本发明属于可调谐激光器技术领域,具体涉及一种扩展全固态连续波单频激光器调谐范围的方法。
技术背景
全固态连续波单频激光器以其强度噪声低、高光束质量、高输出功率及高稳定性等优点,被广泛应用于量子光学、量子信息、冷原子物理、光频标等科学研究领域。在冷原子物理及光频标等实验应用中,为了使激光器输出频率与原子跃迁吸收线精确匹配,需要激光器在具有较宽调谐范围的同时,还具有一定的频率连续调谐能力。为实现激光器输出频率的调谐,一种最常用的方法是在激光器谐振腔内插入标准具。通过调节标准具的有效光程,比如调节标准具的入射角度、调节标准具的温度或者利用电光晶体的电光效应调节电光标准具的折射率等,可实现对全固态单频激光器输出频率的调谐。而将标准具透射峰与激光谐振腔的振荡模实时锁定后,通过扫描激光器谐振腔的腔长,可实现全固态单频激光器输出频率的连续调谐。但是,利用这种方法获得的全固态单频可调谐激光器,其调谐范围被限制在所采用的标准具的一个自由光谱区内。为获得更宽的调谐范围,如覆盖激光增益介质的增益线宽,需要采用更薄的标准具,通常为几百微米,同时为保证标准具的选模能力,需要标准具镀有一定反射率的膜,或者联合采用两块厚度不同的标准具,这样一方面增加了标准具的设计及加工难度,另一方面也增加了全固态连续波单频激光器的设计难度。
技术实现要素:
本发明的目的在于突破现有技术的限制,提供一种操作简便,且可有效扩展全固态连续波单频激光器频率连续调谐范围的方法。
本发明为实现上述目的而采取的技术方案为:
一种扩展全固态连续波单频激光器调谐范围的方法,包括以下步骤:
(1)在全固态连续波单频激光器的激光谐振腔内插入非线性倍频晶体,使其位于激光谐振腔的腰斑处;
(2)待全固态连续波单频激光器正常工作后,非线性倍频晶体将一部分腔内基频光转化为倍频光,产生的倍频光与基频光一起从激光谐振腔内输出,并经分光镜分开,其中分光镜的反射光为基频光,透射光为倍频光;
(3)分光镜反射的基频光经全固态连续波单频激光器的光学分束器分出一部分进入全固态连续波单频激光器的光电探测器,剩余部分作为主激光输出,光电探测器将入射的光信号转化为电信号,并输入到全固态连续波单频激光器中伺服控制器的输入端,伺服控制器产生控制信号,并将控制信号输入到全固态连续波单频激光器中粘接有标准具的振镜电机的信号输入端以控制振镜电机转动,再通过振镜电机带动标准具的转动,从而改变标准具的入射角,将标准具的透射峰实时锁定在激光谐振腔的振荡模上;
(4)通过调节全固态连续波单频激光器中加载在压电陶瓷上的电压,改变激光谐振腔的腔长,进而实现全固态连续波单频激光器输出频率的连续调谐,其可达到的最大调谐范围δν表示为:
其中,νfsr为标准具的自由光谱区,δνh为全固态连续波单频激光器中激光增益介质的增益线宽,η为非线性倍频晶体的倍频转化效率,l为激光谐振腔内的线性损耗。
优选地,本发明所述的非线性倍频晶体的材料为三硼酸锂晶体、硼酸铋晶体、偏硼酸钡晶体、周期极化磷酸钛氧钾晶体或者周期极化钽酸锂晶体。
优选地,本发明所述的激光谐振腔为单向运转的环形谐振腔。
优选地,本发明所述全固态连续波单频激光器中泵浦源的泵浦方式为端面泵浦或侧面泵浦。
优选地,本发明所述的标准具的材料为熔融石英或电光晶体,且所述标准具粘接在全固态连续波单频激光器中振镜电机的转轴上。
优选地,本发明所述的激光增益介质为nd:yvo4、nd:yag、nd:yap、ti:sapphire增益晶体。
优选地,本发明所述的泵浦源的泵浦方式为单端泵浦或双端泵浦。
优选地,本发明所述的电光晶体为铌酸锂晶体或钽酸锂晶体。
