半导体器件及其制造方法与流程

文档序号:14070646阅读:196来源:国知局

相关申请的交叉参考

包括说明书、附图和摘要的于2016年9月28日提出的日本专利申请no.2016-189362的公开,其全部内容通过引用的方式并入本文。

本发明涉及一种半导体器件及其制造方法。例如,本发明涉及一种有效地应用于其中半导体芯片安装在布线板上的半导体器件的技术。



背景技术:

一种半导体器件,其被配置成包括安装在布线板上的半导体芯片,其需要散热,需要采取措施来增加布线板的热导率,因为布线板主要由树脂形成。

例如,日本未经审查的专利申请公开no.2011-166029描述了一种包括第一绝缘层、第二绝缘层和夹在第一绝缘层和第二绝缘层之间的石墨片的布线板结构。



技术实现要素:

日本未经审查的专利申请公开no.2011-166029所描述的夹在树脂层之间的石墨片,在平面方向上具有良好的热传导。特别是,当石墨片的厚度小于40μm时,其具有很高的热导率。

然而,当石墨片很薄时,其在平面方向上抗软化能力非常低。也就是,石墨片虽然在平面方向上抗应力能力很强,但其在垂直方向上抗应力能力很弱,因此容易被弯曲。

从说明书和附图的描述中,其他问题和新的特征将变得明显。

根据实施例的半导体器件包括具有第一表面和第二表面的布线板,安装在布线板的第一表面上的半导体芯片,和设置在布线板的第二表面上的多个外部端子。所述布线板包括第一布线层,布置在第一布线层上方的第二布线层,布置在第一布线层与第二布线层之间的第一绝缘层,形成在贯穿第一绝缘层延伸的第一孔中的第二绝缘层,和形成在贯穿第二绝缘层延伸的第二孔中并使第一布线层的布线与第二布线层的布线彼此电耦合的导体部。此外,第一绝缘层包括第一树脂层、第二树脂层和布置在第一树脂层与第二树脂层之间的导电层。导电层由石墨片和金属层的叠层形成。

根据实施例的半导体器件的制造方法包括以下步骤:(a)在支撑衬底上方形成第一布线层,(b)在步骤(a)之后,在第一层布线层上方形成包括第一树脂层、第二树脂层和布置在第一树脂层与第二树脂层之间的导电层的第一绝缘层,(c)在步骤(b)之后,形成贯穿第一绝缘层延伸的第一孔。此外,所述制造方法包括以下步骤:(d)在步骤(c)之后,在第一孔中形成第二绝缘层,(e)在步骤(d)之后,形成贯穿第二绝缘层延伸的第二孔,和(f)在步骤(e)之后,在第二孔中形成导体部。所述制造方法进一步包括以下步骤:(g)在步骤(f)之后,在第一绝缘层上方形成第二布线层,并通过第二孔中的导体部使第一布线层的布线与第二布线层的布线彼此电耦合,和(h)在步骤(g)之后,将支撑衬底和第一布线层分离以形成具有第一表面和第二表面的布线板。所述制造方法进一步包括以下步骤:(i)在步骤(h)之后,将半导体芯片安装在布线板的第一表面上方,和(j)在步骤(i)之后,为第一布线层中的多个电极中的每一个设置外部端子。导电层是石墨片和金属层的叠层。

