用于对半导体晶圆进行等离子切割的方法和设备的制作方法

文档序号:7249273阅读:316来源:国知局
用于对半导体晶圆进行等离子切割的方法和设备的制作方法
【专利摘要】本发明提供一种用于对基板进行等离子切割的方法。所述方法包括:提供具有壁的处理室;提供与所述处理室的壁相邻的等离子源;在所述处理室内提供工件支架;将基板放置到所述框架上的支撑膜上以形成工件;将所述工件加载到所述工件支架上;提供布置在所述工件上方的盖环;通过所述等离子源产生等离子;以及,通过所产生的等离子来蚀刻所述工件。
【专利说明】用于对半导体晶圆进行等离子切割的方法和设备
[0001]相关申请的交叉引用
[0002]本申请要求2011年3月14日提交的发明名称为“Apparatus for Plasma Dicinga Sem1-conductor Wafer (用于对半导体晶圆进行等离子切割的设备)”的共同拥有的美国临时专利申请N0.61/452,450的优先权并且涉及该临时专利申请,该临时专利申请通过引用并入本文。
【技术领域】
[0003]本发明涉及用于从半导体晶圆形成单独的器件芯片的设备的使用,具体地,涉及使用等离子蚀刻将晶圆分离成单独的裸片的设备。
【背景技术】
[0004]在以薄晶圆的形式的基板上制造半导体器件。通常使用硅作为基板材料,但是,也使用其它材料,诸如II1-V化合物(例如GaAs和InP)。在某些情况下(例如,LED的制造),基板是半传导性材料的薄层沉积在其上的蓝宝石或碳化硅晶圆。这样的基板的尺寸的范围从2英寸和3英寸到200mm、300mm、和450mm直径,并且存在用来描述这样的基板尺寸的许多标准(例如,SEMI)。
[0005]在这些基板的处理中广泛地使用等离子刻蚀设备来生产半导体器件。这样的设备典型地包括装配有诸如电感耦合等离子体(ICP)的高密度等离子源的真空室,所述高密度等离子源被用来确保符合成本效益制造所必需的高蚀刻速率。为了去除在处理期间产生的热量,通常将基板卡合到冷却的支架。冷却气体(通常为氦)被维持在基板与支架之间,以为热量去除提供热传导路径。可以使用机械卡紧机构,其中,向下力被施加到基板的顶侧,但是,由于夹具与基板之间的接触,这可能导致污染。更频繁地,使用静电吸盘(ESC)来提供吸附力。
[0006]已经研发出适合于将被蚀刻的材料的若干气体化学成分。这些频繁地利用卤素(氟、氯、溴、或碘)或含齒素的气体连同添加的额外的气体以提高蚀刻的质量(例如,蚀刻各向异性、掩蔽选择性和蚀刻均匀性)。含氟气体,诸如SF6、F2或NF3被用来以高速率蚀刻硅。具体地,将高速率硅蚀刻步骤与钝化步骤交替以控制蚀刻侧壁的工艺(Bosch或TDM)通常用来在硅中蚀刻出深特征(features)。通常使用含氯气体和含溴气体来蚀刻II1-V材料。
[0007]等离子蚀刻并不限于半导体基板和器件。该技术可以适用于其中蚀刻基板的适当的气体化学剂可用的任何基板类型。其它基板类型可以包括含碳基板(包括聚合体基板)、陶瓷基板(例如,AlTiC和蓝宝石)、金属基板、和玻璃基板。
[0008]为了确保一致的结果、低破坏和操作的简便性,在制造过程中通常使用机器人晶圆处理。处理器被设计为以最少的接触支撑晶圆,以最小化可能的污染和减少微粒的产生。一般仅在少许位置(典型地,在晶圆边缘的3-6_内)采用边缘接触或靠近晶圆边缘的下侧接触。包括晶圆匣、机械臂和在处理室内的包括晶圆支架和ESC的固定装置的处理方案被设计用来处理如先前提出的标准晶圆尺寸。[0009]在基板上制造之后,在封装或在其它电子电路系统中被采用之前,将单独的器件(裸片或芯片)相互分离。许多年来,机械装置已经用于来将裸片相互分开。这样的机械装置已经包括沿着与基板结晶轴线调准的划线破坏晶圆或通过使用高速金刚石锯锯入到或贯通在裸片之间的区域(迹道)中的基板。最近,已经使用激光器来促进划片处理。
[0010]这样的机械晶圆切割技术具有影响该方法的成本效益的限制。沿着裸片边缘的削片和破坏会降低生产的良好裸片的数量,并且随着晶圆厚度下降变得更加有问题。由锯条(锯口 )消耗的区域可以是大于100微米,该区域是对于裸片生产不可用的有价值的区域。对于包含晶圆的小裸片(例如,具有500微米x500微米裸片尺寸的单独的半导体器件),这能够表示大于20%的损失。此外,对于具有许多小裸片并且因此具有若干迹道的晶圆,由于每个迹道被单独切割,所以切割时间增加,并且生产率下降。机械装置也受到沿着笔直线分离和产生正方形或椭圆形芯片的限制。这可能不表示底层器件拓扑结构(例如,高功率二极管是圆形的),并且因此,直线裸片形式导致可用基板区域的显著损失。激光切割也具有残留物留在裸片表面上或将应力弓丨入到裸片中的限制。
[0011]重要的是要注意,锯切和激光切割技术基本上是连续的操作。因此,随着器件尺寸的减小,对晶圆进行切割的时间与在晶圆上的总切割迹道长度成比例地增加。
[0012]最近,等离子蚀刻技术已经被提出作为分离裸片和克服这些限制的方法。在器件制造之后,基板用适当的掩蔽材料掩蔽,在裸片之间留下敞开区域。然后,使用反应性气体等离子处理掩蔽的基板,所述反应性气体等离子蚀刻暴露在裸片之间基板材料。基板的等离子蚀刻可以部分或完全 贯通基板进行。在部分等离子蚀刻的情况下,通过随后的劈开步骤将裸片分离,留下分离的单独的裸片。该技术在机械切割上提供多个益处:
[0013]I)破坏和碎屑减少;
