天线结构的制作方法

文档序号:15453147发布日期:2018-09-15 00:27阅读:124来源:国知局

本发明涉及一种天线结构,特别涉及一种可涵盖移动通信频带的天线结构。



背景技术:

随着移动通信技术的发达,移动装置在近年日益普遍,常见的例如:手提式计算机、移动电话、多媒体播放器以及其他混合功能的携带型电子装置。为了满足人们的需求,移动装置通常具有无线通信的功能。有些涵盖长距离的无线通信范围,例如:移动电话使用2g、3g、lte(longtermevolution)系统及其所使用700mhz、850mhz、900mhz、1800mhz、1900mhz、2100mhz、2300mhz以及2500mhz的频带进行通信,而有些则涵盖短距离的无线通信范围,例如:wi-fi、bluetooth系统使用2.4ghz、5.2ghz和5.8ghz的频带进行通信。

依据各品牌大厂的研究方向,次世代新兴的移动装置很可能会是“穿戴式装置(wearabledevice)”。例如,手表、眼镜,甚至是任何随身用品,都有机会在未来具有无线通信功能。然而,穿戴式装置的内部空间非常狭小,往往不足以容纳用于无线通信的天线,故如何设计一种小尺寸、宽频带的天线结构,将成为设计者的一大挑战。

因此,需要提供一种天线结构来解决上述问题。



技术实现要素:

在较佳实施例中,本发明提供一种天线结构,该天线结构包括:一接地组件;以及一金属环圈,该金属环圈包括:一主辐射部,该主辐射部具有一馈入点、一第一短路点,以及一第二短路点,其中该第一短路点和该第二短路点皆耦接至该接地组件,而其中该馈入点大致介于该第一短路点和该第二短路点之间;以及一浮接辐射部,该浮接辐射部邻近于该主辐射部,并与该接地组件和该主辐射部皆分离;其中该接地组件大致由该金属环圈所包围。

在一些实施例中,该主辐射部具有互相远离的一第一端和一第二端,该第一短路点位于该主辐射部的该第一端,而该第二短路点位于该主辐射部的该第二端。

在一些实施例中,该浮接辐射部具有互相远离的一第一端和一第二端,该浮接辐射部的该第一端与该主辐射部的该第一端之间形成一第一耦合间隙,而该浮接辐射部的该第二端与该主辐射部的该第二端之间形成一第二耦合间隙。

在一些实施例中,该天线结构涵盖一操作频带,而该操作频带介于2403mhz至2483.5mhz之间。

在一些实施例中,该主辐射部包括一辐射支路和一调整支路,该辐射支路介于该馈入点和该第二短路点之间,该调整支路介于该馈入点和该第一短路点之间,该辐射支路作为该天线结构的一主要共振路径,而该调整支路是用于微调该天线结构的阻抗匹配。

在一些实施例中,该辐射支路沿着该接地组件的一边缘作延伸,使得该辐射支路和该接地组件之间形成一槽孔区域。

在一些实施例中,该槽孔区域的长度大致等于该操作频带的中心频率的1倍波长。

在一些实施例中,该调整支路的长度小于该操作频带的中心频率的0.25倍波长。

在一些实施例中,该浮接辐射部作为该主辐射部的一指向器,使得该天线结构能提供近似全向性的辐射场型。

在另一较佳实施例中,本发明提供一种天线结构,该天线结构包括:一接地组件;以及一金属环圈,该金属环圈具有一馈入点和一短路点,其中该短路点耦接至该接地组件;其中该接地组件大致由该金属环圈所包围。

在一些实施例中,当该天线结构被激发时,该金属环圈上将产生一电流零点。

在一些实施例中,该金属环圈包括一辐射支路和一调整支路,该辐射支路介于该馈入点和该电流零点之间,该调整支路介于该馈入点和该短路点之间,该辐射支路作为该天线结构的一主要共振路径,而该调整支路是用于微调该天线结构的阻抗匹配。

本发明提出一种新颖的天线结构,与传统设计相比,本发明至少具有小尺寸、宽频带、低成本,以及低制造复杂度等优势。另外,本发明的天线结构可与装置的金属外观组件互相整合,故亦具有美化装置外形以及提升装置时尚感的功效,是以本发明很适合应用于各种随身物品或穿戴式装置当中。