根据实施例,能够在确保半导体器件中的布线板的强度的同时提高热导率。

附图说明

图1是图示根据第一实施例的半导体器件的结构示例的横截面图。

图2是图示当使用不同金属材料时石墨比例与热导率之间的关系的示例的线形图。

图3包括图示包含在图1所示的半导体器件中的布线板的制造步骤的示例的部分横截面图。

图4包括图示包含在图1所示的半导体器件中的布线板的制造步骤的示例的部分横截面图。

图5包括图示包含在图1所示的半导体器件中的布线板的制造步骤的示例的部分横截面图。

图6包括图示包含在图1所示的半导体器件中的布线板的制造步骤的示例的部分横截面图。

图7包括图示包含在图1所示的半导体器件中的布线板的制造步骤的示例的部分横截面图。

图8包括图示包含在图1所示的半导体器件中的布线板的制造步骤的示例的部分横截面图。

图9包括图示包含在图1所示的半导体器件中的布线板的制造步骤的示例的部分横截面图。

图10包括图示包含在图1所示的半导体器件中的布线板的制造步骤的示例的部分横截面图。

图11是图示将半导体芯片安装到图10所示的布线板上的步骤的示例的部分横截面图。

图12是图示图1所示的半导体器件的安装结构的示例的部分横截面图。

图13包括图示根据第二实施例的核心衬底的制造步骤的示例的部分横截面图。

图14包括图示根据第二实施例的核心衬底的制造步骤的示例的部分横截面图。

图15包括图示根据第二实施例的核心衬底的制造步骤的示例的部分横截面图。

图16是图示修改示例中的导电层的结构的部分横截面图。

图17是图示另一个修改示例中的导电层的结构的部分横截面图。

具体实施方式

在下面的实施例中,除非另有必要,相同或相似部分的描述原则上将不重复。

为了方便起见,如果必要,下面的实施例将在其被划分为多个部分或实施例的时进行描述。然而,除非另有说明,这些并不是相互独立的,而是处于一个是另一个的部分或全部的修改示例、细节、补充说明等的关系。

在下面的实施例中,当提及元件等的数量时(包括数量、数值、数量、范围等),元件的数量不限于特定数量,但可以是特定数量或更多或特定数量或更少,除非另有说明,或除该数量原则上明显限于特定数量的情况以外,或除其他情况以外。

此外,在下面的实施例中,构成元件(包括元件步骤等)并不总是必要的,除非另有说明,或者除原则上认为它们是必要的情况以外,或除其他情况以外。

此外,在下面的实施例中,短语“包括a”、“由a形成”、“具有a”和“包含a”不意指排除a以外的构成元件,除了清楚描述构成元件仅有a的情况以外。同样,在下面的实施例中,当提及构成元件等的形状、位置关系等时,应理解,它们包括基本类似或相似的形状等,除非另有说明,或除原则上明显认为不包括,或除其他情况以外。这也适用于上述数值、范围等。

下面参考附图将详细描述实施例。在说明实施例的所有附图中,具有相同功能的组件被标记相同的参考符号,并省略其冗余描述。此外,为了使图更容易理解,即使在平面图中也可增加影线。

第一实施例

图1是图示根据第一实施例的半导体器件的结构示例的横截面图。

图1所示的第一实施例的半导体器件是散热型半导体封装,其中半导体芯片通过倒装芯片(flip-chip)安装而被安装在布线板上,并且被称为盖(lid)的盖构件被设置在半导体芯片上以覆盖该半导体芯片。

在第一实施例中,描述了作为上述半导体器件的一个示例的情况,其中上述半导体器件的外部端子是设置在布线板的下表面上的多个球电极。因此,本第一实施例的半导体器件也是bga(球栅阵列)。

参考图1,描述了第一实施例中的bga5的结构。bga5包括具有上表面(第一表面)1a和与上表面1a相反的下表面(第二表面)1b的布线板1,安装在布线板1的上表面1a上的半导体芯片2,和设置在布线板1的下表面1b上的作为多个外部端子的球电极8。

半导体芯片2是经由多个凸块电极4安装在布线板1的上表面1a上的倒装芯片。设置了盖7以覆盖半导体芯片2。半导体芯片2具有主表面2a和与主表面2a相反的背面2b。多个电极焊盘2c形成在主表面2a上。

布线板1的上表面1a具有设置在其上的多个焊区(端子,电极)1aa,而下表面1b也具有设置在其上的多个焊区(端子,电极)1ba。阻焊膜(绝缘膜)1r形成在上表面1a侧和下表面1b侧中的每一个上的表面上。在上表面1a侧和下表面1b侧的每一个上的阻焊膜1r中的各个开口中,暴露了上表面1a侧上的焊区1aa和下表面1b侧上的焊区1ba。

半导体芯片2通过倒装芯片安装而被安装在布线板1的上表面1a上。更具体地说,半导体芯片2的主表面2a被布置成与布线板1的上表面1a相对,并经由多个凸块电极(凸块,突出电极)4电耦合到布线板1的上表面1a上的焊区1aa。

作为外部端子的球电极8设置在布线板1的下表面1b侧上,以例如栅格(格子)状布置。

针对上述结构,在bga5中,安装在布线板1的上表面1a上的半导体芯片2的电极焊盘2c经由凸块电极4、分别与电极焊盘2c对应的焊区1aa和焊区1ba电耦合到布线板1的下表面1b侧上的球电极8。随后将详细描述布线板1的内部结构。