[0014]2)锯口尺寸能够减少至显著小于20微米;
[0015]3)处理时间不随着裸片的数量增加而显著增加;
[0016]4)对于更薄的晶圆而言,处理时间被缩短;以及
[0017]5)裸片拓扑结构并不限于直线形式。
[0018]在器件制造之后,但是在裸片分离之前,通过机械研磨或类似的处理可以将基板打薄至几百微米或甚至小于一百微米的厚度。
[0019]在切割处理之前,通常将基板安装在切割固定装置上。该固定装置通常由支撑粘合剂膜的刚性框架构成。将被切割的基板附接到膜。该固定装置保持分离的裸片用于随后的下游操作。用于晶圆切割的大多数工具(锯子或基于激光的工具)被设置成处理具有这种构造的基板,并且已经规定了多种标准固定装置;然而,这样的固定装置与它们所支撑的基板迥然不同。但是,这样的固定装置被优化以便在目前的晶圆切割设备中使用,它们不能在已经被设计成处理标准基板的设备中被处理。因此,目前的自动化等离子蚀刻设备不适合处理用于切割固定的基板,并且难以实现等离子蚀刻技术对于裸片分离而言应有的益处。
[0020]一些小组已经设想到使用等离子来从晶圆基板切单裸片。美国专利6,642,127描述了一种等离子切割技术,在该技术中,在被设计用于处理硅晶圆的设备中进行等离子处理之前,首先将基板晶圆经由粘合剂材料附接到载体晶圆。该技术提出使将被切割的基板的形状因子适于与标准晶圆处理设备兼容。虽然该技术允许标准等离子设备对晶圆进行切害!],但是,所提出的技术将不与切割操作下游的标准设备兼容。需要额外的步骤来使下游设备适应于标准下游设备或针对标准下游设备基板形状因子恢复基板形状因子。
[0021]美国专利申请2010/0048001考虑使用附接到薄膜并支撑在框架内的晶圆。然而,在2010/0048001应用中,通过将掩蔽材料附接到晶圆的后侧并且在等离子处理之前使用激光来限定蚀刻迹道来实现掩蔽处理。与从前侧切单基板的标准切割技术相比,该技术引入额外复杂且昂贵的可能取消等离子切割的一些优势的步骤。还需要额外的需求将后侧掩罩与前侧器件图案调准。
[0022]因此,所需要的是能够用于将半导体基板切割成单独的裸片且与处理安装于带上且支撑在框架中的基板的规定的晶圆切割技术相兼容并且还与标准前侧掩蔽技术相兼容的等离子蚀刻设备。
[0023]现有技术中没有提供本发明的益处。
[0024]因此,本发明的一个目的是提供克服现有技术器件的不足并且显著有助于使用等离子蚀刻设备对半导体基板进行切割的进步的改进。
[0025]本发明的另一个目的是提供用于对基板进行等离子切割的方法,该方法包括:提供具有壁的处理室;提供与所述处理室的壁相邻的等离子源;在所述处理室内提供工件支架;将所述基板放置到载体支架上以形成工件;将所述工件加载到所述工件支架上;提供布置在所述工件上方的盖环;通过所述等离子源产生等离子;以及通过所述产生的等离子来蚀刻所述工件。
[0026]本发明的又一个目的是提供用于对基板进行等离子切割的方法,该方法包括:提供具有壁的处理室;提供与所述处理室的壁相邻的等离子源;在所述处理室内设置工件支架,所述工件支架具有静电吸盘;将所述基板放置到载体支架上以形成工件;将所述工件加载到所述工件支架上;通过所述静电吸盘将所述工件吸附到所述工件支架;提供布置在所述工件上方的盖环;通过所述等离子源产生等离子;通过所述产生的等离子来蚀刻所述工件;以及在所述蚀刻步骤期间控制所述盖环的温度。
[0027]本发明的再一个目的是提供用于对基板进行等离子切割的方法,该方法包括:将所述基板放置到载体支架上以形成工件;将所述工件加载到等离子处理室中;将所述工件暴露于所述等离子处理室中以使用第一蚀刻气体进行第一等离子蚀刻处理;在切单之后终止所述第一等离子蚀刻处理;以及将所述工件暴露于所述等离子处理室中以使用第二蚀刻气体进行第二等离子蚀刻处理。
[0028]本发明的另一个目的是提供用于对基板进行等离子切割的设备,该设备包括:具有壁的处理室;与所述处理室的壁相邻的等离子源;在所述处理室内的工件支架,所述工件支架具有静电吸盘;具有在载体支架上的基板的工件,所述工件放置到所述工件支架上;以及布置在所述工件上方的盖环,所述盖环被导热联接到所述处理室的壁。
[0029]前述内容已经概述了本发明的一些相关目的。这些目的应被解释为例证预期的本发明的一些更加突出的特征和应用。通过以不同方式应用所公开的发明或在本公开的范围内修改本发明,能够获得许多其它有益的结果。因此,除了由权利要求结合附图所限定的本发明的范围之外,通过参照本发明的
【发明内容】
和优选实施例的详细描述,可以实现本发明的其它目的和更充分的理解。

【发明内容】
[0030]本发明描述了允许对半导体基板进行等离子切割的等离子处理设备。在器件制造和晶圆打薄之后,使用传统掩蔽技术来掩蔽基板的前侧(电路侧),该传统掩蔽技术保护电路部件并且在裸片之间留下无保护区域。基板安装在薄带上,该薄带被支撑在刚性框架内。基板/带/框架组件被转移到真空处理室中并暴露于反应气体等离子,在真空处理室中,裸片之间的无保护区域被蚀刻掉。在该过程中,反应气体等离子保护所述框架和带免受损害。该处理留下完全分离的裸片。此外,在蚀刻之后,使基板/带/框架组件另外地暴露于等离子,该等离子从基板表面去除潜在有破坏性的残渣。在所述基板/带/框架组件从处理室传送出来之后,使用公知的技术将裸片从所述带去除,然后,必要的话,对裸片进行进一步的处理(例如,包装)。
