制造用于高频开关模式电源的微细加工的晶片级集成电感器或变压器的方法与流程

文档序号:12288589阅读:304来源:国知局
制造用于高频开关模式电源的微细加工的晶片级集成电感器或变压器的方法与流程

本申请一般涉及集成电感器,并且更具体地涉及将电感器集成到晶片级集成电路工艺中。



背景技术:

电感器和变压器可以被用于很多不同类型的电路中。例如,电感器和变压器可以被用于射频(RF)电路和高频功率分布或转换系统,诸如DC-DC电压(或功率)转换器。当前,因各种理由,电压转换器可能不完全集成在芯片上。例如,所期望的操作频率可能需要基于电感器受约束的物理尺寸不能获得的电感值。另外,特别地,基于涡流效应,片上电感器可不具有用于RF或高频电压转换应用的足够高的操作频率。

通过集成电力系统,优势包括处于与由此供电的(一个或多个)电路相同的管芯上的DC-DC电压转换器。例如,当处理器技术缩小到更小的尺寸时,到处理器内的电路的电源电压也可以缩小到更小的值。然而,随着尺寸减小,处理器的功率消耗可能增加。通过使用管芯外电压转换器以大的功率消耗将小的电源电压提供到处理器,大的总电流被供应到处理器。因为每个管脚具有最大电流处理能力,所以这可能增加每个管脚的电流,或增加向处理器供电所需的管脚的总数量。而且,电源电流的增加能够导致各种管芯外和管芯上互连件两端的电阻和电感电压降的增加,并且导致去耦电容器的较高的成本,通过将电压转换器集成到管芯上,可以减轻这些问题和其它问题。

常规的电压调节器被构建有离散电感器。这些调节器的频率一直在增加。通过增加频率,允许所需要的电感减小。如果切换频率是20MHz,则所需要的电感器是~100nH。



技术实现要素:

在所描述的晶片级工艺上的电感器的示例中,高导电层、聚合物层和磁芯允许高频操作、低RDSON值和高效率。

附图说明

图1、图2和图3是根据示例实施例的电感器的制造步骤的说明。

图3AA是图3的截面A-A的横截面视图。

图3BB是图3的截面B-B的横截面视图。

具体实施方式

在附图中,相同的附图标记有时被用于指定相同的元件。图中的描述是示意性的且未按比例。示例实施例包含使用晶片级工艺制造片上电感器的技术,以及允许高频操作、低RDSON值和高效率的电感器设计。本文中描述了用于集成电路中的电感器的层压磁性材料(laminated magnetic material)及其制造的方法的实施例。

在至少一个实施例中,电感器可以包括层压材料结构,以减小其中的涡流,在高频下,涡流可以限制电感器的操作。电感器可以包括基本上或完全围绕磁性材料的金属线。电感器还可以包括一个层压磁层或多个层压磁层,一个层压磁层或多个层压磁层可以进一步包括更高的电阻或绝缘体层。层压磁层的增加的电阻可以减小电感器内的涡流,并且随后提高电感器在较高频率下的性能。实施例可以采用电镀、无电镀(electro less plating)或溅射技术,以形成一个或多个磁性材料层,以及具体地那些层邻近绝缘体层。

图3AA和图3BB分别是图3的截面A-A和截面B-B的横截面视图。在示例实施例100中,图3AA具有硅晶片基板101。有源区102包括通过导电互连层103耦合的晶体管、二极管、电容器和电阻器以形成有源电路。有源区102接触硅晶片基板的顶部表面,并且包括第一多个接合触点(bond contact)104。导电互连层103能够包括其间具有绝缘层的多个导电材料层。多个导电材料层能够经由刺穿它们的相关联的绝缘层的多个通孔耦合在一起。导电互连层103的顶部是绝缘层,具有开口,以暴露第一多个接合触点104。并且,导电互连层的顶部上的绝缘层能够被氮化硅层106覆盖,氮化硅层106具有开口,以暴露第一多个接合触点104。

