具有介电常数设计的原位电荷捕获材料的高温静电夹盘的制作方法

文档序号:11161501阅读:315来源:国知局
具有介电常数设计的原位电荷捕获材料的高温静电夹盘的制造方法与工艺

技术领域

本文所述的实施例总体上涉及用于形成半导体器件的方法和设备。更具体言之,本文所述的实施例总体上涉及用于在升高的温度下制造半导体器件的方法和设备。



背景技术:

可靠地生产纳米和更小的特征是半导体器件的下一代极大规模集成电路(VLSI)和超大规模集成电路(ULSI)的关键技术挑战之一。然而,随着电路技术的极限被推进,VLSI和ULSI互连技术的收缩尺寸已将额外的需求放在处理能力上。在基板上可靠地形成栅极结构对于VLSI和ULSI的成功及对于提高电路密度和单独基板与管芯的质量的持续努力是非常重要的。

为了降低制造成本,集成芯片(IC)制造商要求处理的每个硅基板有更高的产量和更好的器件良率与性能。在目前的发展下一些正被探索用于下一代器件的制造技术需要在高于300摄氏度的温度下进行处理,这可能会不期望地导致基板弯曲超过200um。为了防止这种过度弯曲,将需要提高夹紧力来使基板平坦并在膜沉积和器件处理的过程中消除弯曲。然而,存在于基板支撑组件上被用来夹紧基板的常规静电夹盘在高于300摄氏度的温度下会经历电荷泄漏,从而可能会降低器件良率和性能。此外,无夹持的膜沉积工艺在弯曲的晶片上显现背侧膜沉积,此举由于污染而大幅增加了光刻工具的停机时间。

因此,需要一种具有适合在高于300摄氏度的处理温度下使用的静电夹盘的改良的基板支撑组件,以及真空腔室与使用该基板支撑组件的方法。



技术实现要素:

提供了一种具有静电夹盘的改良的基板支撑组件以及使用该改良的基板支撑组件处理基板的方法。本文公开的静电夹盘具有高的击穿电压,同时在超过约300摄氏度的温度下的操作过程中大幅减少电压泄漏。

在一个示例中,提供一种基板支撑组件,该基板支撑组件包括基本上盘形的陶瓷主体,该陶瓷主体中具有设置在其中的电极。该陶瓷主体具有上表面、圆柱形侧壁,及下表面。该上表面配置为在真空处理腔室中将基板支撑在该上表面上。该圆柱形侧壁界定该陶瓷主体的外径,而该下表面被设置成与该上表面相对。将含硅和碳的层附着于该陶瓷主体的该上表面。该含硅和碳的层在重量上具有少于约5%的碳含量。

在另一个示例中,提供一种用于处理基板的方法,该方法包含以下步骤:在基板上沉积硅系材料,该基板被定位在真空腔室中的基板支撑组件上;从该真空腔室移出该基板;以及在该基板支撑组件上沉积约至的含硅和碳的材料,该含硅和碳的材料在重量上具有少于约5%的碳含量。

在另一个示例中,提供一种用于处理基板的方法,该方法包括以下步骤:当在真空处理腔室中的基板支撑组件中时预夹持该基板,其中预夹持包含在该真空处理腔室中使该基板暴露于含氦等离子体或少等离子体环境;在该基板上沉积材料层之前将该基板夹持于该基板支撑组件;解除对该基板的夹持;以及从高温真空腔室中移出该基板。

在又另一个示例中,提供一种真空腔室,该真空腔室包括具有内部容积的腔室主体、设置于该内部容积中的基板支撑组件以及隔离变压器。该基板支撑组件具有设置于其中的静电夹持电极。该隔离变压器被耦接到该静电夹持电极并可操作来防止该静电夹持电极与耦接至该静电夹持电极的电源之间的电流泄漏。

附图说明

为了详细了解上述实施例的特征的方式,可参照实施例得出以上简要概述的实施例的更特定的描述,实施例中的一些在所附附图中示出。然而应注意,附图仅描绘实施例的示例,并且因而不应被视为对实施例范围作限制,因本公开可认可其他同样有效的实施例。