[0031]本发明的另一个特征是提供一种用于对基板进行等离子切割的方法。该基板能够具有诸如硅的半导电层,和/或该基板能够具有诸如GaAs的II1-V层。该基板能够具有被图案化在基板的电路侧的、诸如光阻层的保护层。还设置有具有壁的处理室,且等离子源与处理室的壁相邻。等离子源能够是高密度等离子源。能够设置有与处理室流体连通的真空泵以及与处理室流体连通的气体进口。在处理室内设置有工件支架。通过将基板放置在载体支架上来形成工件。通过将基板附接到支撑膜并然后通过支撑膜将基板安装到框架,能够形成工件。支撑膜能够具有聚合物层和/或导电层。该支撑膜能够是标准的切割带。所述框架能够具有导电层和/或金属层。然后,将工件加载到工件支架上以进行等离子处理。RF功率源能够耦合到工件支架,以创造环绕工件的等离子。通过将诸如氦的加压气体从工件支架供应至工件,能够在工件与工件支架之间提供热连通。能够将静电吸盘合并到工件支架中,因此,静电吸盘能够将支撑膜吸附到静电吸盘。静电吸盘能够具有单极或多极吸附电极并通过库仑效应或Johnsen-Rahbek效应来提供吸附力。静电吸盘的直径能够大于基板的直径。静电吸盘的直径能够小于框架的内径。静电吸盘能够具有平坦的顶表面。静电吸盘能够具有小于单个裸片尺寸的特征。升降机构能够合并到工件支架中,在工件支架处,工件被加载到升降机构上。升降机构能够设计成使得它仅接触工件的框架。还能够设置有垫圈,其中,该垫圈从静电吸盘的外径延伸到升降机构。垫圈能够由介电材料制造。机械分隔部能够设置在高密度源与工件之间。该分隔部可以是能够导电的屏蔽网,该屏蔽网可以由铝制成。盖环布置在工件的上方。该盖环的内径能够小于基板的外径。能够通过真空泵降低处理室内的压力,并能够通过气体进口将处理气体弓I入到处理室中。等离子通过等离子源产生,因而,工件通过所产生的等离子被蚀刻。在等离子蚀刻步骤期间,该盖环的温度能够受到控制。在等离子蚀刻步骤期间,能够将盖环冷却到低于80°C的温度。通过利用处理室的壁和/或散热器,能够使盖环冷却。该盖环通过接触温度控制的流体能够被控制温度。盖环能够具有多个孔、等离子抗蚀层、金属层和/或陶瓷层。能够提供与处理室连通的真空兼容传递模块。能够将工件加载到真空兼容传递模块中的转移臂上,因此,在将工件从真空兼容传递模块传递到处理室期间,处理室维持在真空下。该转移臂能够是平坦的,转位到框架,在传递期间仅接触所述框架和/或与基板保持大致共面。在将工件传递到处理室中之前,通过机械调准和/或光学调准能够将工件调准。所述框架和/或基板在传递到处理室中之如能够被调准。
[0032]本发明的另一个特征是提供一种用于对基板进行等离子切割的方法。该基板能够具有诸如硅的半导电层,和/或基板能够具有诸如GaAs的II1-V层。基板能够具有被图案化在基板的电路侧的、诸如光阻层的保护层。还设置有具有壁的处理室,且等离子源与该处理室的壁相邻。等离子源能够是高密度等离子源。能够设置有与处理室流体连通的真空泵和与处理室流体连通的气体进口。在处理室内设置有工件支架。通过将基板放置在载体支架上来形成工件。通过将基板附接到支撑膜并然后通过支撑膜将基板安装到框架,能够形成工件。支撑膜能够具有聚合物层和/或导电层。支撑膜能够是标准的切割带。所述框架能够具有导电层和/或金属层。然后,将工件加载到工件支架上用于等离子处理。RF功率源能够耦合到工件支架,以创造环绕工件的等离子。通过将诸如氦的加压气体从工件支架供应至工件,能够在工件与工件支架之间提供热连通。静电吸盘被合并到工件支架中,因此,静电吸盘将工件吸附到静电吸盘。静电吸盘能够是单极的或多极的。静电吸盘能够利用库仑(coulombic)效应或Johnsen-Rahbek效应来吸附所述基板。静电吸盘的直径能够大于基板的直径。静电吸盘的直径能够小于框架的内径。静电吸盘能够具有平坦顶表面。静电吸盘能够具有小于单个裸片尺寸的特征。能够将升降机构合并到工件支架中,在工件支架处,工件被加载到升降机构上。升降机构能够设计成使得它仅接触工件的框架。还能够设置有垫圈,其中,该垫圈从静电吸盘的外径延伸到升降机构。垫圈能够由介电材料制造。机械分隔部能够设置在高密度源与工件之间。该分隔部可以是能够导电的屏蔽网,该屏蔽网可以由铝制成。盖环布置在工件的上方。盖环的内径能够小于基板的外径。能够通过真空泵降低处理室内的压力,并能够通过气体进口将处理气体引入到处理室中。等离子由等离子源产生,因而,工件通过所产生的等离子被蚀刻。在等离子蚀刻步骤期间,所述盖环的温度受到控制。在等离子蚀刻步骤期间,能够将盖环冷却到低于80°C的温度。通过利用处理室的壁和/或散热器,能够使盖环冷却。盖环能够具有多个孔、等离子抗蚀层、金属层和/或陶瓷层。能够提供与处理室连通的真空兼容传递模块。能够将工件加载到真空兼容传递模块中的转移臂上,因此,在将工件从真空兼容传递模块传递到处理室期间,处理室维持在真空下。转移臂能够是平坦的,转位到框架,在传递期间仅接触所述框架和/或与基板保持共面。在将工件传递到处理室中之前,通过机械调准和/或光学调准能够将工件调准。框架和/或基板在传递到处理室中之前能够被调准。
