外延硅晶片的制造方法及气相沉积装置与流程

文档序号:11334374阅读:197来源:国知局
外延硅晶片的制造方法及气相沉积装置与流程

本发明涉及一种外延硅晶片的制造方法及气相沉积装置。



背景技术:

以往,已知有制造外延硅晶片的气相沉积装置(例如,参考专利文献1)。

专利文献1中所记载的装置中,在使设为氮气气氛的晶片移载室的压力高于设为氢气气氛的反应室的压力的状态下,开放活动隔板机构而使晶片移载室的氮气流入到反应室中。并且,在将晶片移载室的硅晶片载置于反应室之后,关闭活动隔板机构而停止向反应室供给氮气,从而在硅晶片上形成硅外延膜。

以往技术文献

专利文献

专利文献1:日本特开2013-232455号公报。



技术实现要素:

发明要解决的技术课题

如专利文献1中所记载的装置中,设有经由排气管对反应室进行排气的排气装置。排气管内有时存在外延膜的原料即作为附着物的硅的产物。

由于在排气管内存在产物的状态下,将晶片移载室的硅晶片载置于反应室中,因此若在晶片移载室的压力高于反应室的压力的状态下开放活动隔板机构,则晶片移载室的氮气会流入到反应室中,因此有时晶片移载室的压力变为低于反应室的压力。若晶片移载室的压力低于反应室的压力,则即使利用排气装置对反应室进行排气,也会在排气管内产生欲提高晶片移载室的压力的气体的流动,排气管内的产物有可能流入到反应室中。

流入到反应室中的产物附着于硅晶片上,有可能成为发生lpd(lightpointdefect:光点缺陷)的原因。

本发明的目的在于提供一种外延硅晶片的制造方法及气相沉积装置,所述制造方法能够得到lpd密度较小的高品质的外延硅晶片。

用于解决技术课题的手段

本发明人等重复进行深入研究的结果,着眼于将晶片移载室的硅晶片载置于反应室之后的反应室的压力变化,完成了本发明。

即,本发明的外延硅晶片的制造方法,其使用气相沉积装置在所述硅晶片上形成外延膜,所述气相沉积装置具备:反应室,供外延膜生长;晶片移载室,设置成经由能够密闭并开放所述反应室的连通部,能够将硅晶片搬送至所述反应室中;及排气装置,经由与所述反应室连接的排气管,对所述反应室进行排气,所述外延硅晶片的制造方法的特征在于,在所述晶片移载室的压力高于所述反应室的压力且所述排气装置正在对所述反应室进行排气的状态下,打开所述连通部,将所述晶片移载室内的硅晶片搬送至所述反应室之后,关闭所述连通部之后使所述反应室的压力相比于关闭所述连通部的时点的压力暂时上升之后下降,由此将所述排气管内的附着物移送至所述排气装置侧之后,开始形成所述外延膜。

本发明的外延硅晶片的制造方法中,优选通过设置于所述排气管内的排气调整部,使所述反应室的压力上升。

本发明的外延硅晶片的制造方法中,优选在关闭所述连通部之后,无需变更所述排气装置的驱动状态而由所述排气调整部调整所述反应室的排气,由此使所述反应室的压力上升之后,伴随所述反应室的压力与比所述排气调整部更靠所述排气装置侧的压力之差、及利用了所述排气装置的所述反应室的排气,将所述排气管内的附着物移送至所述排气装置侧。

本发明的外延硅晶片的制造方法中,优选所述排气调整部具备:第1调整部,形成为所述反应室侧的第1开口大于所述排气装置侧的第2开口的锥台筒状;及第2调整部,设置于比所述第1调整部更靠所述排气装置侧,且形成为所述反应室侧的第3开口大于所述排气装置侧的第4开口的锥台筒状,所述排气调整部构成为如下:当将所述排气管的内径、所述第1开口的直径及所述第3开口的直径设为a、将所述第2开口的直径设为b、将所述第4开口的直径设为c时,b/a及c/a为0.33以下,b/a及c/a中的至少一个为0.26以下,(b+c)/a为0.59以下。

另外,本发明中的所谓“排气管的内径”,排气管为圆筒状时是指开口的直径,角筒状时是指开口的最大直径与最小直径的平均值。同样地,所谓“第1~第4开口的直径”,例如第1、第2调整部为圆锥台筒状且开口为圆形时是指开口的直径,例如为角锥台筒状且开口为多边形时是指开口的最大直径与最小直径的平均值。