同样,在bga5中,半导体芯片2和布线板1之间的空间填充有用底部填充剂(树脂、粘合剂)6。也就是说,凸块电极4之间的空间填充有用底部填充剂6。因此,半导体芯片2和布线板1之间的热膨胀系数的差异被底部填充剂6缓冲。也就是说,通过底部填充剂6能够加固半导体芯片2的倒装芯片接合部分。

此外,在本第一实施例的bga5中,为了增强半导体芯片2的散热功能,半导体芯片2用由金属制成的盖7覆盖。

例如,盖7由金属板——例如铜板形成。盖7经由导电粘合剂9接合到半导体芯片2的背面(面向上的表面)2b。

例如,导电粘合剂9是银浆或铝基浆。

利用经由导电粘合剂9的半导体芯片2和由金属板形成的盖7的这种接合,能够使半导体芯片2产生的热通过导电粘合剂9从盖7扩散出去,从而提高了bga5的可靠性。

使盖7和布线板1彼此接合的粘合剂10是例如环氧树脂基粘合剂10。

接下来,将描述包含在bga5中的布线板1的详细结构。

如图1所示布线板1是包括多个布线层的多层布线板,是无芯衬底,并且还是通过叠置预浸料层和布线层来形成的堆叠衬底。

布线板1包括布线层(第一布线层)1c、布置在布线层1c上的布线层(第二布线层)1d,和布置在布线层1c与布线层1d之间的绝缘层(第一绝缘层)1e。布线板1进一步包括绝缘层(第二绝缘层)1f和通孔布线(导体部)1i,其中绝缘层1f形成在贯穿随后如图10所示的绝缘层1e延伸的孔(第一孔)1g中,通孔布线1i形成在贯穿绝缘层1f延伸的孔(第二孔)1h中并使图1中的布线层1c的焊区1ba与布线层1d的焊区1da彼此电耦合。

绝缘层1e包括树脂层(第一树脂层)1j、树脂层(第二树脂层)1k和布置在树脂层1j和树脂层1k之间的导电层1p。导电层1p由石墨片1m和金属层1n的叠层形成。

也就是说,由石墨片1m和金属层1n的叠层形成的导电层1p被夹在树脂层1j和树脂层1k之间。

此外,在本第一实施例的布线板1中,导电层1p是其中石墨片1m被夹在在金属层1n之间的叠层,使得导电层1p具有石墨片1m和布置在石墨片1m上方和下方的金属层1n的三层结构。

也就是说,在布线板1中形成各自包括由石墨片1m和金属层1n形成的导电层1p的多个绝缘层1e。作为第三树脂层的树脂层1q形成在绝缘层1e之间。

石墨片1m是导电的。因此,贯穿包括导电层1p的绝缘层1e延伸并使布线层1c的焊区1ba与布线层1d的焊区1da彼此电耦合的通孔布线1i,在平面方向上被作为第二绝缘层的并且是树脂柱的绝缘层1f覆盖在其周围。也就是说,每个通孔布线1i在平面方向上被绝缘层1f覆盖在其周围。利用这种结构,确保了通孔布线1i和导电层1p之间的绝缘。

在本第一实施例的布线板1中,为了改善布线板1的热导率,布置了石墨片1m。在这里,描述石墨的结构。石墨具有大平面分子的叠层结构,在每一层中苯环被布置在平面内并且每一层被称为石墨片。石墨是在二维蜂窝栅格中被密集填充的单层碳原子。通过叠置石墨获得三维石墨。因此,石墨片1m在平面方向(二维方向)上具有很高的热导率,并且通过使用石墨片1m的这种特性,增加了布线板1的热导率。同时,石墨片1m在垂直方向上的机械强度较弱(即,能够容易地被弯曲)。因此,在第一实施例中,通过层叠石墨片1m和金属层1n能够增加垂直方向上的机械强度。

用于石墨片1m的适当材料的示例是高定向热解石墨。

在这里,详细描述本申请的发明人所研究的问题。

石墨材料具有厚度依赖特性,其热导率随厚度变薄而变高。其原因是,当膜厚度较厚时,会产生热容量并会降低热导率。当与铜膜进行比较时,例如,厚度小于40μm的石墨膜通常具有铜膜的热导率的三至四倍的热导率。然而,在使用厚度约为100μm的石墨膜的情况下,铜膜的热导率高于石墨膜的热导率,因此使用石墨材料没有优势。