[0033]本发明的又一个特征是提供一种用于对基板进行等离子切割的方法。通过将基板放置在载体支架上形成工件。通过将基板附接到支撑膜然后通过支撑膜将基板安装到框架,能够形成工件。支撑膜能够具有聚合物层和/或导电层。支撑膜能够是标准的切割带。框架能够具有导电层和/或金属层。工件被加载到等离子处理室中。盖环能够布置在工件的上方。使用在等离子处理室内的第一蚀刻气体将工件暴露于第一等离子蚀刻处理。第一蚀刻气体能够是诸如含氟气体或含氯气体的含卤素的气体。第一蚀刻处理能够是时分多路复用蚀刻处理。在裸片被切单之后,终止第一等离子蚀刻处理。第一等离子蚀刻处理的终止能够在基板与支撑膜之间的能够使用标准端点技术确定的界面处出现。然后,能够使用在等离子处理室内的第二蚀刻气体将工件暴露于第二等离子蚀刻处理。第二等离子蚀刻处理能够是被设计用以降低底切的较低的蚀刻速率处理。第二蚀刻气体能够是诸如含氟气体或含氯气体的含第二卤素的气体。第二蚀刻处理能够是第二时分多路复用蚀刻处理。然后,能够使用在等离子处理室内的第三蚀刻气体将工件暴露于第三等离子蚀刻处理。在暴露于第一等离子蚀刻处理和/或第二等离子蚀刻处理之后,第三等离子蚀刻处理能够去除存在于器件上的非期望的残渣。第三蚀刻气体能够是含氢气体。[0034]本发明的另一个特征是提供一种用于对基板进行等离子切割的设备,该设备包括具有壁的处理室,且等离子源与处理室的壁相邻。等离子源能够是高密度等离子源。处理室能够具有与处理室流体连通的真空泵和与处理室流体连通的气体进口。在处理室内的工件支架具有静电吸盘。将具有安装在载体支架上的基板的工件放置到工件支架上。工件能够具有在支撑膜上的基板,该支撑膜安装在框架上。支撑膜能够具有聚合物层和/或导电层。支撑膜能够是标准的切割带。框架能够具有导电层和/或金属层。盖环布置在工件的上方,并且盖环被导热联接到处理室和/或散热器的壁。盖环能够具有多个孔。机械分隔部能够放置在高密度源与工件之间。升降机构能够放置在工件支架内。能够包括从静电吸盘的外径延伸到升降机构的垫圈。
[0035]前述内容已经相当广义地概述了本发明的较中肯且重要的特征,以便可以更好地理解本发明的下列详细描述,使得能够更加充分地理解目前对技术的贡献。将在下文中描述形成本发明的权利要求的主题的本发明的另外的特征。本领域的技术人员应领会,所公开的构思和特定实施例可以被容易地用作修改或设计其它结构的基础以便执行本发明的相同的目的。本领域的技术人员还应认识到,这样的等效结构不脱离如在所附权利要求中阐明的本发明的精神和范围。
【专利附图】

【附图说明】
[0036]图1是半导体基板的俯视图,示出了由迹道分隔开的多个单独的器件;
[0037]图2是半导体基板的横截面视图,示出了由迹道分隔开的多个单独的器件;
[0038]图3是安装到带和框架的半导体基板的横截面视图;
[0039]图4是安装到带和框架的、正在通过等离子处理蚀刻的半导体基板的横截面视图;
[0040]图5是安装到带和框架的、彼此分隔开的半导体器件的横截面视图;
[0041]图6是真空处理室的横截面视图;
[0042]图7是处于处理位置的晶圆/框架的横截面;
[0043]图8是真空处理室中的框架和盖环的放大横截面视图;
[0044]图9是处理室内部的一部分的横截面视图,其中,盖环安装到处理室的壁;
[0045]图10是处理室内部的一部分的横截面视图,其中,盖环安装到内部散热器;
[0046]图11是安装到由转移臂支撑的带和框架的半导体基板的俯视图;
[0047]图12是安装到由转移臂支撑的带和框架的半导体基板的横截面视图;
[0048]图13是处于传递位置的晶圆/框架的横截面视图;
[0049]图14是屏蔽网的顶视图;
[0050]图15是静电吸盘的横截面视图;并且
[0051]图16是处于传递位置的室的示意图。
[0052]贯穿附图的几个视图,相同的参考标记指示相同的部件。
【具体实施方式】
[0053]图1示出了器件制造之后的典型的半导体基板。该基板(I)在其表面上具有包含器件结构(2)的多个区域,这些器件结构(2)由迹道区域(3)分隔开,在所述迹道区域中,不存在允许将器件结构分离成单独裸片的结构。尽管通常使用硅作为基板材料,但也经常采用因为它们的特殊性质而被挑选的其它材料。这样的基板材料包括砷化镓和其它II1-V材料或其上已经沉积了半导电层的非半导体基板。
[0054]在本发明中,如图2中的横截面视图所示,然后用保护材料(4)覆盖器件结构(2),而迹道区域(3)保持无保护的状态。该保护材料(4)能够是通过熟知的技术施加并图案化的光阻材料。作为最终处理步骤,一些器件涂有横跨整个基板施加的诸如二氧化硅或PSG的保护介电层。通过用光阻材料进行图案化并蚀刻该介电材料,能够将保护介电层从迹道区域(3)选择性地去除,如本行业中熟知的。这留下了受到介电材料保护的器件结构(2)和在迹道区域(3)中的基本无保护的基板(I)。注意,在一些情况下,用以检验晶圆质量的试验特征(features)可以设在迹道区域(3)中。取决于特定的晶圆制造工艺流程,这些试验特征在晶圆切割处理期间可以受到或可以不受到保护。尽管图示的器件图案呈现为椭圆形裸片,但这不是必须的,并且,各个单独的器件结构(2)可以是任何其它形状,例如六边形,以适合于基板(I)的最佳利用。重要的是要注意,虽然先前示例考虑电介质材料作为保护膜,但也可通过包括半导体保护膜和导体保护膜的宽范围的保护膜来实施本发明。此外,该保护层能够包括多种材料。还重要的是要注意,该保护膜的一部分可以是最终器件的一体部分(例如,钝化电介质、金属焊盘等)。