第一聚合物层105能够沉积在氮化硅层的顶部上,并且还包括从第一聚合物层的顶部向下延伸到第一多个接合触点104的第一多个开口。第一聚合物层105能够充当电感器和硅晶片之间的应力缓解层(relief layer)。第一聚合物层105的厚度能够是在5μm-15μm之间。这还能够用于减少在铜绕组和硅晶片基板101之间的耦合。能够从聚合物SU8或PI-2622的组中选取第一聚合物层。

第一高电导材料层107(图1)能够沉积在第一聚合物层105的顶部表面上,填充第一聚合物层中的开口,从而将第一高电导材料层107耦合到第一多个接合触点104。第一高电导材料层107还能够被配置为形成多个下部线圈构件,并且还包括第二多个接合触点108。第一高电导材料层107能够包括具有20μm的厚度的铜。

第二聚合物层109接触第一聚合物层105和第一高电导材料层107。第二聚合物层的顶部表面是平坦的。第二聚合物层109能够包括从第二聚合物层109的顶部表面向下延伸到第二多个触点108的开口。能够用第一多个通孔110填充第二聚合物层中的开口。第一多个通孔110能够是铜。能够从聚合物SU8 3000或PI-2622的组中选取第二聚合物层109。

交替的磁性材料和绝缘材料的多个层111(图2)能够被沉积和限定在第二聚合物层109的顶部表面上。如所限定的,交替的磁性材料和绝缘材料的多个层111不接触暴露在第二聚合物层109的顶部表面上的第一多个通孔110。

每个磁膜层能够具有从0.1μm到3μm的范围的厚度,每个磁膜层之间具有10nm AIN电介质。能够从Ni80Fe20、Co90Ta5Zr5或FeAIN的组中选择磁层。层压磁芯总厚度能够是在5μm-15μm之间。

接下来,第三聚合物层112能够被沉积,接触第二聚合物层109和交替的磁性材料和绝缘材料的多个层111的顶部。第三聚合物层能够包括从第三聚合物层112的顶部表面向下延伸到第一多个通孔110的顶部表面的开口。

第二高电导材料层114(图3)能够被沉积在第三聚合物层112的顶部表面上。第二高电导材料层114填充第三聚合物层112中的开口,从而将第二高电导材料层114耦合到第一多个接合触点104。第三高电导材料层114还能够被配置为形成多个上部线圈构件,并且还包括第三多个接合触点115。第二高电导材料层114能够包括具有20μm的厚度的铜。

接下来,第四聚合物层116能够被沉积,接触第三聚合物层112和第二高电导材料层114的顶部。第四聚合物层能够包括从第四聚合物层112的顶部表面向下延伸到第二高电导材料层114的开口。能够用焊锡球116填充第四聚合物层中的开口。焊锡球提供到外部电路系统的连接。

根据另一个实施例,通过提供常规形成的集成电路晶片101、集成电路晶片102和集成电路晶片103,制造晶片级集成电感器。通过导电互连层103的顶部处的绝缘层中的开口暴露集成电路中的每个集成电路的接合触点104。

在晶片上方沉积氮化硅层,氮化硅层接触导电互连层103的顶部处的绝缘层和通过导电互连层103的顶部处的绝缘层中的开口暴露的接合焊盘104。使用图案化和刻蚀工艺,通过氮化硅层中的开口暴露接合触点104。

从聚合物SU8或PI-2622的组中选取的第一聚合物层105被旋涂到晶片上。

如果旋涂到晶片上的第一聚合物层105是PI-2622,则然后烘烤(bake)第一聚合物层105,以使其固化。将图案化的硬掩膜沉积在晶片上,接触第一聚合物105的顶部表面。将开口刻蚀到第一聚合物层105中,开口从第一聚合物层105的顶部表面向下延伸到多个接合触点104。第一聚合物层被配置为充当电感器和硅晶片之间的应力缓解层。第一聚合物层的厚度是在5μm-15μm之间。然后,移除硬掩膜。

如果旋涂到晶片上的第一聚合物层105是SU8,则然后软烘烤第一聚合物层105。沉积和图案化光刻胶层,其中由光源发生曝光。在曝光之后,执行后曝光烘烤。然后显影光刻胶和未曝光的SU8。在显影之后,然后硬烘烤SU8。在显影工艺之后,曝光于光源的SU8将保留在晶片上。