为此,在使用石墨材料的情况下,随着厚度变薄,热导率增大的效果也会变大。此外,作为扩散衬底中热量的措施,薄膜在衬底的平面方向上延伸是有效的,因为热源密度随着半导体的增加而增加,并会产生焦耳热问题。然而,石墨材料在平面方向上不耐软化。换句话说,虽然石墨材料在平面方向上抗应力(压缩或拉伸)能力强,但存在石墨材料很容易在垂直方向上被应力弯曲的问题。石墨材料的易弯曲的特性可被描述为迁移率低。

因此,在本第一实施例的布线板1中,层叠石墨片1m和金属层1n,以便通过使用薄的石墨片1m来增加热导率,并且通过金属层1n来保证机械强度以减少石墨容易发生的断裂出现。另外,即使在石墨片1m中形成断裂,通过金属层1n也能弥补该断裂。

换句话说,通过金属层1n,本第一实施例的布线板1弥补了作为碳材料的石墨材料的特性的机械脆性和可加工性能差,使它们同时具有了石墨材料的优势和金属层1n的优势。更具体地说,因为石墨材料在垂直方向上抗应力能力弱,所以通过用金属层1n作为连续膜连接石墨片1m的弯曲部分(形成断裂的部分),能够在没有断开的情况下连接和改善在平面方向上的热扩散,并能增加布线板1中的热传导。

在这里描述了布线板1的各个层的特性。

金属层1n由主要包含例如铜(cu)、铝(al)、镍(ni)、金(au)、银(ag)或钯(pd)的合金制成。在本第一实施例中,描述了金属层1n是铜层的情况。

图2是图示当使用不同金属材料时石墨比例与热导率之间的关系的示例的线形图。

在由金属层1n和石墨片1m形成的导电层1p的基本特性中,随着石墨比例的增加,热导率从金属的特有值线性地增加,如图2所示。关于热传导,期望的是通过跳跃传导(热传导经由金属以加速度变得更好的现象)来提高效率。因此,优选使用从石墨特性向金属特性转换的这些线性特性的部分——更具体地说,石墨比例为70%或70%以上,即金属量较少(金属比小于30%)的、提供更好热传导的区域。然而,金属比例不能设置为0%。因此,石墨比例的上限设置为95%左右。也就是说,优选应用图2所示的石墨比例为70%到95%的范围r。

例如,在金属层1n是铜层的情况下,描述了铜层的厚度限制。通常,当铜层厚度小于500埃(0.05μm)时,聚合温度会变低,使得在约200度的温度下通过热处理不能维持金属的连续膜(铜层)。因此,在金属层1n是铜层的情况下,优选的是,铜层厚度为500埃或500埃以上。铜层的物理厚度的上限是约25μm或25μm以下,因为包括四层的布线层的布线板1的厚度为例如100μm。石墨片1m的厚度为例如小于10μm,优选为约1μm。图2中铜(cu)层的线表示石墨片1m和金属层1n(铜层)的叠层厚度为1μm的情况。例如,对于厚度为0.95μm的石墨片1m,铜层的厚度为500埃(0.05μm)并且石墨比例是95%。

此外,优选的是,金属层1n的厚度比石墨片1m的厚度更薄。通过使金属层1n的厚度比石墨片1m的厚度更薄,能够减少布线板1的重量。

此外,在本第一实施例的布线板1中,导电层1p是石墨片1m和布置在石墨片1m的上方和下方的金属层(铜层)1n的叠层。利用这种结构,通过金属层1n弥补石墨片1m的不利影响可提高一倍。换句话说,在通过导电层1p中的薄的石墨片1m提高热导率的同时,还能够通过布置在石墨片1m的上方和下方的金属层1n充分弥补石墨片1m的机械脆性。

此外,在布线板1中,树脂层1j和树脂层1k中的每一个都包括例如玻璃布或芳纶无纺布(aramidnon-wovenfabric)的绝缘层1s,如图10所示。也就是说,玻璃布或芳纶无纺布的绝缘层1s例如被包括在分别布置在导电层1p的上方和下方的树脂层1j和树脂层1k中。更具体地说,树脂层1j和树脂层1k中的每一个都由玻璃布、芳纶无纺布等的绝缘层1s和布置在绝缘层1s的上方和下方的作为粘合剂的环氧树脂基粘合剂层1t形成。

利用这种结构,由石墨片1m和金属层1n形成的导电层1p被夹在每一个都包括绝缘层1s的树脂层1j和树脂层1k之间。因此,能够确保在层叠方向(衬底厚度的方向)上导电层1p的绝缘。