[0055]通常可通过研磨处理来打薄基板(I),这将基板厚度减小到几百微米至约30微米或更薄。如图3所示,然后,将打薄的基板(I)附接到带(5)并且又安装在刚性框架(6)中,以形成工件(1A)。带(5)通常由含碳聚合物材料制成,此外,可以具有施加到其表面的薄导电层。带(5)为太易碎以至于无法在不破坏的情况下进行处理的、打薄的基板(I)提供支撑。应注意的是,图案化、打薄并然后安装的顺序不是关键的,并且可以对这些步骤进行调整以最佳地适合所使用的特定装置和基板和处理设备。重要的是要注意,虽然先前的示例考虑通过将基板(I)安装在粘合带(5)上而构成的工件(1A),该粘合带(5)又附接到框架(6),但是,本发明不受晶圆和载体的构造的限制。晶圆的载体能够包括各种材料。在等离子切割处理期间,该载体支撑基板。此外,不必使用粘合剂将晶圆附接到该载体——能够将晶圆保持于该载体并允许基板与阴极热连通的任何方法都是可以的(例如,静电吸附的载体,具有机械夹紧机构的载体等)。
[0056]在用带(5 )将基板(I)安装在切割框架(6 )中之后,将工件(1A)转移到真空处理室中。理想地,在转移期间,传递模块也处于真空下,这允许处理室保持在真空下,从而缩短处理时间并防止处理室暴露于大气和可能的污染。如图6所示,真空处理室(10)配备有:气体进口( 11);高密度等离子源(12),该高密度等离子源(12)用于产生高密度等离子,如电感耦合等离子(ICP);工件支架(13),该工件支架(13)用于支撑工件(1A) ;RF功率源(14),该RF功率源(14)用于将RF功率通过工件支架(13)耦合到工件(1A);和真空泵(15),该真空泵(15)用于泵送来自处理室(10)的气体。在处理期间,使用如图4所示的反应等离子蚀刻处理(7)来蚀刻掉基板(I)的无保护区域。这留下了被分隔成单独裸片(8)的器件(2),如图5所示。在本发明的另一个实施例中,使用反应等离子蚀刻处理(7)来部分地蚀刻掉基板(I)的无保护区域。在这种情况下,诸如机械破坏操作的下游操作能够用来完成裸片分离。这些下游方法在本领域中是熟知的。
[0057]虽然先前的示例描述了使用真空室结合高密度等离子的本发明,但是,使用宽范围的等离子处理来蚀刻基板的无保护区域也是可以的。例如,本领域的技术人员能够想到本发明使用真空室中的低密度等离子源或甚至使用处于大气压力下或接近大气力下的等离子的变型例。
[0058]当所述基板/带/框架组件(IA)处于用于等离子处理的位置时,重要的是,保护框架(6)以免暴露于等离子(7)。暴露于等离子(7)将导致框架(6)被加热,进而将导致安装带(5)被局部加热。在大约100°C以上的温度下,该带(5)的物理性质及其粘合能力可能恶化,并且它将不再附着到框架(6)。另外,框架(6)暴露于反应等离子气体可能导致框架(6)的退化。由于框架(6)在晶圆切割之后通常被重新使用,所以这可能限制框架(6)的使用寿命。框架(6)暴露于等离子(7)还可能不利地影响蚀刻处理:例如,框架材料可能与处理气体发生反应,有效地减小处理气体在等离子中的浓度,这将降低基板材料的蚀刻速率,从而增加处理时间。为了保护框架(6),如图6、图7和图8所示,保护盖环(20)放置在框架(6)上方。由于与该框架接触(这将在转移到处理室(10)期间发生)可能会产生不期望的颗粒,所以盖环(20 )不接触框架(6 )。
[0059]在图8中,尺寸(A)表示盖环(20)与框架(6)之间的距离。该尺寸的范围能够从小于约0.5mm至大于约5mm,其最佳值为1.5mm。如果距离(A)太大,则等离子(7)将接触框架(6),并且盖环(20)的益处将消失。
[0060]重要的是,盖环(20)是温度控制的,另外,由于盖环(20)暴露于等离子(7)并且进而通过辐射加热而加热该带(5)和框架(6),所以其温度将上升,从而导致如上指出的退化。对于盖环(20)被冷却的情况,盖环(20)的冷却通过让盖环(20)直接接触冷却的主体来完成,该冷却的主体例如是图9所示的处理室壁(IOW)或图10所示的位于处理室(10)内的散热器(30 )。为了确保将热量从盖环(20 )充分转移至散热器(30 ),盖环(20 )应由具有良好导热性的材料制成。这样的材料包括许多种金属,例如铝,但也可使用诸如氮化铝的其它导热材料和其它陶瓷。对盖环材料的挑选应与所使用的等离子处理气体兼容。虽然铝对于氟基处理而言是令人满意的,但是,当使用氯基处理时,诸如氮化铝的替换材料或诸如氧化铝的另外的保护涂层可能是必要的。在等离子处理期间,盖环(20)的操作温度通常低于80°C,这最小化了到带(5)和框架(6)的热辐射并确保带(5)维持其机械完整性。替代地,通过使盖环(20 )与温度控制的流体相接触,盖环(20 )可以是温度控制的。该流体能够是液体或气体。在盖环(20 )温度受到流体控制的情况下,盖环(20 )可以包含多个流体通道以促进热传递。这些流体通道能够在盖环(20)的内部、或从外部附接到盖环(20),或这两种情形的一些组合。
[0061 ] 在一个实例中,盖环(20 )能够从基板直径处连续延伸到内室直径处。为了避免泵送导率的损失(它可能不利地影响处理室(10)内的压力控制),能够对盖环(20)添加多个孔
(21),所述多个孔(21)允许处理气体的充分导率,同时仍提供从盖环(20)的排热路径。在图9和图10中,示出了以特定的几何结构布置的多个孔(21),但是取决于处理室(10)的尺寸和所需的泵送导率,孔(21)的密度、尺寸、图案和对称性能够变化。