附图说明

图1是显示根据本发明一实施例所述的天线结构的示意图;

图2是显示根据本发明一实施例所述的天线结构的示意图;

图3是显示根据本发明一实施例所述的天线结构的示意图;以及

图4是显示根据本发明一实施例所述的天线结构的示意图。

主要组件符号说明:

100、200、300、400天线结构

110、210、310、410接地组件

111接地组件的边缘

120、220、320、420金属环圈

130、230、330主辐射部

131、231、331主辐射部的第一端

132、232、332主辐射部的第二端

133、233、333、433辐射支路

134、234、334、434调整支路

135、235、335槽孔区域

140、240、340浮接辐射部

141浮接辐射部的第一端

142浮接辐射部的第二端

190信号源

436金属环圈的其余部分

fp馈入点

gc1第一耦合间隙

gc2第二耦合间隙

gp短路点

gp1第一短路点

gp2第二短路点

l1、l2、l3、l4、l5长度

np电流零点

w1宽度

xx轴

yy轴

zz轴

具体实施方式

为让本发明的目的、特征和优点能更明显易懂,下文特举出本发明的具体实施例,并配合所附附图,作详细说明如下。

在说明书及权利要求书当中使用了某些词汇来指称特定的组件。本领域技术人员应可理解,硬件制造商可能会用不同的名词来称呼同一个组件。本说明书及权利要求书并不以名称的差异来作为区分组件的方式,而是以组件在功能上的差异来作为区分的准则。在通篇说明书及权利要求书当中所提及的“包含”及“包括”一词为开放式的用语,故应解释成“包含但不仅限定于”。“大致”一词则是指在可接受的误差范围内,本领域技术人员能够在一定误差范围内解决所述技术问题,达到所述基本的技术效果。此外,“耦接”一词在本说明书中包含任何直接及间接的电性连接手段。因此,若文中描述一第一装置耦接至一第二装置,则代表该第一装置可直接电性连接至该第二装置,或经由其他装置或连接手段而间接地电性连接至该第二装置。

图1是显示根据本发明一实施例所述的天线结构100的示意图。天线结构100可应用于一移动装置(mobiledevice)、一穿戴式装置(wearabledevice),或是一随身物品上。在一些实施例中,天线结构100与一钥匙圈作结合,使得此钥匙圈具有无线通信的功能,但本发明亦不仅限于此。在其他实施例中,天线结构100亦可与任何小型物品相结合,使之成为一物联网(internetofthing,iot)中的一份子。如图1所示,天线结构100包括一接地组件(groundelement)110和一金属环圈(metalloop)120,其中接地组件110大致由金属环圈120所包围。举例而言,接地组件110可为一印刷电路板(printedcircuitboard,pcb)上的一接地铜箔(groundcopper),而金属环圈120可为一外观组件(appearanceelement),其金属的视觉特性有助于修饰及美化所应用装置的外形。

金属环圈120包括一主辐射部(mainradiationelement)130和一浮接辐射部(floatradiationelement)140,其中主辐射部130和浮接辐射部140皆沿着接地组件110而作延伸。主辐射部130具有一馈入点(feedingpoint)fp、一第一短路点(shortingpoint)gp1,以及一第二短路点gp2。馈入点fp耦接至一信号源190。例如,信号源190可为一射频(radiofrequency,rf)模块,其可用于产生一发射信号或是处理一接收信号。信号源190的一正电极可耦接至馈入点fp,而信号源190的一负电极可耦接至接地组件110。第一短路点gp1和第二短路点gp2皆直接耦接至接地组件110。馈入点fp大致介于第一短路点gp1和第二短路点gp2之间。浮接辐射部140邻近于该接地组件110和主辐射部130,并与接地组件110和主辐射部130皆完全分离。