本发明一种扩展全固态连续波单频激光器调谐范围的方法的原理为:对于一个基频光激光器来说,通过标准具的选模作用,对应于标准具透射峰处且邻近激光器增益介质中心频率处的激光模式就会起振。通过调节标准具的入射角,其透射峰对应频率就会随之改变,进而激光器的输出频率也会随之改变,从而实现了激光器输出频率的调谐,但是其调谐范围被限制在标准具的一个自由光谱区内。当激光谐振腔内没有插入非线性倍频晶体时,将标准具透射峰与激光器振荡模实时锁定后,扫描激光谐振腔的腔长,即可实现激光器输出频率的连续调谐,其调谐范围同样被限制在标准具的一个自由光谱区内。而在激光谐振腔内插入非线性倍频晶体后,会对腔内基频光引入一定的非线性损耗。当标准具的透射峰与谐振腔内振荡模实时锁定后,扫描激光谐振腔的腔长,使标准具工作在或者超出其调谐边缘(即标准具的两相邻透射峰对称分布于激光增益介质中心波长的两侧)并继续往短波(或长波)方向移动时,由于主振荡模经受的非线性损耗是非振荡模的一半且主振荡模与非振荡模经受的非线性损耗差等于非线性倍频晶体的倍频转化效率,非振荡模被自动抑制,所以全固态单频激光器的输出频率可以继续无跳模地连续调谐,直至标准具的两相邻透射峰对应频率处激光增益介质的增益差等于非线性倍频晶体的倍频转化效率。所以联合腔内锁定的标准具以及腔内非线性损耗,激光器的调谐范围就可以超出标准具的一个自由光谱区,其调谐范围δν表示为:
其中,νfsr为标准具的自由光谱区,δνh为激光增益介质的增益线宽,η为非线性倍频晶体的倍频转化效率,l为激光谐振腔内的线性损耗。
与现有技术相比,本发明的优点和有益效果为:
1、利用本发明提供的方法可以有效扩展全固态连续波单频激光器的频率连续调谐范围,突破了标准具一个自由光谱区的限制;
2、根据公式(1),合理设计全固态连续波单频激光器,选取合适的标准具与非线性倍频晶体引入的非线性损耗,可以很容易的获得调谐范围覆盖激光增益介质增益线宽的全固态连续波单频可调谐激光器;
3、本发明可以很容易地在现有内腔倍频全固态连续波单频激光器中实现;
4、本发明适用于扩展任何腔型结构的全固态连续波单频激光器的调谐范围。
总之,本发明能够有效扩展全固态连续波单频激光器的频率连续调谐范围,设计简单,操作简便。
附图说明
图1为本发明实施例1:激光二极管端面泵浦的“8”字四镜环形谐振腔全固态连续波单频可调谐激光器的装置结构示意图。
图2为本发明实施例2:激光二极管端面泵浦的六镜环形谐振腔全固态连续波单频可调谐激光器的装置结构示意图。
图3为实施例1所述全固态连续波单频可调谐激光器中标准具的调谐曲线。
图4为实施例1所述全固态连续波单频可调谐激光器的频率连续调谐曲线。
具体实施方式
下面结合附图对本发明进行进一步详细说明,但不限于这些实施案例。
实施例1
图1所示为激光二极管端面泵浦的“8”字四镜环形谐振腔全固态连续波单频可调谐激光器的装置结构,包括泵浦源1、由腔镜(21、22、23、24)组成的环形谐振腔2、激光增益介质3、置于永磁体内的磁光介质4、半波片5、标准具6、振镜电机7、非线性倍频晶体8、压电陶瓷9、分光镜10、光学分束器11、光电探测器12、伺服控制器13。泵浦源1出射的泵浦光经耦合系统聚焦到激光增益介质3的中心;激光谐振腔由输入耦合镜21、第一腔镜22、第二腔镜23、输出耦合镜24组成“8”字四镜环形腔结构;输入耦合镜21为凹凸镜,镀有对泵浦光减反、对基频光高反膜,第一腔镜22和第二腔镜23分别为平凸镜和平凹镜,均镀有对基频光高反膜,输出耦合镜24为平凹镜,镀有对基频光高反膜,对倍频光高透膜;其中,第二腔镜23安装在压电陶瓷9上;磁光介质4为tgg晶体,由永磁体包裹的tgg晶体4和半波片5组成的光学单向器,保证激光器的单频运转;标准具6粘接在振镜电机7的转轴上;非线性倍频晶体8位于第二腔镜23和输出耦合镜24之间的基模束腰处,置于紫铜控温炉中,采用热电制冷器进行温度控制。