[0062]所述基板/带/框架组件(1A)由转移臂(40)转移到处理室(10)中以及从处理室(10 )中转移出,该转移臂(40 )支撑框架(6 )和基板(I)使得它们维持共面,如图11和图12所示。转移臂(40 )可以支撑所述带(5 )和框架(6 )两者或仅支撑框架(6 ),但重要的是,因为打薄的基板(I)的易碎属性,所以组件(IA)未仅在基板(I)的区域下方被支撑。转移臂(40)具有调准固定装置(41),该调准固定装置(41)附接到转移臂(40),在被转移到处理室(10)中之前,该调准固定装置(41)将框架(6)在可重复的位置中调准。还能够通过半导体处理中的其它熟知的技术(例如,光学调准)来调准框架(6)。通过这些熟知的技术,也能够对基板(I)执行调准。重要的是,所述基板/带/框架组件(1A)在放置于处理室(10)中之前被调准,以避免下文说明的误处理。
[0063]在图8中,尺寸(D)表示基板(I)的外径与框架(6)的内径之间的距离。这可以是20mm至30_ (例如,对于200mm基板,Disco Corporation切割框架是250mm,使得该尺寸(D)名义上是25mm)。在将晶圆(I)在框架(6)内安装在带(5)上期间,晶圆(I)的放置偏差可至多是2mm,使得作为基板(I)的外径与盖环(20)的内径之间的距离的尺寸(E)从组件到组件也可以变化最多达2mm。如果在某点(E)处小于零,则盖环(20)将覆盖基板(I)的边缘。该点将被遮蔽并防止被蚀刻,这能够防止裸片分离并导致后续处理步骤中的问题。在进行转移之前必须进行基板/带/框架组件(1A)的调准,以防止这样的问题。此外,为了额外地确保尺寸(E)不小于零,盖环的内径应大于基板(I)的直径,且优选该内径比基板的直径大5mm (例如,对于200mm基板,盖环的内径为205mm)。图8中的尺寸(F)表示从盖环(20)的内径到框架(6)的内径的距离。在转移到处理室(10)中之前对框架(6)的调准确保了:对于环绕基板(I)的整个圆周而言,(F)保持常量,并且,带(5)的不与静电吸盘(ESC)(16)接触的任何部分均被遮蔽而免受等离子(7)。
[0064]当将基板/带/框架组件(1A)转移到处理室(10)中时,将其放置到升降机构(17)上并从转移臂(40)上移开。逆向过程在基板/带/框架组件(IA)从处理室(10)中转移出来期间发生。升降机构(17)接触框架(6)的区域并且不提供与基板(I)的点接触。由于带
(5)的挠性将导致裸片相互接触并出现损害,所以与基板(I)的点接触能够导致对基板(I)的损害,特别地在裸片分离和卸下基板/带/框架组件(IA)之后。图13示出了从下侧接触框架(6)的升降机构(17):然而,通过使用夹紧装置与顶表面或外径接触,也能够使框架
(6)离开转移臂(40)。为了对基板(I)进行处理,框架(6)、工件支架(13)、和盖环(20)彼此相对移动。这能够通过移动盖环(20)、工件支架(13)、或升降机构(17)中的任一个或三者的任意组合来实现。
[0065]在等离子处理期间,热量被传递至该等离子(7)所接触的所有表面,包括基板(I)、带(5)、和框架(6)。盖环(20)将最小化到带(5)和框架(6)的区域的热传递,但是基板
(I)必须保持暴露于等离子(7)以用于处理。如图6所示,能够将导电屏蔽网(25)(例如,由铝或涂有适当的耐等离子涂层的铝制成)放置在基板(I)与等离子(7)之间。这将减少基板(I)上的离子轰击并因此减少基板(I)的加热。图14示出了设有多个孔(26)的屏蔽网
(25),其仍然允许来自等离子(7)的中性粒子到达基板(1),使得蚀刻速率仅稍微减小。孔(27 )允许将屏蔽网(25 )安装到处理室(10 )。
[0066]基板(I)的额外冷却通过使用静电吸盘(ESC) (16)来提供。一般在半导体处理中使用这样的ESC (16)来对基板(I)施加向下的力,而诸如氦的加压气体被维持在基板(I)与电极之间。这确保了热传递能够在基板(I)与冷却的电极之间出现。通常,ESC (16 )的直径与基板(I)相同或小于基板(I ),以防止ESC (16)表面意外地暴露于潜在的腐蚀性等离子气体,这会缩短ESC (16)的寿命。在基板/带/框架组件(IA)中,在基板(I)的直径外侧的区域是带(5)。使用典型的ESC (16),因为盖环(20)大于基板(I)的直径,将存在带(5)的暴露于等离子处理的区域,其不被夹紧并且由ESC (16)冷却或者由盖环(20)遮蔽而免受等离子(7)。带(5)的这种区域将达到高温并可能发生故障。因此,图8示出了对ESC
(16)的使用,该ESC (16)被故意地制成大于基板直径,使得暴露于区域(E)中的等离子的任何带(5)也被夹紧并冷却。该直径能够向外延伸到框架(6)的外径,但优选比框架(6)的内径小2mm。
[0067]图8示出了从ESC (16)的外径延伸到升降机构(17)的垫圈(18)。该垫圈(18)用来防止任何暴露的带(5)的后表面接触等离子(7)。尽管示出了独立的垫圈(18),但是,ESC (16)的延伸部也将防止等离子(7)暴露于带(5)的后侧。垫圈(18)通常由诸如陶瓷(例如,氧化铝)或塑性材料(例如,聚四氟乙烯(PTFE,特氟隆))的介电材料制成,选择这两者是因为它们的低导热性及低导电性。在半导体处理中使用的典型的ESC (16)具有在它们的表面上制造的浅特征的图案,以促进氦分布或以最小化与基板(I)的后侧的接触来减少颗粒形成。当将基板(I)分离成多个裸片时,这种ESC (16)能够用于等离子切割,在ESC表上提供小于裸片尺寸的特征尺寸。当裸片尺寸接近于并变得小于ESC特征尺寸时,该带将符合所述特征并弯曲,可能促使裸片相互接触,这会导致损害。对基本共面的ESC表面的使用消除了该问题。注意,尽管先前示例描述了冷却该基板的ESC,但是,对于要求较高温度以促进等离子蚀刻处理的一些材料(例如,对于含铟基板,近似180°C)而言,可以期望较高温度控制的ESC (16)温度。