图1为具有可以实施本公开的实施例的基板支撑组件的说明性真空处理腔室的剖视图。

图2示出具有静电夹盘的一个实施例的基板支撑组件的示意性侧视图。

图3描绘放大的静电夹盘的部分。

图4为在真空处理腔室中处理基板时使用基板支撑组件的方法的流程图。

图5为陈化(seasoning)操作的流程图,该陈化操作包括碳清洗方法,可以使用该碳清洗方法来将涂覆材料施加于基板支撑组件。

图6为在真空处理腔室中处理基板时使用基板支撑组件的方法的另一个流程图。

为了便于理解,已在可能处使用相同的附图标记来指称附图共有的相同元件。可以预期的是,可以将一个实施例的元件与特征有益地合并于其他实施例中而无需进一步详述。

然而,应当注意的是,附图只说明本公开公开的示例性实施例,因此不应将附图视为限制本公开的范围,因为本公开也可认可其他同等有效的实施例。

具体实施方式

提供了具有静电夹盘的改良的基板支撑组件及利用该改良的基板支撑组件处理基板的方法。本文公开的静电夹盘具有高的击穿电压,同时大幅降低在超过约300摄氏度的温度下的操作期间的电压泄漏。静电夹盘包括在超过约300摄氏度的温度下操作时抑制电荷从静电夹盘泄漏的电介质膜涂层和/或陈化处理。电介质膜具有约3至12的介电常数。可以调整介电常数,以控制电荷捕获以及修改在升高的温度下的夹紧/夹持力。本文还公开了利用该改良的基板支撑组件处理基板的方法。

图1示出具有基板支撑组件110的真空处理腔室100的一个实施例的示意性侧视图,基板118在基板支撑组件110上进行处理。处理腔室100可以是化学气相沉积(CVD)处理腔室、热丝化学气相沉积(HWCVD)处理腔室或其他用于在升高的温度下处理基板的真空腔室。

处理腔室100包括腔室主体105,腔室主体105具有顶部158、腔室侧壁140及耦接到地126的腔室底部156。顶部158、腔室侧壁140及腔室底部156界定内部处理区域150。腔室侧壁140可以包括基板移送端口152,以便移送基板118进出处理腔室100。基板移送端口152可被耦接到基板处理系统的移送室和/或其他腔室。

腔室主体105和处理腔室100的相关部件的尺寸没有限制,而且通常成比例地大于其中将处理的基板118的尺寸。基板尺寸的示例包括直径200mm、直径250mm、直径300mm及直径450mm等等。

在一个实施例中,将泵送装置130耦接到处理腔室100的底部156,以抽空并控制处理腔室100中的压力。泵送装置130可以是传统的粗抽泵(roughing pump)、鲁氏(roots)鼓风机、涡轮泵或其他适用于控制内部处理区域150中的压力的类似装置。在一个示例中,可以将处理腔室100的内部处理区域150的压力水平保持在低于约760托。

气体面板144通过气体管线167将工艺气体和其他气体供应到腔室主体105的内部处理区域150中。若需要的话,气体面板144可配置为提供一种或多种工艺气体源、惰性气体、不反应气体及反应气体。可以由气体面板144提供的工艺气体的示例包括、但不限于含硅(Si)气体、碳前体及含氮气体。含Si气体的示例包括富含Si或缺乏Si的氮化物(SixNy)和氧化硅(SiO2)。碳前体的示例包括丙烯、乙炔、乙烯、甲烷、己烷、己烷、异戊二烯及丁二烯等等。含Si气体的示例包括硅烷(SiH4)、四乙氧基硅烷(TEOS)。含氮和/或氧的气体的示例包括吡啶、脂族胺、胺、腈、一氧化二氮、氧、TEOS及氨等等。

喷淋头116被设置在处理腔室100的顶部158下方且被隔开置于基板支撑组件110上方。如此一来,当基板118被定位在基板支撑组件110上进行处理时,喷淋头116在基板118的顶表面104的正上方。从气体面板144提供的一种或多种工艺气体可以通过喷淋头116将反应物种供应到内部处理区域150中。

喷淋头116也用作用于将功率耦合到内部处理区域150内的气体的电极。可以预期的是,可以利用其他电极或装置将功率耦合到内部处理区域150内的气体。

在图1绘示的实施例中,可以通过匹配电路141将电源143耦接到喷淋头116。由电源施加到喷淋头116的RF能量被感应耦合到置于内部处理区域150中的工艺气体,以在处理腔室100中维持等离子体。替代电源143或除了电源143之外,可以将功率电容耦合到处理区域150中的工艺气体,以在处理区域150内维持等离子体。电源143的操作可以由控制器(未示出)控制,控制器也控制处理腔室100中其他部件的操作。