本发明的气相沉积装置,其在硅晶片上形成外延膜,并且具备:反应室,供外延膜生长;晶片移载室,设置成经由能够密闭并开放所述反应室的连通部,能够将硅晶片搬送至所述反应室;搬送部,将所述晶片移载室内的所述硅晶片搬送至所述反应室中;及排气管,与所述反应室连接,且构成为能够通过排气装置的驱动对所述反应室进行排气,所述气相沉积装置的特征在于,具备设置于所述排气管内并调整所述反应室的排气的排气调整部,所述排气调整部具备:第1调整部,形成为所述反应室侧的第1开口大于所述排气装置侧的第2开口的锥台筒状;及第2调整部,设置于比所述第1调整部更靠所述排气装置侧,且形成为所述反应室侧的第3开口大于所述排气装置侧的第4开口的锥台筒状,所述排气调整部形成为如下:将所述排气管的内径、所述第1开口的直径及所述第3开口的直径设为a、将所述第2开口的直径设为b、将所述第4开口的直径设为c时,满足以下条件:b/a及c/a为0.33以下,b/a及c/a中的至少一个为0.26以下,(b+c)/a为0.59以下。

根据本发明,能够得到lpd密度较小的高品质的外延硅晶片。

附图说明

图1是表示本发明的一实施方式所涉及的气相沉积装置的示意图。

图2是表示所述一实施方式所涉及的气相沉积装置的一部分的示意图。

图3是表示改变本发明的实施例所涉及的挡板形状时的实验结果的图。

图4是表示所述实施例的合格实验例中的反应室的压力变化的图表。

图5是表示所述实施例的不合格实验例中的反应室的压力变化的图表。

图6是表示所述实施例的不合格实验例中的反应室的压力变化的图表。

具体实施方式

参考附图对本发明的一实施方式进行说明。

如图1所示,气相沉积装置1具备:反应室2,供外延膜生长;晶片移载室4,设置成经由连通部3能够将硅晶片w搬送至反应室2;开闭部5,密闭并开放连通部3;搬送部6,将晶片移载室4内的硅晶片w搬送至反应室2;及圆筒状的排气管8,与反应室2连接,且构成为能够通过排气装置7的驱动对反应室2进行排气。

反应室2连接有向该反应室2内供给氢气(h2)的氢气供给部21。连通部3上连接有向晶片移载室4内供给氮气(n2)的氮气供给部31。

当在硅晶片w上形成硅外延膜时,通常在晶片移载室4的压力高于反应室2的压力的状态下,开闭部5打开连通部3,以免反应室2内的氢气流入到晶片移载室4内。并且,搬送部6将晶片移载室4的硅晶片w载置于配置在反应室2内的基座22上。

打开连通部3时,晶片移载室4的氮气流入到反应室2中,但通过关闭连通部3,氮气停止供给至反应室2中,在成为规定的氢气气氛下的压力的时点,使反应室2内升温至规定温度,在氢气气氛下进行烘烤处理。然后,将氢气作为载气向反应室2内供给三氯硅烷(sihcl3)等原料气体,以规定的温度、时间进行外延生长处理。在外延层达到规定厚度之后,停止供给原料气体,切换成仅供给载气。

在外延生长处理结束之后,将载置于基座22上的外延硅晶片搬出装置外,由此得到外延硅晶片。

在将晶片移载室4内的硅晶片w搬入反应室2内时,连通部3已被打开时,反应室2和排气管8的气体通过由排气装置7的驱动而产生的排气(以下,有时称为第1排气力)以及晶片移载室4与反应室2的压力差(以下,有时称为第2排气力)被移送至排气装置7侧。并且,若连通部3关闭,则晶片移载室4与反应室2被阻隔,因此不会产生第2排气力,反应室2和排气管8的气体仅通过第1排气力被移送至排气装置7侧。即,反应室2的压力在连通部3关闭之后不会上升而立即下降,因此朝向排气装置7排出排气管8内所存在的产物的效果减弱,产物流入到反应室2内的可能性增高。

