宽带天线及其相关射频装置的制作方法

文档序号:11734558阅读:200来源:国知局
宽带天线及其相关射频装置的制作方法
本发明涉及一种宽带天线(widebandantenna)及其相关射频装置,尤其涉及一种利用至少一超材料结构以改变中心频率的天线及其相关射频装置。

背景技术:
随着行动装置技术的进步,一般具无线通信功能的电子产品,如平板计算机、笔记型计算机、个人数字助理(PersonalDigitalAssistant)等,通常通过内建的天线来接入无线网络。因此,为了让使用者能更方便地接入无线通信网络,理想天线的频宽(带宽)应在许可范围内尽可能地增加,而尺寸则应尽量减小,以配合便携式无线通信器材体积缩小的趋势,将天线整合入便携式无线通信器材中。除此之外,随着无线通信技术的演进,不同无线通信系统的操作频率可能不同,因此,理想的天线应能以单一天线涵盖不同无线通信网络所需的频带。如本领域所熟知,天线的操作频率与其尺寸相关,即低频的射频信号需要以较长的电流路径来幅射,因此现有的天线往往受限于逐渐压缩的天线空间,造成低频的频宽及频宽百分比皆不理想,因而限制其应用范围。因此,如何有效提高天线频宽,使之适用于具宽频需求的无线通信系统,如长期演进(LongTermEvolution,LTE)系统,已成为业界所努力的目标之一。

技术实现要素:
因此,本发明主要提供一种宽带天线及其相关射频装置。本发明公开一种宽带天线,包含有一接地元件,电性连接于一地端;一馈入元件,用来馈入一射频信号;一辐射元件,电性连接于该馈入元件,用来辐射该射频信号;至少一超材料结构,每一超材料结构电性连接于该辐射元件与该接地元件之间。本发明还公开一种射频装置,包含有一射频信号处理单元,用来产生一射频信号;一宽带天线,耦接于该射频信号处理单元,该天线包含有一接地元件,电性连接于一地端;一馈入元件,用来馈入该射频信号;一辐射元件,电性连接于该馈入元件,用来辐射该射频信号;至少一超材料结构,每一超材料结构分别电性连接于该辐射元件与该接地元件之间。附图说明图1为本发明实施例一宽带天线的示意图。图2为图1的天线的等效电路图。图3A为一已知天线以及本发明实施例的天线的示意图。图3B为图3A的天线的电压驻波比的模拟结果示意图。图4A至图4C为不同形状的等效电感元件的示意图。图5A至图5C为不同形状的等效电容元件及等效电感元件的示意图。图6A至图6F为本发明实施例另一宽带天线的示意图。图7为本发明实施例一射频装置的示意图。图8A为图7的天线在不同切换状态下的电压驻波比的示意图图8B为图7的天线在不同切换状态下的辐射效率的示意图。图9为本发明实施例另一宽带天线的示意图。图10A为图9的天线在不同切换状态下的电压驻波比的示意图。图10B为图9的天线在不同切换状态下的辐射效率的示意图。【主要元件符号说明】10、30、32、34、40、41、42、天线50、51、52、60、61、62、63、64、65、70、90100、700接地元件102、702、712、722辐射元件104、704馈入元件106、306、706、906超材料结构108、308、518、528、708、908、等效电容元件918110、310、410、411、412、511、等效电感元件710、910RF_sig射频信号CR_sig切换信号600、730分支7020、7120弯折Fc、Fc_30、Fc_32、Fc_34中心频率7射频装置72射频信号处理单元720切换电路D开关R电阻L电感State_on、State_off状态F1第一频率F2第二频率具体实施方式为了在有限空间下提高天线频宽,本发明增加超材料(Metamaterials)结构于天线的辐射体,通过超材料的特殊物理特性,达到天线微小化及增加频宽的目的。所谓超材料或是左手物质(Left-HandedMaterials)是指若某一物质的介电常数(permittivity)与磁导系数(permeability)的值都呈负数,光(电磁波)在这种物质里传播时就会产生逆杜普勒效应、逆斯乃耳(Snell)和逆车林可夫辐射(Cerenkov)效应,这种物质就称为左手物质。