Mems开关设备和制造方法
【专利摘要】本发明涉及MEMS开关设备和制造方法。一种微机电系统(MEMS)开关设备,包括:基材层;在所述基材层上形成的绝缘层;以及具有在所述绝缘层的表面上形成的多个触点的MEMS开关模块,其中,所述绝缘层包括在绝缘层内形成的多个导电路径,所述导电路径被配置成相互连接所述MEMS开关模块的所选触点。
【专利说明】MEMS开关设备和制造方法
【背景技术】
[0001]微机电系统(MEMS)是非常小设备的技术。MEMS通常是由尺寸在1_100微米的组件组成,以及MEMS设备通常的尺寸范围从20微米到I毫米。MEMS设备的示例是MEMS开关。典型地,使用称为表面微加工的技术制造这些MEMS开关。在利用表面微机械加工形成的MEMS设备中,利用在表面半导体处理中熟悉的常规光刻和刻蚀技术在衬底的表面上形成MEMS组件。用于操作所述MEMS开关的互连和其它电路元件(例如电阻器)也形成在衬底的表面上。然而,使用传统的表面硅加工工艺和材料形成互连和所需的电阻器可导致互连是不可靠的,这是由于互连的表面腐蚀HE相邻表面互连之间的漏电流。
【发明内容】
[0002]根据各种实施例,提供了一种MEMS开关设备,其包括:基材层;在所述基材层上形成的绝缘层;以及具有在所述绝缘层的表面上形成的多个触点的MEMS开关模块,其中,所述绝缘层包括在绝缘层内形成的多个导电路径,所述导电路径被配置成相互连接所述MEMS开关模块的所选触点。
[0003]至少一个导电路径优选地包括:在绝缘层的表面下的导电材料(诸如铝)的轨道,和从轨道延伸到绝缘层的表面的至少一个导电通孔(诸如,钨通孔)。此外,每个导电通孔可电连接到所述MEMS开关模块的触点之一。
[0004]至少一个导电路径可以包括电阻材料(诸如,多晶硅)的轨道,导电路径优选被配置为电阻的电路元件。MEMS开关模块可以包括开关梁,其中所述电阻电路元件优选在绝缘层内形成,并与所述开关梁对准。
[0005]MEMS开关设备,可进一步包括与MEMS开关模块电通信的控制模块。
[0006]基材层可以包括具有高电阻率的材料,例如硅,石英,蓝宝石,砷化镓或玻璃。
[0007]MEMS开关设备进一步可包括包围所述MEMS开关模块的保护外壳。保护外壳可包括键合到绝缘层的娃。
[0008]在一些实施例中,公开一种制造MEMS开关设备的方法。该方法包括:在衬底上形成绝缘层,并在绝缘层内形成了许多导电路径,并随后在所述绝缘层的表面上形成包括多个触点的MEMS开关模块,由此选择的触点被配置成通过在所述绝缘层内的导体路径相互连接。
[0009]该方法可进一步包括:在形成MEMS开关模块之后,形成包围MEMS开关模块的保护帽。
[0010]该方法可进一步包括:提供经配置以与MEMS开关模块电通信的控制模块。MEMS开关器件可以使用保护性塑料材料封装。
【专利附图】
【附图说明】
[0011]本发明的实施例如下仅通过非限制性示例的方式参考相应的附图进行描绘:
[0012]图1是不出根据本发明实施例的MEMS开关设备的不意性侧横截面图;
[0013]图2是不出图1所不的开关设备的MEMS开关模块的不意性侧横截面图;
[0014]图3是示出图1所示的MEMS开关设备的衬底和绝缘层的示意性侧横截面图;
[0015]图4是示出具有在MEMS开关模块的部分上形成的保护帽的MEMS开关设备的进一步实施例的示意性侧横截面图;
[0016]图5是示出结合控制模块封装的图4所示的MEMS开关设备和保护帽的示意性侧横截面图;以及
[0017]图6是示出根据一个实施用于制造MEMS开关设备的方法的流程图。
【具体实施方式】
[0018]图1示意性地示出了根据一个实施例的MEMS开关设备I。MEMS开关设备I包括:基材层2、形成在该基材层2上的绝缘层4,以及形成在绝缘层4的表面上的MEMS开关模块6。可以使用通常用于互补的金属-氧化物-半导体(CMOS)后端处理技术(例如,氧化沉积、沉积钨、铝沉积、光刻和蚀刻、化学机械平面化,等等)的设备和材料形成基材层2和绝缘层4,尽管可以使用其它合适的加工技术。基材层2和绝缘层4在此统称作为CMOS后端8。在图1中所示的特定实施例中,CMOS后端8具有在绝缘层4中形成的多个导电路径10。导电路径10可以互连在绝缘层4的表面上形成的MEMS开关模块6的所选触点12。应当理解的是,在实践中,在绝缘层4 一般由多个氧化物沉积形成。