另一方面,在连通部3关闭之后,将压力调整为使反应室2的压力相比于关闭连通部3的时点的压力暂时上升之后下降,由此在反应室2与比该反应室2更靠排气装置7侧的位置之间产生压力差,通过该压力差(以下,有时称为第3排气力)和第1排气力,反应室2和排气管8的气体以比连通部3打开时更强的流动被移送至排气装置7侧。通过该较强的流动,能够将排气管8内的产物移送至远离反应室2的位置。

如图2所示,该连通部3关闭之后的反应室2的压力调整能够通过在排气管8内设置调整反应室2的排气的排气调整部9来实现。具体而言,能够通过在排气管8内设置作为第1调整部的上游挡板91和作为第2调整部的下游挡板92来进行压力调整。

这种结构中,排气管8例如具备第1配管81、第2配管82及第3配管83。

上游挡板91、下游挡板92、第1配管81~第3配管83例如由具有刚性及耐酸性的不锈钢形成。第1配管81及第3配管83形成为圆筒状。第2配管82形成为折皱状,且构成为能够伸缩。另外,第2配管82也可以是圆筒状配管。

上游挡板91形成为反应室2侧的第1开口91a大于排气装置7侧的第2开口91b的圆锥台筒状。上游挡板91的反应室2侧的端部被第1配管81和第2配管82夹持。第1开口91a的直径设定成与第1配管81的内径及第2配管82的内径相同的大小。

下游挡板92设置于比上游挡板91更靠排气装置7侧。下游挡板92形成为反应室2侧的第3开口92a大于排气装置7侧的第4开口92b的圆锥台筒状。下游挡板92的反应室2侧的端部被第2配管82和第3配管83夹持。第3开口92a的直径设定成与第2配管82的内径及第3配管83的内径相同的大小。

通过这种结构,在排气管8上设置分别捕集从排气装置7侧流动而来的产物的上游捕集部93和下游捕集部94。上游捕集部93由上游挡板91的外周面与第2配管82的内周面之间的区域构成,下游捕集部94由下游挡板92的外周面与第3配管83的内周面之间的区域构成。

尤其,优选第1配管81~第3配管83的内径a、第2开口91b的内径b及第4开口92b的内径c满足以下的条件(1)~(3)全部。

(1)b/a及c/a为0.33以下

(2)b/a及c/a中的至少一个为0.26以下

(3)(b+c)/a为0.59以下

另外,上游挡板91及下游挡板92的形状只要满足上述条件(1)~(3)全部,则并没有特别限定,可以是圆锥台筒状,也可以是角锥台筒状。也可以是上游挡板91及下游挡板92中的一个为圆锥台筒状且另一个为角锥台筒状。并且,也可以是上游挡板91的第1开口91a为圆形且第2开口91b为多边形,关于下游挡板92,第3开口92a、第4开口92b形状也可以不同。

为了抑制由产物引起的堵塞,第2开口91b及第4开口92b的直径优选为6mm以上。上游挡板91的高度d优选45mm以上且69mm以下,下游挡板92的高度e优选25mm以上且37mm以下。

从上游挡板91的下端至下游挡板92的上端为止的距离f优选41mm以上且65mm以下。

第1配管81~第3配管83可以是圆筒状,也可以是角筒状。

如上所述,上述实施方式中,将晶片移载室4内的硅晶片w搬送至反应室2,在关闭连通部3之后,使反应室2的压力暂时上升之后下降,由此将排气管8内的产物移送至排气装置7侧。

因此,与关闭连通部3之后未使反应室2的压力上升而下降的结构相比,能够将产物移送至远离反应室2的位置,能够抑制产物流入到反应室2内。其结果,能够得到lpd密度较小的高品质的外延硅晶片。

尤其,由于将排气调整部9由上游挡板91及下游挡板92构成,因此能够通过将这些形成为规定形状的简单的方法来得到lpd密度较小的高品质的外延硅晶片。

[其他实施方式]

另外,本发明并不仅限于上述实施方式,在不脱离本发明宗旨的范围内能够进行各种各样的改良及设计的变更等。

即,设为由第1配管81~第3配管83夹持上游挡板91及下游挡板92的结构,但也可以设为容纳在配管中进行固定的结构,也可以与配管一体地形成。

作为排气调整部9,可以代替上游挡板91及下游挡板92而设置在设有它们的位置进行开闭的阀等开闭机构。在该情况下,可以通过由开闭机构在与连通部3关闭的时刻大致相同的时刻关闭排气管8的流路而使反应室2的压力暂时上升,并通过打开排气管8的流路而利用比连通部3打开时更强的气体的流动,将产物移送至排气装置7侧。