[0068]典型的ESC (16)(图15的库仑设计)由一个或多个电极(33)构成,对其施加高压(19),所述一个或多个电极(33)通过厚绝缘层(32)与工件支架(13)分离,并通过薄介电材料层(34)与要被吸附的材料隔开。由静电力产生的吸附力随着该介电层(34)的厚度的减小而增加,并随着所施加的电压的增加而增加。在本实例中,当将基板(I)安装在绝缘带(5)上时,带(5)的厚度增大了置于电极(33)与基板(I)之间的总电介质厚度。该总厚度应该不是主要由带厚度确定,因为带厚度有可能变化,导致可变的吸附性能。相反,ESC电介质(34)应是相对厚的(大约几百微米),以独立于带厚度维持吸附性能。通过在高的吸附电压(高达近似IOkV)下操作,能够实现高的吸附力。
[0069]在等离子处理期间,RF功率(14)被耦合到基板(1),以控制基板(I)上的离子轰击并控制蚀刻特性。该RF的频率可以从几百MHz下至几百kHz不等。当向下蚀刻基板材料至绝缘层(在该实例中,安装带)时,与绝缘层的充电相关联的蚀刻问题是熟知的。这样的问题包括在基板/绝缘体界面处局部化的严重底切,这在界面裸片分离期间是不期望的,因为这影响切单的裸片的性能。如本领域中熟知的,通过在低的RF频率下操作并且此外在低频率下使RF功率跳动或调整RF功率,能够减轻这样的充电问题。由于在这样的低频率下通过厚介电材料(32 )的RF耦合是无效的,所以RF耦合至基板(I)优选经由一个或多个ESC电极,例如经由耦合电容器而非经由RF供电工件支架(13)。为了维持均匀的RF耦合到基板(I ),一个或多个ESC电极也应均匀布置在基板(I)后方。这在使用多个电极的情况下是难以实现的,因为在电极之间的必要的间隙导致RF耦合中的局部变化,这不利地影响蚀刻质量,特别地在基板/带界面处的底切。因此,ESC设计的优选实施例合并所谓的单极设计,在单极设计中,单电极用来提供吸附力。另外,应存在尽可能少的贯通该电极的贯通部(例如,关于销抬(pin lifts)),因为这些贯通部还将妨碍RF耦合并且使蚀刻性能退化。
[0070]能够使用半导体工业中熟知的技术来处理基板。一般使用诸如SF6的氟基化学成分来处理硅基板。sf6/o2K学成分因为其高速率和各向异性轮廓通常被用来蚀刻硅。该化学成分的缺点是其对掩蔽材料例如对15-20:1的光阻材料的相对低的选择性。替代地,能够使用时分复用(TDM)处理,该项处理在沉积与蚀刻之间交替以产生高度各向异性的深轮廓。例如,蚀刻硅的交替处理使用C4F8步骤将聚合物沉积在硅基板的所有暴露的表面上(即,掩蔽表面、蚀刻侧壁和蚀刻底板),然后,SF6步骤用于将聚合物从蚀刻底板选择性地去除,然后各向异性地蚀刻少量的硅。重复这些步骤直至中止。这样的TDM处理能够产生深入到硅中的各向异性特征,且具有大于200:1的掩蔽层的选择性。因此,这使得TDM处理实现硅基板的等离子分离的期望的方法。注意,本发明并不限于使用含氟化学成分或时分多路复用(TDM)处理。例如,还可以利用如本领域已知的含Cl、HBr或I的化学成分来蚀刻硅基板。
[0071]对于诸如GaAs的II1-V基板,在半导体工业中广泛地使用氯基化学成分。在RF无线器件的制造中,打薄的GaAs基板安装在载体上且器件朝下,然后,利用光阻材料对GaAs基板进行打薄和图案化。将GaAs蚀刻掉以使电触头暴露于前侧电路。该熟知的处理能够用来通过在上述发明中描述的前侧处理来分离这些器件。其它半导体基板和适当的等离子处理也能够被用于上述发明中的裸片的分离。
[0072]为了进一步减轻与在基板/带界面处充电相关联的问题,处理能够在界面暴露于第二处理的点处被改变,该第二处理具有不易底切(undercut)的趋势并且典型地是较低蚀刻速率处理。改变发生的时间点取决于基板的厚度,其有可能变化。为了补偿该可变性,使用端点技术来检测到达基板/带界面的时间。监测等离子排放的光技术通常被用来检测端点,并且美国专利6,982,175和7,101,805描述适合于TDM处理的这样的端点技术。
[0073]在半导体基板的切单之后,在这些器件上可能存在非期望的残渣。通常使用铝作为半导体器件的电触头,并且,当半导体器件暴露于氟基等离子层时,一层AlF3形成在其表面上。AlF3在正常等离子处理条件下是不挥发的并且不被从基板抽走和从系统抽出,并且在处理之后保持在表面上。铝上的AlF3是器件出现故障的常见原因,因为电线到电触头的结合强度大大降低。因此,在等离子处理之后将AIF3从电触头的表面去除是重要的。能够使用湿方法;然而,这变得困难,因为分离的裸片的易碎属性,并且对带的可能的损害导致裸片释放。因此,在基板仍然在真空室内的同时,能够将处理改变成第三处理,改变成被设计用以去除所形成的任何AlF3的处理。美国专利7,150,796描述了一种用于使用氢基等离子原地除去AlF3的方法。同样,当使用其它含卤素的气体来蚀刻基板时,能够使用原地处理来除去其它含卤素的残渣。