[0019]图2示意性地示出在绝缘层4的表面上形成的MEMS开关模块6。在图2中,图1中所示的导电路径10未被示出,为了清楚的目的。如上文所述,参照图1,所示的MEMS开关模块6包括在绝缘层4的表面上形成的多个电触点12。在图示的实施例,每个触点12包括在绝缘层4的表面上形成的第一层导电材料14,诸如贵金属中的任何一个,例如钌或钼,以及第二导电层16可以在第一层14的顶部形成。第二层16可以比第一层14更导电。第二导电层16可以例如是金,金是高度导电且高度耐腐蚀。比仅由第二导电材料16(例如金)形成的触点12所提供的,第一层14可以用于确保与绝缘层4更好的电气和物理接触。在图2所示的实施例中,MEMS开关模块6还包括MEMS开关梁18,其被电和物理连接到另一触点12a,这在本文中称为锚接触点。MEMS开关梁18在一些实施例中可以由金形成。锚定触点12a提供双重目的:在绝缘层4的表面上物理支持开关梁18的一端,以及提供通过触点12a至开关梁18的电连接。在图2所示的特定实施例中,开关梁18从锚定触点12a悬臂,以便从绝缘层4的表面分离。在与锚定触点12a相对的开关梁18上,触点尖端20形成在横梁18的上侧,触点尖端20被涂覆硬导电材料(诸如贵金属之一)。触点尖端20位于进一步触点垫22之上,该触点垫也可以从相对耐磨的导电材料(诸如贵金属之一)形成。在开关梁18的触点尖端20上提供耐磨涂层20、22以及在绝缘层4的表面上提供对应的触点垫22可以防止这些表面由于高开关频率的可能软化并粘在一起,如果较软的导电材料(诸如,金)被使用,该情况可发生。虽然没有单独列于图1和图4中,图2的MEMS开关模块6的材料选择也适用于图1和图4的MEMS开关模块。
[0020]在操作中,电压被施加到栅电极24,该栅电极24也可以由贵金属(诸如,钌)形成。施加电压到栅电极24产生静电力,吸引开关梁18朝向栅电极24。静电力使开关梁18变形以及梁端部20接触触点垫22,从而关闭触点垫22和锚定触点12a之间的电路。在图2所示的特定实施例中,进一步的凸起或突出部26形成在固定垫12a和栅电极24之间的开关梁18的下侧。突出部26(也被称为“缓冲器”)可以防止开关梁18坍缩以与栅电极24接触,该情况可以通过金属疲劳或者如果产生过大的静电力而发生。
[0021]所述MEMS开关模块6通过使用表面处理技术(包括沉积、掩蔽和蚀刻步骤)制作在绝缘层4上。在图示的实施例中,开关模块6不包括在绝缘层4的表面上形成的任何导电路径(例如,外表面),所述绝缘层4相互连接任何触点12、12a、22、24。
[0022]图3示意性地示出了 CMOS后端8,包括基材层2和绝缘层4。在一些实施例中,绝缘层4由二氧化硅形成,但可以用来代替氧化硅的其他已知的绝缘材料可以当适当时使用。绝缘层4的内部形成许多导电路径10。,常规地,导电路径包括由电阻材料(诸如,铝)形成的导电迹线30,所述导电迹线30在绝缘层4中水平方向形成。导电迹线30可以埋在绝缘层4内。许多导电瞳孔32可以从迹线30延伸到绝缘层4的表面。导电通孔32可以由钨插头或其它合适的导电材料形成。通孔32可以在尺寸和数量上随情况而不同。通孔32和迹线30使用已知的批量加工技术而在绝缘层4中形成,例如那些典型地用于生产CMOS设备的技术。在优选的实施例中,绝缘基材层2常规地由高电阻硅制成,但也可以从其他高电阻率物质(诸如,石英、蓝宝石、砷化镓和玻璃等)形成。根据对于MEMS开关模块6的所选电路的需求,其它导电路径也可以在绝缘层4内形成。进一步的导电路径的示例是具有较高电阻的电阻器34,其在一些实施例中从埋入绝缘层4的高电阻多晶硅形成。当在开关模块6的开关梁18下方形成时,电阻可以用作在开关梁18和绝缘层4之间去耦。