此外,在布线板1中,作为布置在每个通孔布线1i附近的树脂柱的绝缘层(第二绝缘层)1f包括绝缘填料。这能够提高绝缘层1f的绝缘特性,使得能够确保每个通孔布线1i相对于导电层1p绝缘。

此外,在布线板1中,绝缘层(第一绝缘层)1e被夹在绝缘层1q之间,绝缘层1q是硬度比作为绝缘层1j和绝缘层1k的主要成分的树脂的硬度低的第三绝缘层。例如,在树脂层1q由包含诸如二氧化硅、硅树脂等的无机绝缘填料的树脂制成并且作为树脂层1j和树脂层1k的主要成分的树脂是环氧树脂的情况下,树脂层1q的硬度比树脂层1j和1k的硬度低。

换句话说,由于包括提供有石墨片1m的导电层1p的绝缘层1e被夹在硬度较低的树脂层1q之间的这种结构,能够缓冲石墨片1m的机械脆性。

接下来,描述第一实施例的bga5的制造方法(组件)。

图3至10是图示包含在图1所示的半导体器件中的布线板的制造步骤的示例的部分横截面图,图11是图示将半导体芯片安装到图10所示的布线板上的步骤的示例的部分横截面图。

为了使衬底结构更容易被理解,该制造方法通过仅图示布线板1的部分(主要部分)来描述。

首先,如图3中的步骤1所示,将剥离层3b接合到支撑衬底3的上表面3a上。剥离层3b由例如包含钨的金属氧化物膜3ba和co-mo膜3bb形成。支撑衬底3是预浸料,并且是由铜等制成的堆叠支撑构件。例如,支撑衬底3的厚度为100μm,金属氧化物膜3ba厚度为20μm,co-mo膜3bb的厚度为5μm。

步骤1之后,在布置在支撑衬底3上的剥离层3b上和在支撑衬底3的上表面3a上(见图3中的步骤1),形成作为用于电镀的籽晶层的膜状铜薄膜1u,如图3中的步骤2所示。铜薄膜1u的厚度为例如12至18μm。

步骤2之后,在铜薄膜1u上形成具有开口的抗蚀剂3c,如图3中的步骤3所示。在该步骤中,首先,在铜薄膜1u上形成抗蚀剂3c,然后通过蚀刻去除光致抗蚀剂3c的所需部分(形成布线图案的部分)。也就是说,通过光刻在光致抗蚀剂3c的所需部分形成开口。

步骤3之后,通过使用铜薄膜1u作为籽晶层执行电镀供电(ni电镀)以在光致抗蚀剂3c的开口中形成由铜图案1v形成的布线图案,如图4中的步骤4所示。

步骤4之后,以铜图案1v留在铜薄膜1u上的方式,通过湿蚀刻去除光致抗蚀剂3c,如图4中的步骤5所示。

步骤5之后,执行使用ar的蚀刻以去除暴露的铜薄膜1u,如图4中的步骤6所示。在该步骤中,利用铜图案1v作为掩膜执行通过ar的蚀刻以去除不必要的铜薄膜1u。由于在该步骤中通过ar的蚀刻也蚀刻铜图案1v,因此,铜图案1v的厚度会减少约10μm。通过上述步骤,图1所示的具有铜图案1v的布线层(第一布线层)1c形成在支撑衬底3的上表面3a上。

步骤6之后,在铜图案1v(布线层1c)上形成作为第三树脂层的树脂层1q,如图5中的步骤7所示。例如,树脂层1q通过印刷树脂浆而形成,其中例如二氧化硅的无机绝缘填料被包含在例如环氧树脂的热固性树脂中。例如可使用硅树脂作为树脂层1q。

形成树脂层1q之后,将由石墨片1m和金属层1n形成的并提前制备的导电层1p被夹在树脂层1j和树脂层1k之间以形成绝缘层1e,然后将绝缘层1e布置在树脂层1q上。在这里,导电层1p是通过将石墨片1m夹在每个均由铜层形成的金属层1n之间的叠层。导电层1p中金属层1n的厚度比石墨片1m的厚度薄。

此外,由将此导电层1p夹在树脂层1j和树脂层1k之间而形成的结构就是绝缘层1e。

树脂层1j和树脂层1k中的每一个都包括玻璃布、芳纶无纺布等的绝缘层1s。更具体地说,树脂层1j和树脂层1k中的每一个都由玻璃布、芳纶无纺布等的绝缘层1s和作为布置在绝缘层1s上方和下方的粘合剂的环氧树脂基粘合剂层1t形成。