然而,超材料具有天然材料所不具备的超常物理性质,因此超材料通常为人工复合结构或复合材料,通过设计特殊的结构,以产生等效左手物质特性。请参考图1,图1为本发明实施例一宽带天线10的示意图。天线10包含有一接地元件100、一辐射元件102、一馈入元件104及超材料结构106。接地元件100电性连接于地端,用来提供接地。馈入元件104电性连接于辐射元件102与接地元件100之间,用来馈入一射频信号RF_sig至辐射元件102;亦即,当发送信号时,馈入元件104由一射频处理模块接收射频信号RF_sig,传送至辐射元件102,以进行无线电传播;当接收信号时,辐射元件102所感应的射频信号RF_sig经由馈入元件104传送至射频处理模块。超材料结构106电性连接于辐射元件102与接地元件100之间,超材料结构106可等效为周期性排列的谐振器,产生在自然界中不存在的负介电常数及负磁导系数,进而形成所谓的左手物质。请继续参考图2,图2为天线10的等效电路图。天线10中的超材料结构106包含有一等效电容元件108以及一等效电感元件110。如图2所示,等效电容元件108电性连接于辐射元件102,等效电感元件110电性连接于接地元件100。在此结构下,等效电容元件108以及等效电感元件组成超材料结构106,使辐射元件102长度相同时,将中心频率Fc往低频偏移,等效达到天线缩小化的目的。简言之,本发明于天线10的辐射元件102增加超材料结构106,使辐射元件102的中心频率Fc往低频偏移,在辐射元件102的长度不变之下,达到天线缩小化的目的。本领域技术人员当可据以修饰或变化,而不限于此。举例来说,超材料结构106的数量不限,设计者可依据实际应用,增加或减少超材料结构106的数量,以改变中心频率Fc的偏移量,也就是说,当超材料结构106数量增加时,中心频率Fc越往低频偏移。或者,设计者可调整超材料结构106电性连接于辐射元件102的位置,如此也可产生不同的偏移效应,不仅改变中心频率Fc,同时也改变天线10的频宽。具体来说,请参考图3A及图3B,图3A绘示了一天线30以及本发明实施例天线32、34的示意图,而图3B为天线30、32、34的电压驻波比(VoltageStandingWaveRatio,VSWR)的模拟结果示意图。由于天线30、32、34的结构与天线10类似,故相同元件以相同符号命名。如图3A所示,天线30为一单极天线,如本领域所熟知,单极天线的辐射中心频率Fc取决于其辐射元件的等效电气长度,即等效电气长度需等于中心频率Fc的四分之一波长。天线32包含单一超材料结构106,而天线34包含有一超材料结构306。值得注意的是,超材料结构306的等效电容元件308及等效电感元件310与超材料结构106的等效电容元件108及等效电感元件110位置相反,使天线32、34产生不同的中心频率Fc偏移效应。在图3B中,天线30、32、34的电压驻波比分别以实线、虚线、点线表示。如图3B所示,天线30的中心频率Fc_30约为1.64GHz,天线32的中心频率Fc_32约为1.48GHz,天线34的中心频率Fc_34约为1.52GHz,天线32、34的频宽约相差0.4GHz。由此可见,增加了超材料结构106、306于天线32、34,可使其中心频率Fc_32、Fc_34往低频频率偏移,Fc_30>Fc_34>Fc_32。并且,改变超材料结构106、306中等效电容元件108、308及等效电感元件110、310的相对位置,也可使天线32、34的频宽产生差异。因此,在相同长度、面积及形状的辐射元件102中,增加超材料结构106、306至天线32、34中,可有效地使中心频率Fc_30往低频偏移至中心频率Fc_32、Fc_34,达到等效缩短天线尺寸的目的。另外,等效电容元件108、308及等效电感元件110、310的形状不限。举例来说,请参考图4A至图4C,图4A至图4C绘示了不同形状的等效电感元件的示意图。如图4A至图4C所示,等效电感元件410包含有一支臂,等效电感元件411、412包含一具弯折的支臂,其中等效电感元件412电性连接接地元件100的位置不同,如此可产生不同的频率偏移效应。