避免使用浓盐酸,从而消除了 Cl—残留在电极上而影响使用寿命和可靠性的缺陷。本发明工艺简单,效率高,易规模化生产。以下是采用本发明方法制造的规格分别为63V2200 μ F、100V1000 μ F、 100V3300 μ F的储能电容器在常温下测试的电性能数据。表1 :63V2200 μ F产品测试数据
权利要求
1.一种储能电容器制备方法,包括在阀金属阳极体上制备介质膜和在阀金属阴极板上制备氧化钌涂层;其特征在于具体方法分别如下在阀金属阳极体上制备介质膜1)将阀金属阳极体浸入60 70°C、体积百分比浓度为10%的硝酸溶液中进行一次氧化,通以电流密度为50mA/g的直流电,直至电压升至电容器额定电压的1. 5倍以上,保持该电压2小时;2)将上述阀金属阳极体取出,用去离子水煮洗干净;3)将洗净的阀金属阳极体放入300 350°C的烘箱中加热30分钟,然后取出放入低于-100°C的箱体中冷冻30分钟;4)将经过冷冻的阀金属阳极体用去离子水煮洗10分钟,烘干;5)将烘干的阀金属阳极体浸入90 95°C的磷酸溶液中进行二次氧化,通以电流密度为120 150mA/g的直流电,直至电压升至电容器额定电压的1. 5倍以上,保持该电压2小时;所述磷酸溶液由质量百分比浓度为95%的磷酸、去离子水以及质量百分比浓度为99% 的乙二醇按1 90 9的体积比均勻混合而成;6)将经过二次氧化的阀金属阳极体用去离子水煮洗干净,烘干;在阀金属阴极板上制备氧化钌涂层7)将含钌化合物与阀金属粉按1 0. 5 1. 5的重量比混合均勻,得混合粉料;所述含钌化合物为商化钌、或水合商化钌、或二氧化钌、或水合二氧化钌、或商化钌与二氧化钌的混合物、或卤化钌与水合二氧化钌的混合物之一,所述卤化钌为三氯化钌或碘化钌;所述阀金属粉为平均粒径> 150目的电解电容器级钽粉或铌粉;8)将上述混合粉料与溶剂按1 0. 5 5的重量比混合调制成浆料;所述溶剂为水、 或乙醇、或水与乙醇的混合物之一;9)将上述浆料均勻涂覆于所述阀金属阴极板表面,烘干;10)将烘干后的阀金属阴极板放入200 350°C的加热炉中,通入5 90kPa的蒸汽热分解1 10小时。
2.根据权利要求1所述的储能电容器制备方法,其特征在于步骤幻中的电流密度为 135mA/g,步骤7)中含钌化合物与阀金属粉的重量比为1 0.8 1.2,步骤8)中混合粉料与溶剂的重量比为1 1 4,步骤10)中加热炉温度为观01、蒸汽压力为30 70kPa、热分解时间为2 8小时。
3.根据权利要求1所述的储能电容器制备方法,其特征在于步骤7)中含钌化合物与阀金属粉的重量比为1 1,步骤8)中混合粉料与溶剂的重量比为1 2 3,步骤10)中蒸汽压力为40 50kPa、热分解时间为4 6小时。
4.根据权利要求1所述的储能电容器制备方法,其特征在于步骤8)中混合粉料与溶剂的重量比为1 2. 5,步骤10)中蒸汽压力为45kPa、热分解时间为5小时。
全文摘要
本发明公开了一种储能电容器制备方法,属于制备电容器阴、阳极的方法;本发明采用两次电化学氧化法在阀金属阳极体上制备介质膜,在水汽环境中对含钌化合物进行热分解制备无定形水合二氧化钌阴极,因此能够避免二氧化钌脱水和结晶,从而可获得较高比容量的氧化钌阴极,能够充分引出阳极体的容量和等效串联电阻值,进而获得较高容量。本发明制备的阳极,其漏电流系数可降低到0.0008以下,工作电压可高于100V;本发明制备的阴极,无需添加粘结剂,因此彻底克服了电容器内阻大、粘结剂易失效而导致元器件可靠性差等缺陷。利用本发明制作的电容器具有比容量大、内阻小、输出功率密度大、适用温度范围广,阴极氧化钌涂层附着力强等优点。
文档编号H01G9/042GK102496472SQ20111041006
公开日2012年6月13日 申请日期2011年12月12日 优先权日2011年12月12日
发明者吕林兴, 彭丹, 彭永燃, 方鸣, 王佳, 王成兴, 王杰, 石洪富, 蒋春强, 蒙林斌 申请人:中国振华(集团)新云电子元器件有限责任公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1