全固态连续波单频激光器正常工作后,从激光谐振腔输出的激光束经分光镜10分开,其中分光镜10的反射光为基频光,透射光为倍频光;分光镜反射的基频光经光学分束器11分出一部分进入光电探测器12,其余作为主激光输出;光电探测器12将入射的光信号转化为电信号,并输入到伺服控制器13的信号输入端;伺服控制器13产生控制信号,并输入到振镜电机7的信号输入端,控制振镜电机7转动,再通过振镜电机7带动标准具6转动,以改变标准具6的入射角,从而实现反馈控制标准具6的入射角,将标准具6的透射峰实时锁定在激光谐振腔2的振荡模上;通过调节加载在压电陶瓷9上的电压,改变激光谐振腔2的腔长,实现全固态连续波单频激光器输出频率的连续调谐。
本实施例所述的非线性倍频晶体(8)的材料为三硼酸锂晶体、硼酸铋晶体、偏硼酸钡晶体、周期极化磷酸钛氧钾晶体或者周期极化钽酸锂晶体。
本实施例所述的泵浦源(1)的泵浦方式为端面泵浦或侧面泵浦,且为单端泵浦或双端泵浦。本实施所述的标准具(6)的材料为熔融石英、铌酸锂晶体或钽酸锂晶体
本实施所述的激光增益介质(3)为nd:yvo4、nd:yag、nd:yap或者ti:sapphire增益晶体。
实施例2
图2所示为激光二极管端面泵浦的六镜环形谐振腔全固态连续波单频可调谐激光器的装置结构,包括泵浦源1、由腔镜(21、22、23、24、25、26)组成的环形谐振腔2、激光增益介质3、置于永磁体内的磁光介质4、半波片5、标准具6、振镜电机7、非线性倍频晶体8、压电陶瓷9、分光镜10、光学分束器11、光电探测器12、伺服控制器13。激光谐振腔由输入耦合镜21、第一腔镜22、第二腔镜23、第三腔镜24、第四腔镜25、输出耦合镜26组成六镜环形腔结构;输入耦合镜21为平面镜,镀有对泵浦光减反、对基频光高反膜,第一腔镜22、第二腔镜23、第三腔镜24均为平面镜,且均镀有对基频光高反膜,第四腔镜25为平凹镜,镀有对基频光高反膜,输出耦合镜24为平凹镜,镀有对基频光高反膜,对倍频光高透膜;其中,第二腔镜23安装在压电陶瓷9上;其余部分与实施例1相同。
以nd:yvo4晶体作为激光增益介质3、三硼酸锂晶体作为非线性倍频晶体8、1mm厚的铌酸锂晶体制成的标准具6为例,当全固态连续波单频激光器正常工作时,激光谐振腔2内的线性损耗为l=5.8%。在泵浦功率为7.87w,获得倍频光(532nm)功率为2.1w的情况下,非线性倍频晶体8的倍频转化效率为η=1.87%。当标准具未锁定时,通过调节加载在振镜电机7上的电压来调节标准具6的入射角,测量了其调谐曲线,如图3所示。从图中可看出,标准具6的自由光谱区为νfsr=59ghz@1064nm(118ghz@532nm)。nd:yvo4晶体的增益线宽为255ghz@1064nm。根据上述已知参量值以及公式(1),计算得到全固态连续波单频激光器输出频率的连续调谐范围可达到126.18ghz@1064nm(252.36ghz@532nm)。在实验中,通过调节加载在振镜电机7上的电压来调节标准具6的入射角,当全固态连续波单频激光器输出波长调谐到532.2549nm时,利用伺服控制器13将标准具6的透射峰与激光谐振腔2的振荡模实时锁定,扫描加载在压电陶瓷9上的电压来扫描激光谐振腔2的腔长,实现全固态连续波单频激光器输出波长(或频率)的连续调谐,得到的倍频光波长的扫描曲线如图4所示,其输出波长可从532.1471nm连续调谐到532.3570nm,对应频率范围为222.4ghz,该范围与理论计算得到的252.36ghz的调谐范围有一定的偏差,这可能是由于理论计算中使用的参量值与实际的全固态连续波单频激光器中的参量值有一定偏差造成的,但是该调谐范围已远远超出了标准具6的一个自由光谱范围(118ghz@532nm)。上述结果表明,联合腔内锁定的标准具以及腔内非线性损耗,全固态连续波单频激光器的连续调谐范围得到有效扩展。