如以上讨论的,基板支撑组件110被设置在处理腔室100的底部156上方并在沉积过程中固持基板118。基板支撑组件110包括静电夹盘(图2中以附图标记220标识),用于夹持被设置在静电夹盘上的基板118。在处理过程中,静电夹盘(ESC)220将基板118固定于基板支撑组件110。ESC 220可以由电介质材料形成,例如陶瓷材料,诸如氮化铝(AlN)等适当的材料。ESC220使用静电吸引来将基板118固持于基板支撑组件110。ESC 220包括夹持电极106,夹持电极106通过隔离变压器112连接到电源114,隔离变压器112设置在电源114和夹持电极106之间。隔离变压器112可以是电源114的一部分或与电源114分离,如图1中的虚线所示。电源114可以将约50伏和约5000伏之间的夹盘电压施加到夹持电极106。ESC 220可以具有附着到ESC 220的涂层或层,该涂层或层设置为在高于约300摄氏度的操作温度下抑制电流泄漏。

图2为基板支撑组件110的示意性侧视图。基板支撑组件110具有顶表面212和侧面214。基板支撑组件110包括ESC 220。ESC 220具有由电介质材料形成的主体222,电介质材料例如陶瓷材料,诸如氮化铝(AlN)或其他适当的材料。此外,基板支撑组件110或ESC 220的主体222可以可选地包括加热器240、冷却基座(未示出)或设施板材260中的一种或多种。

主体222具有顶表面224,在处理过程中基板118被固定在顶表面224上。图3示出静电夹盘的一部分的特写。暂时来到图3,顶表面224具有被沟槽302分隔的非常平坦区域310。或者,ESC 220可以放弃平坦区域310并依赖被形成在包围沟槽302的高区域中的凹坑304。平坦区域310和沟槽302可以在ESC 220中形成并被复制在涂覆材料230中。或者,平坦区域310和沟槽302可以单独地在涂覆材料230中形成。平坦区域310可以由ESC 220的表面212上的抛光岛和/或涂覆材料230形成。

在沟槽302存储用于夹持力的电荷的同时,平坦区域310或凹坑304为基板118提供支撑和接触。夹持力随着凹坑304或平坦区域310提供的有效接触面积312增加而增加。有效接触面积312可以通过调整凹坑304的数量、粗糙化ESC 220的表面212或增加平坦区域310的数量或尺寸而增加。可以确定平坦区域310相对于沟槽302的最佳比率来将夹持力最大化,此举将提高有效夹持电压。提高有效夹持电压允许实际夹持电压降低。此外,顶表面224的沟槽302相对于平坦区域310的配置通过更均匀地分配夹持负载来最小化高夹持力下的背侧基板损伤。

返回参照图2,加热器240可以包括主加热器242。主加热器242可以是电阻加热器或其他适当的加热器。可以使电源246耦接主加热器242,以控制基板支撑组件110的温度,并因此控制被设置在基板支撑组件110上的基板118的温度。主加热器242可配置为将基板支撑组件110的顶表面212加热到介于约100摄氏度至约700摄氏度之间,诸如约300摄氏度至约400摄氏度。

夹持电极106被嵌入ESC 220的主体222内。电源114可以与系统控制器通讯,用以通过将DC电流导引到夹持电极106来控制夹持电极106的操作,用于夹持基板118及可选地解除对基板118的夹持。电源114可以将范围从约50DVC至约5000DVC的夹持电压供应到ESC 220的夹持电极106,用于夹持基板118。

在高于约300摄氏度的温度下使用的过程中,陶瓷材料(例如用以制造ESC 220的本体222的那些材料)可能不利地允许DC电流通过ESC 220的主体222泄漏到地。DC电流的来源可以是主加热器242和/或夹持电极106。在夹持电极106和电源114之间存在的隔离变压器112基本上防止DC电流在夹持电极106和地之间流动。可选地,可以在主加热器242和电源114之间设置第二隔离变压器112,以基本上防止DC电流在主加热器242和地之间流动。在较少的电流泄漏的情况下,需要较少的功率来驱动夹持电极106和主加热器242。