将Ti/Cu的第一籽晶层溅射到第一聚合物层105的顶部表面上。

使用标准光刻工艺,将光刻胶层旋涂到晶片上且将光刻胶层图案化。

然后,将第一高电导材料层107电镀到光刻胶的表面上,并且进入到由光刻胶限定的开口区域中,接触第一聚合物层105上的第一籽晶层以及限定包括第二多个触点108的多个下部线圈构件107并填充在第一聚合物层105中的开口,从而将第一高电导材料层耦合到第一多个接合触点104。第一高电导材料层能够由20μm的铜组成。使用标准光剥离(photo stripping)方法,剥离光刻胶层。在光刻胶剥离之后,干法刻蚀所暴露的第一籽晶层。

将第二聚合物层109旋涂到晶片上,并且烘烤第二聚合物层109,以固化聚合物层。将图案化的硬掩膜沉积在晶片上,接触第二聚合物109的顶部表面。将开口刻蚀到第二聚合物层109中,开口从第二聚合物层109的顶部表面向下延伸到多个接合触点108。然后,移除硬掩膜。

能够从聚合物SU8 3000或PI-2622的组中选取第二聚合物层109。如果使用PI-2622,则CMP工艺能够被用于使表面平坦化。如果使用SU8 3000替代PI-2622用于第二聚合物层109,则因为SU8 3000大部分自平坦化到所需的容差,所以不需要CMP。

将Ti/Cu的第二籽晶层溅射到第二聚合物层109的顶部表面上,接触第二聚合物层109和第二多个触点108的顶部。

使用标准光刻工艺,将光刻胶层旋涂到晶片上且将光刻胶层图案化。

然后,将高电导材料层电镀到由光刻胶限定的开口区域中,接触第二聚合物层109上的第二籽晶层,填充第二聚合物层109中的开口,限定第一多个通孔110,从而将多个通孔耦合到第一多个接合触点104。第二高电导材料层能够由20μm的铜组成。使用标准光剥离方法剥离光刻胶层。在光刻胶剥离之后,干法刻蚀所暴露的第一籽晶层。

将钛层溅射到第二聚合物层的顶部表面上,接触第二聚合物层和第一多个通孔110的顶部。

在磁场中,能够使用Veeco Nexus PVDi工具,将包括交替的磁性材料和绝缘材料的多个层(图2)的层压磁芯111沉积在钛层的顶部表面上。交替的磁性材料和绝缘材料的多个层111被限定为不接触在第二聚合物层109的顶部表面上暴露的第一多个通孔110。

每个磁膜层能够被溅射具有从0.1μm到3μm的范围的厚度,每个磁膜层之间具有10nm AIN电介质。能够在磁场存在的情况下进行溅射,以确定磁性材料的易轴(easy axis)。取向使得在交替的磁性材料和绝缘材料的多个层111中的B场在难轴(hard axis)的方向。磁层能够从Ni80Fe20、Co90Ta5Zr5或FeAIN的组中选择。在溅射之后,在磁场的存在的情况下,磁层能够经受退火(300-500C)。这用于进一步限定易轴/难轴。层压磁芯111总厚度能够在5μm-15μm之间。

能够使用标准光刻胶工艺,图案化和刻蚀层压磁芯111。然后,能够刻蚀交替的磁性材料和绝缘材料的多个层和Ti粘合层。然后使用标准技术剥离光刻胶。

将第三聚合物层112旋涂到晶片上,并且烘烤第三聚合物层112,以使聚合物层固化。将图案化的硬掩膜沉积在晶片上,接触第三聚合物层112的顶部表面。将开口刻蚀到第三聚合物层112中,开口从第三聚合物层112的顶部表面向下延伸到第一多个通孔110。然后移除硬掩膜。