如上所述,导电层1p被布置在树脂层1q上,同时被夹在树脂层1j和树脂层1k之间。此后,执行热处理和轧制处理以使各个树脂相互接合,使树脂固化,以及使绝缘层1e的上表面1ea平坦化。热处理温度为例如150℃。

通过以上步骤,在布线层1c上的树脂层1q上形成了绝缘层1e,其由树脂层1j、树脂层1k和布置在树脂层1j和树脂层1k之间的导电层1p形成。

步骤7之后,形成贯穿绝缘层1e延伸的孔(第一孔)1g,如图6中的步骤8所示。在该示例中,孔1g通过例如辐射激光形成在所需的铜图案1v中。在该辐射中,考虑激光的反射而设置激光功率。

步骤8之后,在每个孔1g中形成绝缘层(第二绝缘层)1f,如图6中的步骤9所示。在该示例中,通过丝网印刷,利用作为其中无机绝缘填料被包含在热固性树脂中的树脂柱的绝缘层(第二绝缘层)1f填充孔1g的内部,然后热固化绝缘膜1f。

热固化之后,抛光绝缘层1f的上部分,以便以使绝缘层1f的上部分和绝缘层1e的上表面1ea在同一平面上的方式使绝缘层1e的上表面1ea平坦化。通过抛光绝缘层1f的上部分来使绝缘层1e的上表面1ea平坦化,可以通过使用例如执行磨光的抛光设备来实施。

步骤9之后,在树脂柱的绝缘层1f中形成贯穿绝缘层1f延伸的孔(第二孔)1h,并在该孔1h中形成通孔布线(布线)1i,如图7中的步骤10所示。也就是说,直径为50至200μm的孔1h通过使用激光形成在位于铜图案1v上方的绝缘层1f中。然后,例如通过例如高锰酸钾溶液的粗化剂,化学粗化处理绝缘层1f的表面和孔1h的内表面,然后通过电镀在孔1h中形成通孔布线1i。

步骤10之后,通过使用半粘合过程,在绝缘层1e的上表面1ea上通过电镀形成布线层(第二布线层)1d的焊区(导体部、布线图案、铜图案)1da,如图7中的步骤11所示。

通过该步骤,布线层(第一层布线层)1c的焊区(导体部、布线图案、铜图案)1ba和布线层(第二布线层)1d的焊区(导体部、布线图案、铜图案)1da通过形成在孔1h中的通孔布线1i彼此电耦合。

形成布线层1d之后,通过印刷等在布线层1d上形成作为第三树脂层的树脂层1q。

步骤11之后,重复在树脂层1q上形成绝缘层1e、在贯穿绝缘层1e延伸的孔1g中形成绝缘层1f和通孔布线1i等多次,以制造堆叠衬板11,如图8中的步骤12所示。

步骤12之后,以暴露出位于支撑衬底3和堆叠衬底11之间的剥离层3b的方式,在衬底的外围部分中的预定位置执行切割,如图9中的步骤13所示。

步骤13之后,经由接合到下表面11a的剥离层3b,使支撑衬底3和堆叠衬底11的包括铜图案1v(布线层1c)的下表面11a彼此分离,如图10中的步骤14所示。更具体地说,例如通过机械地拉而使支撑衬底3和接合到堆叠衬底11的下表面11a的剥离层3b彼此分离。

分离之后,例如,通过将堆叠衬底11浸入剥离剂中或将剥离剂涂到剥离层3b上,将堆叠衬底11的剥离层3b从堆叠衬底11上剥离。在此步骤中使用的剥离剂是例如碱金属氢氧化物。

通过上述步骤,制造了如图1所示的具有上表面(第一表面)1a和下表面(第二表面)1b的布线板1。

步骤14之后,将半导体芯片2安装在布线板1的上表面1a上,如图11中的步骤15所示。由于在该示例中执行倒装芯片安装,所以经由多个凸块电极4将半导体芯片2安装在布线板1的上表面1a上。更具体地说,通过将设置在半导体芯片2的电极焊盘2c上的凸块电极4耦合到布线板1的上表面1a的焊区1aa来安装半导体芯片2,使得半导体芯片2和布线板1经由每个凸块电极4彼此电耦合。