详细而言,主辐射部130具有互相远离的一第一端131和一第二端132,其中第一短路点gp1可位于主辐射部130的第一端131,而第二短路点gp2可位于主辐射部130的第二端132。浮接辐射部140亦具有互相远离的一第一端141和一第二端142,其中浮接辐射部140的第一端141可与主辐射部130的第一端131之间形成一第一耦合间隙(couplinggap)gc1,而浮接辐射部140的第二端142则可与主辐射部130的第二端132之间形成一第二耦合间隙gc2。为了增强组件间的耦合效果,第一耦合间隙gc1的宽度和第二耦合间隙gc2的宽度皆须小于20mm。

在图1的实施例中,接地组件110大致为一正方形金属板,但其四个角皆修饰为圆弧角状。与之对应,金属环圈120大致为一空心正方形框,其四个角亦修饰为圆弧角状。详细而言,主辐射部130可以大致为一较长u字形,而浮接辐射部140可以大致为一较短u字形。亦即,主辐射部130的总长度可以大于浮接辐射部140的总长度。然而,本发明并不仅限于此。在其他实施例中,接地组件110和金属环圈120可改为其他不同的对应形状。例如,接地组件110可大致为一矩形金属板,但其四个角皆保留为直角形状;而金属环圈120可大致为一空心矩形框,其四个角亦保留为直角形状。在其他实施例中,接地组件110的至少其中一个角可形成截角。

根据实际测量结果,当天线结构100被激发时,天线结构100可涵盖一操作频带,其中此操作频带可介于2403mhz至2483.5mhz之间。因此,天线结构100将至少可支持使用bluetooth或wi-fi的移动通信频带(mobilecommunicationfrequencyband)。

详细而言,主辐射部130包括一辐射支路(radiationbranch)133和一调整支路(tuningbranch)134,其中辐射支路133介于馈入点fp和第二短路点gp2之间,而调整支路134介于馈入点fp和第一短路点gp1之间。辐射支路133可以大致为一c字形。调整支路134可以大致为一直条形。辐射支路133沿着接地组件110的一边缘111作延伸,使得辐射支路133和接地组件110之间形成一槽孔区域(slotregion)135,其中槽孔区域135为一无金属净空区域,其内不会配置任何金属组件。

在天线原理方面,辐射支路133为天线结构100的电流密度(currentdensity)较高部分,以作为天线结构100的一主要共振路径(mainresonantpath);而调整支路134是用于提供电感特性(inductance),以微调天线结构100的阻抗匹配(impedancematching)。辐射支路133的一端为馈入点fp,另一端为耦接至接地组件110的第一短路点gp1,故辐射支路133和接地组件110的一组合可视为一循环天线(loopantenna)。另外,介于辐射支路133和接地组件110之间的槽孔区域135则可视为一槽孔天线(slotantenna)。在此设计下,天线结构100可作为包括循环天线与槽孔天线的一混合型天线(hybridantenna),藉由整合两种不同天线类型,天线结构100能享有槽孔天线的较佳辐射场型(radiationpattern),同时具有循环天线的较大操作带宽(operationbandwidth)。另一方面,浮接辐射部140可作为主辐射部130的一指向器(director),以修正天线结构100的辐射场型。举例而言,当天线结构100的主要辐射方向为前、后方向(如图1中的+z轴、-z轴方向)时,浮接辐射部140可由主辐射部130所耦合激发,其上的耦合电流可产生侧边方向的辐射(如朝图1中的+x轴、-x轴方向),使得天线结构100能提供近似全向性(omnidirectional)的辐射场型。因此,天线结构100可轻易地接收及传送各种方向的无线信号。

在组件尺寸方面,槽孔区域135的长度l1大致等于天线结构100的操作频带的中心频率的1倍波长(1λ),而槽孔区域135的宽度w1大于或等于2mm。前述长度l1、宽度w1的限制范围有助于维持天线结构100的宽带特性(例如,若槽孔区域135的宽度w1不足,则槽孔天线的带宽将变得更窄)。因为辐射支路133紧贴于槽孔区域135,故辐射支路133的长度l2几乎等于(或略大于)槽孔区域135的长度l1。为了提供足够的电感特性,调整支路134的长度l3须小于天线结构100的操作频带的中心频率的0.25倍波长(0.25λ)。以上尺寸范围是根据多次实验结果而归纳得出,其可优化天线结构100的操作频带和阻抗匹配。