[0074]本公开包括所附权利要求中所包含的内容以及前述描述的内容。尽管已经以其具有某种程度的特殊性的优选形式描述了本发明,但是,应理解,优选形式的本公开仅通过举例提出,并且在不脱离本发明的精神和范围的情况下,可以求助于构造的细节上的若干改变和零件的布置的组合。
[0075]现在,已经描述了本发明。
【权利要求】
1.一种用于对基板进行等离子切割的方法,所述方法包括: 提供具有壁的处理室; 提供与所述处理室的所述壁相邻的等离子源; 在所述处理室内提供工件支架; 将所述基板放置在载体支架上以形成工件; 将所述工件加载到所述工件支架上; 提供布置在所述工件上方的盖环; 通过所述等离子源产生等离子;以及 通过所产生的等离子来蚀刻所述工件。
2.根据权利要求1所述的方法,还包括:将所述基板放置到框架上的支撑膜上,以形成所述工件。
3.根据权利要求1所述的方法,还包括:提供RF功率源,所述RF功率源被耦合到所述工件支架。
4.根据权利要求3所述的方法,其中,所述工件支架还包括静电吸盘。
5.根据权利要求4所述的方法,还包括:在所述工件支架内的升降机构,所述工件被加载到所述升降机构上。
6.根据权利要求5所述的方法,还包括:从所述静电吸盘的外径延伸到所述升降机构的垫圈。
7.根据权利要求1所述的方法,还包括:在所述高密度源与所述工件之间提供机械分隔部。
8.根据权利要求1所述的方法,还包括:在所述蚀刻步骤期间控制所述盖环的温度。
9.根据权利要求8所述的方法,其中,所述盖环还包括多个孔。
10.一种用于对基板进行等离子切割的方法,所述方法包括: 提供具有壁的处理室; 提供与所述处理室的所述壁相邻的等离子源; 在所述处理室内提供工件支架,所述工件支架具有静电吸盘; 将所述基板放置到载体支架上以形成工件; 将所述工件加载到所述工件支架上; 通过所述静电吸盘将所述工件吸附到所述工件支架; 提供布置在所述工件上方的盖环; 通过所述等离子源产生等离子; 通过所述产生的等离子来蚀刻所述工件;以及 在所述蚀刻步骤期间控制所述盖环的温度。
11.根据权利要求10所述的方法,还包括:将所述基板放置到框架上的支撑膜上,以形成所述工件。
12.根据权利要求10所述的方法,其中,所述盖环还包括多个孔。
13.根据权利要求10所述的方法,还包括:在所述高密度源与所述工件之间提供机械分隔部。
14.根据权利要求10所述的方法,还包括:在所述工件支架内的升降机构,所述工件被加载到所述升降机构上。
15.根据权利要求10所述的方法,还包括:从所述静电吸盘的外径延伸到所述升降机构的垫圈。
16.根据权利要求10所述的方法,其中,所述静电吸盘是单极的。
17.根据权利要求10所述的方法,其中,所述静电吸盘是多极的。
18.根据权利要求10所述的方法,其中,所述静电吸盘具有大致共面的表面。
19.根据权利要求10所述的方法,还包括: 基板的直径;以及 静电吸盘的直径,所述静电吸盘的直径大于所述基板的直径。
20.一种用于对基板进行等离子切割的方法,所述方法包括: 将所述基板放置到载体支架上以形成工件; 将所述工件加载到等离子处理室中; 将所述工件暴露在所述等离子处理室中以使用第一蚀刻气体进行第一等离子蚀刻处理; 在切单之后,终止所 述第一等离子蚀刻处理;以及 将所述工件暴露在所述等离子处理室中以使用第二蚀刻气体进行第二等离子蚀刻处理。
21.根据权利要求20所述的方法,还包括:将所述基板放置到框架上的支撑膜上以形成所述工件。
22.根据权利要求20所述的方法,还包括:提供布置在所述工件上方的盖环。
23.根据权利要求22所述的方法,其中,所述第一蚀刻气体是含卤素的气体,并且其中,所述第二蚀刻气体是含氢的气体。
24.根据权利要求23所述的方法,其中,所述第一蚀刻处理是时分多路复用蚀刻处理。
25.根据权利要求24所述的方法,其中,所述第二蚀刻处理是第二时分多路复用蚀刻处理。
26.一种用于对基板进行等离子切割的设备,所述设备包括: 处理室,所述处理室具有壁; 等离子源,所述等离子源与所述处理室的所述壁相邻; 工件支架,所述工件支架位于所述处理室内,所述工件支架具有静电吸盘; 工件,所述工件具有在载体支架上的所述基板,所述工件放置到所述工件支架上;以及 盖环,所述盖环布置在所述工件上方,所述盖环被导热联接到所述处理室的所述壁。
27.根据权利要求26所述的设备,其中,所述工件还包括在框架上的支撑膜上的所述基板。
28.根据权利要求26所述的设备,其中,所述盖环被导热联接到散热器。
29.根据权利要求26所述的设备,其中,所述盖环还包括多个孔。
30.根据权利要求26所述的设备,还包括:在所述高密度源与所述工件之间的机械分隔部。
31.根据权利要求26所述的设备,还包括:在所述工件支架内的升降机构,所述工件被放置到所述升降机构上。
32.根据权利要求31所述的设备,还包括:从所述静电吸盘的外径延伸到所述升降机构的垫圈 。
【文档编号】H01L21/67GK103460350SQ201280013642
【公开日】2013年12月18日 申请日期:2012年3月12日 优先权日:2011年3月14日
【发明者】克里斯·约翰逊, 大卫·约翰逊, 鲁塞尔·韦斯特曼, 林内尔·马丁内斯, 大卫·佩斯-沃拉德 申请人:等离子瑟姆有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1