[0023]返回参照图1,可以看出,导电通孔形成MEMS开关模块6和导体迹线30的接触垫32之间的电气连接,由此形成MEMS开关模块6的不同元件之间的期望的导电路径。所示实施例的导电路径因而不会完全埋入绝缘层4内,从而防止腐蚀和其他降解。
[0024]在进一步的实施例中,MEMS开关模块的进一步保护通过保护帽的设置而进行提供。参照图4,保护硅帽40被放置在开关模块6的开关梁18上,使得相关的接触垫12在保护帽40外面。保护帽40可从合适材料(诸如,硅)的单块形成,内部空腔42被腐蚀掉。帽40被粘接到绝缘层4的表面,在该绝缘层4上使用适当的接合技术形成MEMS开关模块6,诸如阳极接合或使用适当的粘合剂(诸如,图示的玻璃44)。形成的保护帽40有助于防止水分并避免其它污染物干扰所述开关模块的操作,并有助于防止塑料包装组装过程在随后的塑料成型步骤期间损坏开关模块。保护帽40也可以防止MEMS开关模块的机械损坏,并且可以防止颗粒在开关梁18的下方。保护盖40的另一个好处在于提供了其中实际MEMS开关操作的受控环境。例如,帽40的内腔42可填充有惰性气体。
[0025]图5示意性地示出了结合控制模块46封装的图4所示的MEMS开关设备和保护帽。该控制模块46优选地是特定应用集成电路(ASIC),并被提供以响应于接收的逻辑信号(例如,3V左右)而产生将被应用于MEMS开关设备的适当的高电压(例如,大约80V)切换信号。较低的电压控制逻辑信号通过到控制模块的的输入连接48和引线键合连接50被施加到控制模块46。另一个引线接合52可连接控制模块46的输出和MEMS开关设备的触点垫I。从MEMS开关设备的输出信号可以通过进一步的引线结合54输出到封装的输出端56。在一些实施例中,输入连接48、控制模块46、MEMS开关设备I和输出56按照已知的封装技术封装在常规的包装塑料材料58中。虽然使用控制模块46和MEMS开关设备封装I并排示出,可替换地,MEMS开关设备I可堆叠在控制模块46的上方,并且部分或所有的引线键合可使用其他形式的互连(例如,倒装芯片、穿硅通孔等)取代。
[0026]图6是示出根据一个实施例用于制造MEMS开关设备的方法的流程图。在图示实施例的初始步骤60中,CMOS后端的基材层2使用常规的批量处理/晶片的加工技术形成。下一步骤62在于在基材层2上形成绝缘层4,随后的步骤64是在绝缘层中形成导电路径。本领域技术人员应该认识到,在实践中,绝缘层4的部分在形成导电路径之前和之后形成。用于形成后端的初始步骤(包括导电路径)可使用常规的批量处理技术完成。其后,后端晶片然后按照表面处理技术以在步骤66形成绝缘层4的表面上的MEMS开关模块。如果需要,保护帽可以随后形成在开关模块(步骤68)上,如果需要,MEMS开关设备和控制模块随后根据常规的封装技术进行包装(步骤70)。虽然图6所示的方法已根据特定的命令或序列描述,但应当理解,其他顺序或序列可以是合适的。
[0027]根据本文公开的实施例的MEMS开关设备及制造MEMS的方法以可制造的方式、使用后端CMOS型处理掩埋导电路径(连接)。这就避免了仅使用表面微机械技术制造MEMS开关设备中经历的问题,在该表面微机械技术中,互连被掩埋并因此由于暴露而容易受到腐蚀和互连之间的泄漏电流。
[0028]此外,如上面所解释的,在一些实施例中,MEMS开关梁18可以由高度导电且耐腐蚀的金属,尤其是金形成。与使用半导体材料(例如硅)制成的开关相比,对于开关梁18和第二导电层16使用金可大大降低损失量。不受理论的限制,我们相信相较于使用半导体开关,金开关是有利的,这是因为当金开关被关闭时,开关作为基本无损耗的模拟设备,使得输入信号与输出信号实质上相同(例如,闭合结构中的金开关可作为金线)。在一些实施例中,本文描述的MEMS开关与高频电路集成,诸如,RF阵列。例如,金开关梁可用于工作频率约为11千兆赫至约100千兆赫之间的RF应用。例如在一些实施例中,所公开的开关梁可用于工作频率至少大约为77千兆赫的RF应用。