主体222的顶表面224至少包括选择用以在高于300摄氏度的温度下抑制DC电流在夹持电极106和基板118之间流动的材料涂层或层。减少和/或防止DC电流在夹持电极106和基板118之间流动可防止基板器件损伤、促进工艺均匀性及提高组件良率。此外,减少和/或防止夹持电极106和基板118之间的电流泄漏降低了用以产生给定量的夹持力的功率量。因此,当在高于300摄氏度的温度下操作时,ESC 220利用与类似的传统静电夹盘相比较小的功率产生了较大的夹持力。因此,与类似的传统静电夹盘相比,在诸如300摄氏度或更高的高温下,可以利用较少的功率消耗并伴随较低的由于电流泄漏的基板损伤风险来产生大的夹持力以基本上使基板118平坦。

例如,可以将涂覆材料230至少形成在ESC 220的主体222的顶表面224上。也可以将涂覆材料230形成在基板支撑组件110的侧面214和/或ESC 220的主体222的侧面上。涂覆材料230可以是选择用以基本上减少DC电流通过主体222泄漏到基板118的电介质材料。可以选择涂覆材料230的成分,以在ESC 220处于约300摄氏度和约700摄氏度之间的温度时将泄漏限制于少于或等于约25mA,例如少于或等于约10mA。在一个示例中,涂覆材料230可以由含硅和碳的材料形成。

例如使用陈化工艺,涂覆材料230可以被设置在处理腔室外的基板支撑组件110上,和/或在处理腔室原位被周期性地施加于基板支撑组件110。涂覆材料230可以通过化学气相沉积工艺、喷涂工艺、浸入工艺、热工艺施加或以另一种适当的方式沉积形成。涂覆材料230可以可选地处于被设置在基板支撑组件110上方的衬垫的形式。

当在处理腔室外被沉积为涂层时,涂覆材料230可以具有约1μm至约1000μm的厚度。当以被设置在基板支撑组件110上方的衬垫的形式存在时,涂覆材料230可以具有约至约的厚度。当在处理腔室例如通过陈化原位沉积时,涂覆材料230可以具有约至约的厚度,涂覆材料230可以被施加在现存的涂覆材料230层上方。

涂覆材料230具有至少约100MW/cm的高击穿电压。例如,涂覆材料230可以具有介于约100MW/cm和约600MW/cm之间的高击穿电压。在允许夹持电极106为了快速夹持基板和解除对基板的夹持而更快累积和释放电荷的同时,高的击穿电压允许更高的夹盘电压用于增加夹持力。

涂覆材料230可以可选地掺杂有碳。例如,涂覆材料230可以包含掺杂有含碳材料的硅系材料,其中涂覆材料230的碳含量在重量上少于约5%。已经证明使用原位沉积厚度介于约至约的这种材料在升高的温度下具有良好的夹持性能。

涂覆材料230可以使用含硅(Si)前体气体、碳前体及含氮和氧的前体气体来沉积。含Si气体的示例包括富含Si或缺乏Si的氮化物(SixNy)和氧化硅(SiO2)。碳前体的示例包括丙烯、乙炔、乙烯、甲烷、己烷、己烷、异戊二烯及丁二烯等等。含Si气体的示例包括硅烷(SiH4)、四乙氧基硅烷(TEOS)。含氮气体的示例包括吡啶、脂族胺、胺、腈及氨等等。富含或缺乏Si的氮化硅(SixNy)和氧化硅(SiO2)膜提供介电常数调整,以允许在静电夹持基板期间控制电荷捕获。涂覆材料230可以由一个或更多个膜层形成。

涂覆材料230也可以根据它的折射率和介电性质来被选择。评估涂覆材料230的折射率与温度相关的漏电流。较低的折射率可以对应更好的(即较高的)介电常数。可以使用电容(C)电压(V)测量(C-V测量)来确定电荷泄漏。然后可以选择具有高介电常数和低电压泄漏率的涂覆材料230。

此外,在较高的温度下,即高于约300摄氏度的温度下,涂覆材料230还允许近乎瞬间的电荷消散来解除对基板的夹持。调整SixNy和SiO2膜中的碳掺杂量允许控制电荷泄漏,以有助于在ESC 220中快速解除夹持。