作为关闭连通部3之后使反应室2的压力暂时上升之后下降的方法,也可以是不设置排气调整部9而变更排气装置7的驱动状态的方法。

实施例

以下,对本发明的实施例进行说明。

首先,准备如图3所示那样设定了第1开口91a的内径a、第2开口91b的内径b、第3开口92a的内径a、第4开口92b的内径c、高度d、高度e的上游挡板91、下游挡板92。构成排气管8的第1配管81~第3配管83的内径a设为与第1开口91a及第3开口92a的内径a相同的31mm。并且,准备直径为300mm的硅晶片w。

并且,将第2开口91b的内径b为12mm且高度d为45mm的上游挡板91和第4开口92b的内径c为12mm且高度e为25mm的下游挡板92配置于如图1所示的气相沉积装置1的排气管8上,并在以下条件下制造出多个外延硅晶片(实验例1)。

首先,在晶片移载室4的压力高于反应室2的压力的状态下,打开连通部3而使晶片移载室4的氮气流入到反应室2中。然后,将晶片移载室4的硅晶片w载置于反应室2之后,关闭连通部3,停止向反应室2供给氮气,从而在硅晶片w上形成了硅外延膜。另外,从打开连通部3之前至外延膜形成结束为止期间,不变更排气装置7的驱动状态(排气状态)。并且,如以下表1所示,反应室2及晶片移载室4各自的压力、排气装置7的排气状态等设为与一般的外延硅晶片的制造条件相同。另外,表1中,slm(standardliter/min:每分钟标准升)是指以升表示1atm(1.013×105pa)、0℃下每分钟的流量的单位。

[表1]

并且,作为实验例2~24,配置图3所示的条件的上游挡板91、下游挡板92,在各实验例中,在与实验例1相同的条件下制造出多个外延硅晶片。另外,实验例11、23中未配置下游挡板92,实验例12、24中未配置上游挡板91。

接着,利用以下条件对实验例1~24中制造出的外延硅晶片的lpd进行了评价。

[lpd评价条件]

使用装置:表面检查装置(sp-2:klatencor公司制)

测定对象:尺寸250nm以上的lpd

将每片外延硅晶片的lpd的平均个数示于图3。并且,将lpd的平均个数小于0.1个的情况设为合格(ok),将0.1个以上的情况设为不合格(ng)来评价了品质。将该结果示于图3。

如图3所示,可知实验例6、8、9、10、18、20、21、22(以下,有时将该实验例统称为合格实验例)的品质为合格水平(高品质)。并且,可知实验例1~5、7、11~17、19、23、24(以下,有时将该实验例统称为不合格实验例)的品质为不合格水平(不是高品质)。

并且,根据该结果可知,为了得到lpd密度较小的高品质的外延硅晶片,只要第1配管81~第3配管83的内径a、第2开口91b的内径b及第4开口92b的内径c满足以下的条件(1)~(3)全部即可。

(1)b/a及c/a为0.33以下

(2)b/a及c/a中的至少一个为0.26以下

(3)(b+c)/a为0.59以下

并且,在上述实验例1~24中,打开连通部3而使晶片移载室4的氮气流入到反应室2中,将硅晶片w载置于反应室2之后,通过压力传感器测定出关闭连通部3之后的反应室2的压力变化。

将合格实验例的结果示于图4,将不合格实验例的结果示于图5、图6。

另外,图4~图6的纵轴表示将连通部3被关闭时的压力设为1时的比率。

如图4~图6所示,可知合格实验例中,反应室2的压力在连通部3被关闭之后相比于该关闭的时点的压力暂时上升之后下降,不合格实验例中,连通部3被关闭之后不上升而立即下降。另外,图3中,“过冲(overshoot)”是指连通部3被关闭之后,反应室2的压力暂时上升之后下降的现象。

符号说明

1-气相沉积装置,2-反应室,3-连通部,4-晶片移载室,6-搬送部,7-排气装置,8-排气管,9-排气调整部,91-上游挡板(第1调整部),92-下游挡板(第2调整部),91a-第1开口,91b-第2开口,92a-第3开口,92b-第4开口,w-硅晶片。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1