将Ti/Cu的第三籽晶层溅射到第三聚合物层112的顶部表面上,接触第三聚合物层112和第一多个通孔110的顶部。

使用标准光刻工艺,将光刻胶层旋涂到晶片上且将光刻胶层图案化。

然后,将第二高电导材料层114电镀到光刻胶的表面上,并且进入由光刻胶限定的开口区域中,接触第三聚合物层112上的第三籽晶层,以及限定包括第二多个触点115的多个上部线圈构件114,并填充第三聚合物层112中的开口,从而将第二高电导材料层耦合到第一多个接合触点104。第二高电导材料层能够由20μm的铜组成。使用标准光剥离方法剥离光刻胶层。在光刻胶剥离之后,干法刻蚀所暴露的第一籽晶层。

将第四聚合物层116旋涂到晶片上,并且烘烤第四聚合物层116,以使聚合物层固化。将图案化的硬掩膜沉积在晶片上,接触第四聚合物层116的顶部表面。将开口刻蚀到第三聚合物层116中,开口从第四聚合物层116的顶部表面向下延伸到第二多个触点115。然后移除硬掩膜。

在磁场(0.1-1T)存在的情况下,磁层能够经受第二退火(300-500C)。这用于进一步限定易轴/难轴。

最终,在形成于第四聚合物层116中的开口中形成焊接凸块,接触第三高电导材料层114,从而耦合到第一多个接合触点104。

相应地,在所描述的示例中,集成磁性设备包括硅晶片基板。有源区在其上包括由导电互连层耦合的晶体管、二极管、电容器和电阻器以形成有源电路。有源区接触硅晶片基板的顶部表面,并且包括第一多个接合触点。导电互连层包括其间具有绝缘层的多个导电材料层,多个导电材料层通过刺穿它们的相关联的绝缘层的第一多个通孔耦合在一起。导电互连层的顶部是绝缘层,具有开口,以暴露第一多个接合触点。进一步地,集成磁性设备包括氮化硅层,该氮化硅层覆盖并接触绝缘层,也具有开口,以暴露第一多个接合触点。第一聚合物层沉积在氮化硅层的顶部上,包括从第一聚合物层的顶部向下延伸到第一多个接合触点的第一多个开口。第一高电导材料层沉积在第一聚合物层的顶部表面上,填充第一聚合物层中的第一多个开口,形成第二多个通孔,从而将第一高电导材料层耦合到第一多个接合触点。第一高电导材料层被配置为形成多个下部线圈构件,并且还包括第二多个接合触点。第二聚合物层接触第一聚合物层和第一高电导材料层。第二聚合物层的顶部表面是平坦的。第二聚合物层包括从第二聚合物层的顶部表面向下延伸到第二多个接合触点的第二多个开口。用第三多个通孔填充第二聚合物层中的第二多个开口。交替的磁膜材料和绝缘材料的多个层被沉积和限定在第二聚合物层的顶部表面上。如所限定的,交替的磁膜材料和绝缘材料的多个层不接触暴露在第二聚合物层的顶部表面上的第三多个通孔。第三聚合物层被沉积接触第二聚合物层和交替的磁性材料和绝缘材料的多个层的顶部。第三聚合物层包括从第三聚合物层的顶部表面向下延伸到第三多个通孔的顶部表面的第三多个开口。第二高电导材料层被沉积在第三聚合物层的顶部表面上。第二高电导材料层填充第三聚合物层中的第三多个开口,形成第四多个通孔,从而将第二高电导材料层耦合到第一多个接合触点。第三高电导材料层被配置为形成多个上部线圈构件,并且还包括第三多个接合触点。第四聚合物层被沉积接触第三聚合物层和第二高电导材料层的顶部。第四聚合物层包括从第四聚合物层的顶部表面向下延伸到第二高电导材料层的开口。用焊锡球填充第四聚合物层中的开口,这提供到外部电路系统的连接。