涂覆材料230可以在各种等离子体处理步骤期间被均匀地涂覆(即陈化处理)到基板支撑组件110上,等离子体处理步骤例如硬掩模沉积、硅沉积、氮化物沉积、氧化物沉积及蚀刻等等。背侧膜沉积、错误等离子体耦合、等离子体阻抗损失及膜厚度变化可以被评估并使用涂覆材料230减轻。可以调整涂覆材料230,以允许在夹持的基板上形成的膜性质的一致性,其中夹持的基板可以具有从约(-)400um(即压缩)至(+)400um(即拉伸)的弯曲。

图4为在真空处理腔室(诸如上述的处理腔室100)中处理基板118时使用基板支撑组件110的方法400的流程图。方法400适用于在基板支撑组件110处在超过300摄氏度的温度下时处理基板。方法400通过在基板上沉积材料层而开始于框402,该基板被定位在真空腔室中的基板支座上。该材料层可以是硅系材料等等。该硅系材料可以使用化学气相沉积工艺或其他适当的工艺沉积。硅系材料可以是一层或更多层的非晶硅、多晶硅、微晶硅、氮化硅、氧化硅及氧氮化硅等等。在框404处,将基板从真空腔室移出。

在框406,在基板已被从处理腔室移出时将涂覆材料230沉积在基板支撑组件上。涂覆材料230可以具有约至的厚度。涂覆材料230可以包含含硅和碳的材料,例如掺杂碳的硅系材料,其中碳含量在重量上少于约5%。

可以在在框402处沉积硅系材料及在框404处从基板支撑组件移出基板之后的碳清洗操作期间原位沉积涂覆材料230。可以在若干碳清洗操作之后原位执行涂覆材料230的施加。

图5为陈化操作500的流程图,陈化操作500包括可被用来施加涂覆材料230的碳清洗方法。例如,如在参照图4描述的方法400中在框406所述,陈化操作500可被用于在基板支撑组件上沉积涂覆材料230。

陈化操作500可以包括数个操作,其中的一部分的操作可用于清洗处理腔室和ESC。陈化操作500可以移除一些先前施加于基板支撑组件110的涂覆材料230。

陈化操作500通过执行碳清洗工艺以从处理腔室的内部去除杂散的碳沉积物而开始于框501。在框501的碳清洗工艺包括抽空处理腔室,以去除残余的工艺气体。在一个示例中,可以将处理腔室的内部容积可选地保持在约550摄氏度并在约0托下。将氩(Ar)气引入内部容积,例如以约2000sccm至约12000sccm(诸如约5600sccm)的流动速率。利用被耦合到喷淋头的功率从Ar气形成等离子体。例如,可以将约10000瓦特的功率耦合到Ar气以将等离子体维持在处理腔室中。可以将氟化氮(NF3)与Ar气的流动结合提供到处理腔室中。例如,可以将NF3以约100sccm至约500sccm(诸如约200sccm)的流动速率提供到处理腔室中。在某些情况下,诸如在清洗过程中,NF3的流量甚至可高达约4000sccm。可以将被提供到处理腔室的NF3的流动速率增加到例如高达约800sccm,同时将内部容积内的压力升高到约5托持续约2分钟。然后基本上关闭NF3的流动,而保持Ar气的流动,在此期间处理腔室被抽空到例如约0托。在处理腔室被抽空到足够低压后,关闭Ar气的流动。

在框502,将新的涂覆材料层沉积在基板支座上。新的涂覆材料层可以补偿可能在碳清洗工艺期间被去除的任何涂覆材料。在框502期间可以可选地将处理腔室的内部容积保持在约550摄氏度和约2.7托下。新的涂层是通过使一氧化二氮(N2O)以例如约2000sccm至约15000sccm(诸如约5000sccm)的流动速率流入处理腔室来施加。大约在预定的时段之后,例如约15秒之后,将硅烷(SiH4)的流动以例如约100sccm至约1500sccm(诸如550sccm)与N2O的流动一起引入处理腔室中。在预定的时段之后,例如约5秒之后,将大约的功率施加到喷淋头以在处理腔室容积中保持等离子体,用于在基板支撑组件上沉积涂覆材料。在一个示例中,使用约100至约1500瓦(诸如约500瓦)以13.56MHz的频率来维持处理腔室内的等离子体。在预定的时段之后,关闭SiH4的流动和到喷淋头的功率。在停止SiH4的流动之后也停止N2O的流动,并将处理腔室抽空到压力约为0托。