[0029]在其它实施例中,如本文所述的MEMS开关用于替换在需要较小轮廓的大得多的机械继电器的应用中。例如,在医疗应用中,其中开关可用于人体内,本文所公开的高度可靠和无损耗的MEMS开关可制成传统的机械式继电器。
[0030]因此,在各种实施方式中,如本文所解释的那样,使用具有导电部件(包括金,钼,和/或钌)的MEMS开关可以是有利的。然而,与常规CMOS制造设备一起使用这些金属是不可取的。例如,如果传统的CMOS制造设备用于制造CMOS后端8和使用金开关梁18的MEMS开关模块6,用于形成开关梁18的金可污染仔细校准的CMOS设施以及在该设施中使用的任何进一步的CMOS处理。
[0031]因此,在第一制造设施中制造CMOS后端8可是有利的。CMOS后端8然后可以被运输到单独的制造设备,用于制造MEMS的开关模块6,例如,包括金开关梁的模块。可以在切割之前或切割晶片之后进行运输。本文所教导的技术可使用掩埋的互连并使用MEMS开关的特殊材料,该MEMS开关与用于创建掩埋互连的设施(例如,CMOS制造设施)不兼容。
【权利要求】
1.一种微机电系统(MEMS)开关设备,包括: 基材层; 在所述基材层上形成的绝缘层;和 具有在所述绝缘层的表面上形成的多个触点MEMS开关模块,其中,所述绝缘层包括在绝缘层内形成的多个导电路径,所述导电路径被配置成相互连接所述MEMS开关模块的所选触点。
2.根据权利要求1所述的MEMS开关设备,其中,所述导电路径中的至少一个包括绝缘层的表面下方的导电材料的迹线,以及从迹线延伸到绝缘层的表面的至少一个导电通孔。
3.根据权利要求2所述的MEMS开关设备,其中,每个导电通孔电连接到所述MEMS开关模块的触点之一。
4.根据权利要求2所述的MEMS开关设备,其中,导电材料的迹线包括铝。
5.根据权利要求2所述的MEMS开关设备,其中,,所述导电通孔包括钨。
6.根据权利要求1所述的MEMS开关设备,其中,所述导电路径中的至少一个包括电阻材料的迹线。
7.根据权利要求6所述的MEMS开关设备,其中,所述导电路径被配置为电阻性电路元件。
8.根据权利要求7所述的MEMS开关设备,其中,所述MEMS开关模块包括开关梁,其中所述电阻电路元件在所述绝缘层内形成,并与所述开关梁对准。
9.根据权利要求6所述的MEMS开关设备,其中,所述电阻材料包括多晶硅。
10.根据权利要求1所述的MEMS开关设备,其中,所述绝缘层包括二氧化硅。
11.根据权利要求1所述的MEMS开关设备,进一步包括:与MEMS开关模块电通信的控制丰吴块。
12.根据权利要求1所述的MEMS开关设备,其中,所述基材层包括具有高电阻率的材料。
13.根据权利要求12所述的MEMS开关设备,其中,所述高电阻率的材料是硅,石英,蓝宝石,砷化镓和玻璃之一。
14.根据权利要求1所述的MEMS开关设备,其中,所述MEMS开关设备进一步包括包围MEMS开关模块的保护外壳。
15.根据权利要求14所述的MEMS开关设备,其中,所述保护壳体包括键合到绝缘层的硅。
16.根据权利要求1所述的MEMS开关设备,所述MEMS开关模块,包括MEMS开关梁,以及MEMS开关梁包含金。
17.—种制造微机电系统(MEMS)开关设备的方法: 在衬底上形成层绝缘层; 在绝缘层内形成多个导电路径;和 随后在所述绝缘层的表面上形成包括多个触头的MEMS开关模块,由此选定的触点被配置以通过在所述绝缘层内的导电路径互相连接。
18.根据权利要求17所述的方法,进一步包括: 在形成所述MEMS开关模块之后,形成包围所述MEMS开关模块的保护帽。
19.根据权利要求17所述的方法,还包括提供经配置以与MEMS开关模块电通信的控制模块。
20.根据权利要求19所述的方法,进一步包括使用保护塑料材料封装所述MEMS开关设备。
【文档编号】H01H49/00GK104347320SQ201410367891
【公开日】2015年2月11日 申请日期:2014年7月30日 优先权日:2013年7月31日
【发明者】J·G·麦克纳马拉, P·L·菲兹格拉德, R·C·格金, B·P·斯坦森 申请人:亚德诺半导体集团