在倒装芯片安装中,安装半导体芯片2,同时布线板1和半导体芯片2之间的间隔用例如图1所示的预先布置在上表面1a上的底部填充剂6来填充。可选择地,在经由凸块电极4的对半导体芯片2的倒装芯片安装之后,布线板1和半导体芯片2之间的间隔用底部填充剂6来填充。

安装半导体芯片之后,将图1所示的盖7经由导电粘合剂9和粘合剂10附接在半导体芯片2上。

附接盖7之后,将作为外部端子的球电极8安装在设置在布线板1的下表面1b上的焊区(电极)1ba中的每一个上。

利用该步骤,完成了图1所示的bga5的安装。

接下来,描述bga5的安装结构。图12是图示图1所示的半导体器件的安装结构的示例的部分横截面图。

图12所示的结构是例如安装衬底12是半导体衬底的情况下,并且是将bga5安装在上述半导体衬底上的结构的示例。安装衬底12具有多个穿透电极12d。多个通孔12c形成在作为在穿透电极12d上方的层的层间绝缘膜12e中。安装衬底12的上表面12a上的焊区12b中的每一个经由通孔12c电耦合到对应的一个穿透电极12d。

bga5经由作为外部端子的球电极(焊球)8通过焊料耦合到安装衬底12的焊区12b中的每一个。

根据本第一实施例的bga5,能够提高被包含到bga5中的布线板1的热导率。更具体地说,通过在布线板1中层叠石墨片1m和金属层1n,能够在保证布线板1的强度同时提高热导率。

更具体地说,与单层石墨材料的情况相比,石墨片1m可形成得较薄。因此,能够实现具有提升的热导率的多层衬底。此外,通过层叠具有高迁移率的、弥补石墨材料的缺点——即低迁移率的金属层1n,即使在石墨片1m中形成断裂,也能通过层叠在石墨片1m上的金属层1n来弥补石墨片1m的强度。

换句话说,作为碳材料的石墨材料的机械脆性和可加工性能差的特性可通过金属层1n来弥补。因此,本第一实施例的导电层1p同时具有石墨材料的优势和金属层1n的优势。也就是说,由于石墨材料在垂直方向上抗应力弱,所以通过用作为金属层1n的连续膜连接石墨片1m的弯曲部分(形成断裂的部分),能够在不断开的情况下连接和提高在平面方向上的热扩散,从而能够提高布线板1的热导率。

也就是说,使用作为碳材料(石墨材料)的优势的重量轻且热导率高的特征,能够实现机械性弱的部分被金属层1n弥补的结构。

此外,通过采用如本第一实施例的结构在导电层1p中石墨片1m被夹在布置在石墨片1m上方和下方的金属层1n之间的层叠结构,能够增加弥补石墨材料的机械脆性和可加工性能差的影响。也就是说,石墨片1m被夹在金属层1n之间的结构能够提高石墨材料的机械强度和可加工性。

第二实施例

图13是图示根据第二实施例的核心衬底的制造步骤的示例的部分横截面图,图14是图示根据第二实施例的核心衬底的制造步骤的示例的部分横截面图,并且图15是图示根据第二实施例的核心衬底的制造步骤的示例的部分横截面图。

在第二实施例中,描述了在核心衬底中采用石墨材料和金属层的叠层的示例。本第二实施例的布线板通过重复形成核心衬底21来形成。描述了导电层1p是石墨片1m和金属层1n的叠层且石墨片1m被夹在金属层1n之间的情况,与第一实施例的布线板1相同。此外,描述了与第一实施例相同的金属层1n是铜层的情况。

在图15所示的核心衬底21中,在层叠方向上交替布置包括石墨片1m的导电层1p、以及树脂层1j或树脂层1k。在核心衬底21中,设置从上表面21a向下表面21b(或从下表面21b向上表面21a)贯穿核心衬底21延伸的穿透布线(穿透导体)21c。穿透布线21c通过电镀等被形成为圆筒形,并使形成在上表面21a侧上的布线层1d的焊区21aa与形成在下表面21b侧上的布线层1c的焊区21ba彼此电耦合。