图6图示用于在真空腔室的基板支撑组件上处理基板的方法600。该方法对于在静电夹盘(ESC)上处理具有大于200um的弯曲和大的中心到边缘的温度分布的基板是更有效的。该基板支撑组件具有以上讨论的涂覆材料。方法600通过将基板预夹持在设置在真空腔室中的基板支座上而开始于框601。在预夹持工艺的过程中,使基板在约3-5托的压力下暴露于包含氦(He)的气体。包含氦(He)的气体可以是无氩(Ar)的。以约500sccm至约5000sccm的速率提供进入真空腔室的He流。可以在施加等离子体或没有施加等离子体的情况下使基板暴露于气体,从而将基于气体的等离子体对真空腔室造成的损伤最小化。预夹持处理允许在基板支座具有高达约20摄氏度的中心到边缘温度分布的环境中夹持弯曲的基板。

在框602,通过在真空腔室中建立了稳定的预夹持气体流动和压力之后将基板夹持至基板支撑组件,继续预夹持基板。可以通过向设置在ESC中的夹持电极施加约100V至约1000V的夹持电压来将基板夹持于基板支撑组件。在一个实施例中,在利用ESC电压接通来预夹持的过程中,施加约13.56MHz的约50W至约300W的RF功率以维持处理腔室内的等离子体。基于RF的等离子体增强基板和涂覆表面之间的电荷转移以产生夹持力。在另一个实施例中,在利用ESC电压接通来预夹持的过程中不施加基于RF的等离子体。可以将该基板支撑组件保持在高于约300摄氏度的温度下。框601和602描述的基板的预夹持结束于材料层沉积在基板上。

在框603,在基板夹持在基板支撑组件上的同时,材料层沉积在基板上。该材料层可以是硅系或碳系材料等等。硅系材料可以使用化学气相沉积工艺或其他适当的工艺沉积。硅系材料可以是一层或更多层的非晶硅、多晶硅、微晶硅、氮化硅、氧化硅及氧氮化硅等等。或者,在框603,可以例如使用适当的蚀刻技术,从基板蚀刻材料层。在框603,基板被保持在高于约300摄氏度的温度下。

经涂覆的基板支撑组件允许基板在高温下被夹持而没有明显的电荷泄漏,同时在未使用过高的电压的情况下提供足够的力来使基板平坦。因此,在真空腔室内,经涂覆的基板支撑组件增强在超过300摄氏度(诸如高达至少约800摄氏度)的温度下在具有高密度的电路中沉积纳米和更小特征的能力。

在框603的工艺完成之后,在框604处,将基板从基板支撑组件解除夹持。在解除对基板的夹持的同时,可以使用等离子体来帮助消散夹持力。在一个示例中,在解除夹持的过程中使用的等离子体可以由He形成。可以使He以约3000至约4000sccm的速率流入处理腔室。可以通过将约200瓦至约250瓦的能量提供到喷淋头来从He形成等离子体。当断开夹持电压时,通过涂覆材料的碳掺杂所得到的高击穿电压大幅加速夹持力的消散,从而允许更快的解除夹持时间,以得到更高的基板产量。

在框605,将基板从真空腔室移出。伴随着基板被从真空腔室移出,可以如上所述在真空腔室原位清洗和/或陈化ESC。

因此,当在超过约300摄氏度的温度下操作时,本文所述的方法和设备有利地减少了静电夹盘的电压泄漏。因此,ESC在该等温度下对于夹持和使基板平坦可以是有用的。还描述了在具有腔室主体的真空腔室中的基板支撑组件和隔离变压器。该腔室主体具有其中设有基板支撑组件的内部容积。基板支撑组件具有被耦接到隔离变压器的静电夹持电极。隔离变压器有利地减少电流泄漏,从而允许使用较低的功率来夹持基板。

虽然前述内容针对本公开的实施例,但可在不偏离本公开的基本范围的情况下设计出其他与进一步的实施例,且本公开的范围是由所附权利要求书确定。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1