必须理解的是,天线结构100的接地组件110和金属环圈120的形状并非为本发明的限制条件,其可根据不同外观需求进行调整。以下实施例将举例说明不同形状的天线结构设计方式,然而其操作原理皆大致与图1的天线结构100相同。

图2显示根据本发明一实施例所述的天线结构200的示意图。图2与图1相似。在图2的实施例中,天线结构200的一接地组件210大致为一圆形金属板,而天线结构200的一金属环圈220大致为一空心圆形框,以对应地容纳圆形的接地组件210。图2的天线结构200的其余特征皆与图1的天线结构100类似,故此二实施例均可达成相似的操作效果。

图3显示根据本发明一实施例所述的天线结构300的示意图。图3与图1相似。在图3的实施例中,天线结构300的一接地组件310大致为一三角形金属板,而天线结构300的一金属环圈320大致为一空心三角形框,以对应地容纳三角形的接地组件310。图3的天线结构300的其余特征皆与图1的天线结构100类似,故此二实施例均可达成相似的操作效果。

图4显示根据本发明一实施例所述的天线结构400的示意图。天线结构400可视为图1的天线结构100的一简化版本,惟其亦可提供相似的操作特性。例如,天线结构400可涵盖一操作频带,而此操作频带亦可介于2403mhz至2483.5mhz之间。在图4的实施例中,天线结构400包括一接地组件410和一金属环圈420,其中接地组件410大致由金属环圈420所包围。必须注意的是,金属环圈420上没有任何断开处或耦合间隙,而是呈现完整的一循环形状,此进一步降低了天线结构400的制造复杂度。金属环圈420具有一馈入点fp和一短路点gp,其中馈入点fp耦接至一信号源190,而短路点gp耦接至接地组件410。当天线结构400被激发时,金属环圈420上将产生一电流零点(currentnull)np,其中电流零点np处的电流密度几乎为0,可视为一虚拟短路点。详细而言,金属环圈420包括一辐射支路433和一调整支路434,其中辐射支路433介于馈入点fp和电流零点np之间,而调整支路434介于馈入点fp和短路点gp之间。辐射支路433的总长度远大于调整支路434的总长度。例如,辐射支路433的总长度可至少为调整支路434的总长度的三倍以上。在天线原理方面,辐射支路433为天线结构400的电流密度较高部分,以作为天线结构400的一主要共振路径;而调整支路434是用于提供电感特性,以微调天线结构400的阻抗匹配。须注意的是,金属环圈420的其余部分436上的电流密度相对较低,故对于天线结构400的辐射特性几乎没有影响。在组件尺寸方面,辐射支路433的长度l4可大致等于天线结构400的操作频带的中心频率的1倍波长,而调整支路434的长度l5可小于天线结构400的操作频带的中心频率的0.25倍波长。图4的天线结构400的其余特征皆与图1的天线结构100类似,故此二实施例均可达成相似的操作效果。

本发明提出一种新颖的天线结构,与传统设计相比,本发明至少具有小尺寸、宽频带、低成本,以及低制造复杂度等优势。另外,本发明的天线结构可与装置的金属外观组件互相整合,故亦具有美化装置外形以及提升装置时尚感的功效,是以本发明很适合应用于各种随身物品或穿戴式装置当中。

值得注意的是,以上所述的组件尺寸、组件形状,以及频率范围皆非为本发明的限制条件。天线设计者可以根据不同需要调整这些设定值。本发明的天线结构并不仅限于图1-图4所图示的状态。本发明可以仅包括图1-图4的任何一或多个实施例的任何一项或多项特征。换言之,并非所有图示的特征均须同时实施于本发明的天线结构当中。

在本说明书以及权利要求书中的序数,例如“第一”、“第二”、“第三”等等,彼此之间并没有顺序上的先后关系,其仅用于标示区分两个具有相同名字的不同组件。

本发明虽以较佳实施例公开如上,然而其并非用以限定本发明的范围,任何本领域的普通技术人员,在不脱离本发明的精神和范围的情况下,应当可做些许的更动与润饰,因此本发明的保护范围应当视所附的权利要求书所界定者为准。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1