请参考图5A至图5C,图5A至图5C绘示了不同形状的等效电容元件及等效电感元件的示意图。如图5A至图5C所示,等效电容元件518、528包含有至少一支臂,其中等效电感元件511与等效电容元件518的形状相互对称且分别包含有二支臂。如此多样的形状,可变化出不同的超材料结构,以产生不同的频率偏移效应。除此之外,除了将超材料结构应用在单极天线30、31、32之外,可在天线30、31、32中新增一分支,并将该分支电性连接于接地元件100,以形成一平面倒F天线(PlanarInvertedFAntenna,PIFA)的架构。请参考图6A至图6F,图6A至图6F为本发明实施例天线60、61、62、63、64、65的示意图。在图6A中,天线60是将天线32中的辐射元件102新增一分支600,将分支600电性连接至接地元件100,以形成一平面倒F天线的架构,同样能适用超材料结构的特性,使天线60的中心频率Fc低于一般平面倒F天线的中心频率,达到等效缩小天线尺寸的目的。图6B至图6F则绘示了结合不同形状的等效电容元件及等效电感元件,以组合出不同的超材料结构。进一步地,由于超材料结构可改变天线辐射中心频率的特性,因此,可在天线中增加一切换电路,用来切换天线的中心频率。如此一来,即可使单一天线适应性地操作于不同的中心频率之间,达到等效增加天线频宽的功效。具体来说,请参考图7,图7为本发明实施例一射频装置7的示意图。射频装置7包含有一天线70以及一射频信号处理单元72。射频信号处理单元72用来产生射频信号RF_sig,并耦接于天线70,通过天线70将射频信号RF_sig发射至空中。天线70具有多操作频段及超材料特性,其包含有一接地元件700、辐射元件702、712及722、一馈入元件704、一超材料结构706以及一切换电路720。接地元件700电性连接于地端,用来提供接地。辐射元件702包含有一分的支730,电性连接于接地元件700,使天线70形成平面倒F天线的架构。馈入元件704电性连接于辐射元件702、712及722与接地元件700之间,用来馈入射频信号RF_sig至辐射元件702、712及722。亦即,当发送信号时,馈入元件704由信号处理单元72接收射频信号RF_sig,传送至辐射元件702、712及722,以通过辐射元件702、712及722进行多频段的无线电传播;当接收信号时,辐射元件702、712及722所感应的射频信号RF_sig经由馈入元件704传送至信号处理单元72。如图7所示,辐射元件702及712可包含有至少一弯折7020、7120,且辐射元件712、722也可视为辐射元件702的分支,用来产生不同电流路径,以使天线70可涵括多个操作频段。超材料结构706包含有一等效电容元件708及一等效电感元件710,等效电容元件708电性连接于辐射元件702,等效电感元件710电性连接于切换电路720。切换电路720包含有一开关D、一电阻R及一电感L。开关D耦接于等效电感元件710与接地元件700之间,用来根据射频信号处理单元72输出的一切换信号CR_sig,切换等效电感元件710与接地元件700的连结,以改变天线70的中心频率Fc。电阻R耦接于切换信号CR_sig,用来限制切换信号CR_sig产生的电流大小,使开关D能在正常工作电流下使用。电感L的一端耦接于电阻R,另一端耦接于开关D与等效电感元件710,用来阻断等效电感元件710中射频信号RF_sig流至切换信号CR_sig,避免因射频信号RF_sig传递至切换信号CR_sig的路径对天线特性的影响。其中,开关D优选为一PIN(Positive-Intrinsic-Negative)二极管或一双载子接面二极管(BipolarJunctionTransistor,BJT)。值得注意的是,辐射元件702具有最长的长度,主要用来收发低频段的射频信号RF_sig,而超材料结构706电性连接于辐射元件702,其目的在于改变天线70于低频段的中心频率Fc。在此架构下,天线70即可通过切换电路720来调整其低频的中心频率Fc。也就是说,当开关D连接等效电感元件710与接地元件700时,天线70的中心频率Fc为一第一频率F1;当开关D分离等效电感元件710与接地元件700时,天线70的中心频率Fc为一第二频率F2。