在其它所描述的示例中,形成集成磁性设备的方法包含提供常规形成的集成电路晶片。通过导电互连层的顶部处的绝缘层中的开口暴露集成电路中的每个集成电路的接合触点。该方法包含在晶片上沉积和限定氮化硅层,其中氮化硅层接触导电互连层的顶部处的绝缘层,并且暴露通过导电互连层的顶部处的绝缘层中的开口暴露的接合焊盘。通过使用图案化和刻蚀工艺,通过氮化硅层中的开口暴露接合触点。并且,该方法包含将第一聚合物层旋涂和图案化到晶片上,该第一聚合物层从聚合物SU8或PI-2622的组中选取;将Ti/Cu的第一籽晶层溅射到第一聚合物层的顶部表面上;以及使用标准光刻工艺,将光刻胶层旋涂和图案化到第一籽晶层上。进一步地,该方法包含将第一高电导材料层电镀到光刻胶的表面上,并且进入到由光刻胶限定的开口区域中,接触第一籽晶层,并且限定包括第二多个触点的多个下部线圈构件,以及填充第一聚合物层中的第一多个开口,从而将第一高电导材料层耦合到第一多个接合触点。而且,该方法包含使用标准光刻胶剥离方法剥离光刻胶层,并且干法刻蚀所暴露的第一籽晶层;将第二聚合物层旋涂到晶片上,并且烘烤第二聚合物层,以使聚合物层固化;以及将图案化的硬掩膜沉积在晶片上,接触第二聚合物的顶部表面。将第二多个开口刻蚀到第二聚合物层中,第二多个开口从第二聚合物层的顶部表面向下延伸到第二多个触点。并且,该方法包含移除硬掩膜;将Ti/Cu的第二籽晶层溅射到第一聚合物层的顶部表面上;使用标准光刻工艺,将光刻胶层旋涂和图案化到第二籽晶层上;将高电导材料层电镀到由光刻胶限定的开口区域中,接触第二籽晶层,并且限定第一多个通孔,从而将第一多个通孔耦合到第一多个接合触点。进一步地,该方法包含使用标准光刻胶剥离方法剥离光刻胶层,并且干法刻蚀所暴露的第二籽晶层;将钛层溅射到第二聚合物层的顶部表面上,接触第二聚合物层和第一多个通孔的顶部;以及在磁场中,使用Veeco Nexus PVDi工具,将层压磁芯沉积在钛层的顶部表面上,该层压磁芯包括交替的磁膜材料和绝缘材料的多个层。交替的磁性材料和绝缘材料的多个层被限定为不接触在第二聚合物层的顶部表面上暴露的第一多个通孔。而且,该方法包含使用标准光刻胶工艺,图案化和刻蚀交替的磁性材料和绝缘材料的多个层和钛层。然后使用标准技术剥离光刻胶。并且,该方法包含将第三聚合物层旋涂到晶片上,并且烘烤第三聚合物层,以使聚合物层固化;将图案化的硬掩膜沉积在晶片上,接触第三聚合物的顶部表面,其中将第三多个开口刻蚀到第三聚合物层中,第三多个开口从第三聚合物层的顶部表面向下延伸到第一多个通孔;移除硬掩膜;将Ti/Cu的第三籽晶层溅射到第三聚合物层的顶部表面上;使用标准光刻工艺,将光刻胶层旋涂和图案化到第三籽晶层上;以及将第二高电导材料层电镀到光刻胶的表面上,并且进入到由光刻胶限定的开口区域中,接触第三籽晶层,并且限定包括第二多个触点的多个上部线圈构件,以及填充第三聚合物层中的第三多个开口,从而将第二高电导材料层耦合到第一多个接合触点。进一步地,该方法包含使用标准光刻胶剥离方法剥离光刻胶层,并且干法刻蚀所暴露的第一籽晶层;沉积第四聚合物层,接触第三聚合物层和第二高电导材料层,其中第四聚合物层包括从第四聚合物层的顶部表面向下延伸穿过第四聚合物层到第二高电导材料层的开口;在磁场(0.1-1T)存在的情况下,磁层经受第二退火(300-500C),其中第二退火进一步限定易轴/难轴;以及在形成于第四聚合物层中的开口中形成焊接凸块,接触第二高电导材料层。

在所描述的实施例中,修改是可能的,并且在要求保护的范围内其他实施例是可能的。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1