作为第二绝缘层的绝缘层1f形成在圆筒形穿透布线21c的内侧和外侧上。利用绝缘层1f,使穿透布线21c与石墨片1m和金属层1n彼此绝缘。

接下来,描述图15所示的核心衬底21的制造方法。

如图13中的步骤1所示,在作为石墨片1m和金属层(在该实例中为铜层)1n的叠层膜的导电层1p的上方和下方,交替地布置未凝固的绝缘片(树脂层1j或树脂层1k)21d,其中例如玻璃布或芳纶无纺布的加固材料用热固性树脂浸渍。热固性树脂是一种以环氧树脂和双马来酰亚胺三嗪树脂为代表的耐热和耐化学性的树脂。

在上表面21a和下表面21b侧中的每一个上,将铜箔21e接合到核心衬底21。

步骤1之后,热固化绝缘片21d中的热固性树脂,以制造作为绝缘衬底的并具有在上表面21a和下表面21b上的铜箔21e的核心衬底21,如图13中的步骤2所示。上述制造之后,通过使用微钻,形成贯穿铜箔21e和核心基板21延伸的多个孔(通孔)1g。

步骤2之后,在每个孔(通孔)1g中形成绝缘层(第二绝缘层)1f,如图13中的步骤3所示。例如,通过丝网印刷,用作为无机绝缘填料被包含在热固性树脂中的树脂柱的绝缘层(第二绝缘层)1f填充孔1g的内部。然后,热固化绝缘层1f,使得每个孔1g封闭。

上述热固化之后,抛光绝缘层1f的突出部分,使得绝缘层1f平坦化。上述平坦化通过使用例如执行磨光的抛光设备来实施。

步骤3之后,通过使用微钻等在每个绝缘层1f中形成贯穿绝缘层1f延伸的孔(通孔)1h,如图14中的步骤4所示。

步骤4之后,通过电镀在孔1h的内表面上形成(沉积)穿透布线(穿透导体)21c,如图14中的步骤5所示。此外,同时通过电镀在铜箔21e的表面上还形成(沉积)导体膜21f。

步骤5之后,在每个孔1h中(在管状穿透布线21c中)形成绝缘层(第二绝缘层)1f,如图14中的步骤6所示。例如,通过丝网印刷,用其中无机绝缘填料包含在有热固性树脂中的树脂柱的绝缘层(第二绝缘层)1f填充孔1h的内部。然后,热固化绝缘层1f,使得每个孔1h都封闭。上述热固化之后,抛光绝缘层1f的突出部分,使得绝缘层1f平坦化。上述平坦化通过使用例如执行磨光的抛光设备来实施。

步骤6之后,执行蚀刻以得到预定图案,使得不必要的铜箔21e和导电膜21f被去除,如图15中的步骤7所示。通过上述步骤,获得焊区21aa(导体膜21f)和焊区21ba(导体膜21f)分别形成在上表面21a和下表面21b的核心衬底21。通过交替地重复上述步骤,能够形成叠置图15所示的核心衬底21的布线板。

同样,在通过使用图15所示的核心衬底21被层叠的布线板组装的bga型半导体器件中,能够获得与第一实施例的bga5相同的操作和效果。

在上面,通过实施例的方式具体描述了本申请的发明人制造的发明。然而,应该理解,本发明并不限于上述实施例,并且在不偏离本发明的精神的范围内可以以各种方式改变。

例如,虽然在上述第一和第二实施例中描述了在导电层1p中石墨片1m被夹在金属层1n之间的情况,但在导电层1p中诸如铜层的金属层1n可被夹在石墨片1m之间,如图16的修改示例所示。然而,鉴于通过金属层1n保证布线板1的强度的同时,能够通过石墨片1m提高热导率的bga5的效果,更优选石墨片1m被夹在金属层1n之间的结构。

此外,在导电层1p中的石墨片1m的上方和下方布置金属层1n并不总是必要的。如图17的另一个修改示例所示,金属层1n可布置在石墨片1m的上侧和下侧中的任一侧上。在这种情况下,能够减轻导电层1p的重量,从而减轻布线板1的重量。

此外,虽然在上述第一实施例中描述了经由半导体器件中的凸块电极4将半导体芯片2安装在布线板1上的情况,但半导体器件可具有通过导线将半导体芯片2电耦合到布线板1的结构。也就是说,半导体器件可以是导线接合型半导体器件。

此外,虽然在上述第一实施例中描述了半导体器件是bga5的情况,但半导体器件可以是另一种类型,只要半导体芯片2安装在布线板上方,例如,半导体器件可以是lga(触点栅格阵列)。

此外,尽管在上述第一实施例中描述了耦合到半导体芯片2的盖7被设置在bga5中的情况,但bga5可以是未附接盖7的半导体器件。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1