由于超材料结构706使中心频率Fc往低频偏移的特性,因此第二频率F2大于第一频率F1,即当等效电感元件710与接地元件700连接时,天线70的中心频率Fc由第二频率F2偏移至较低频的第一频率F1。请参考图8A及图8B,图8A为天线70在不同切换状态下的电压驻波比的示意图;图8B为天线70在不同切换状态下的辐射效率(Efficiency)的示意图。为便于说明,当开关D连接等效电感元件710与接地元件700的状态State_on以实线表示;当开关D分离等效电感元件710与接地元件700的状态State_off以虚线表示。如图8A所示,在状态State_on时,低频部分VSWR低于3的中心频率Fc为第一频率F1(F1≒740MHz,在状态State_off时,低频部分VSWR低于3的中心频率Fc为第二频率F2(F2≒870MHz),而高频的辐射频段几乎没有变化。另一方面,如图8B所示,在状态State_on时,低频部分辐射效率大于40%的中心频率Fc为第一频率F1,在状态State_off时,低频部分辐射效率大于40%的中心频率Fc为第二频率F2,而高频的辐射频段几乎没有变化。值得注意的是,第一频率F1(F1≒740MHz,704~787MHz)包含的频宽大致符合长期演进的频段需求,第二频率F2(F2≒870MHz,791~960MHz)包含的频宽大致符合全球移动通信(GlobalSystemforMobileCommunications,GSM)中800MHz、900MHz的操作频段需求。因此,通过切换电路720切换等效电感元件710与接地元件700的连结,即可有效地改变天线70于低频部分的中心频率Fc,使天线70能适应性地操作于不同中心频率或不同移动通信系统的操作频段,达到等效增加天线频宽的功能,以在有限的面积之下,等效缩小天线尺寸。请参考图9,图9为本发明实施例另一天线90的示意图。天线90由天线70衍伸而来,故相同元件以相同符号命名,两者主要差异在于,天线90的超材料结构906与天线70的超材料结构706不同。超材料结构906包含有等效电容元件908、918及一等效电感元件910,此架构的超材料结构906可等效于在辐射元件702上串联两个电容及并联一电感。如前述图4A至图4C、图5A至图5C、图6A至图6F的变化例,超材料结构906中的等效电容元件908、918及一等效电感元件910可包含有至少一支臂,以产生不同的频率偏移效应。请参考图10A及图10B,图10A为天线90在不同切换状态下的电压驻波比的示意图;图10B为天线90在不同切换状态下的辐射效率的示意图。当开关D连接等效电感元件910与接地元件700的状态State_on以实线表示,当开关D分离等效电感元件910与接地元件700的状态State_off以虚线表示。如图10A所示,在状态State_on时,低频部分VSWR低于3的中心频率Fc为第一频率F1(F1≒740MHz,704~787MHz),在状态State_off时,低频部分VSWR低于3的中心频率Fc为第二频率F2(F2≒870MHz,791~960MHz),而高频的辐射频段(1710~2690MHz)几乎没有变化。另一方面,如图10B所示,在状态State_on时,低频部分辐射效率大于35%的中心频率Fc为第一频率F1;于状态State_off时,低频部分辐射效率大于35%的中心频率Fc为第二频率F2,而高频的辐射频段仍维持良好的辐射效率。综上所述,本发明通过增加超材料结构于天线的辐射元件,当辐射元件具有相同长度、面积及形状的条件下,使辐射元件的中心频率往低频偏移,达到等效缩短天线尺寸的目的。另一方面,本发明另结合切换电路于天线之中,通过切换电路切换等效电感元件与接地元件的连结,即可有效地改变天线于低频部分的中心频率,以使天线能适应性地操作于不同中心频率或辐射频段,达到等效增加天线频宽的功能。以上所述仅为本发明的优选实施例,凡依本发明权利要求书所做的均等变化与修饰,皆应属本发明的涵盖范围。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1