一种基于EBG结构的微带天线的制作方法

文档序号:14725471发布日期:2018-06-19 06:25阅读:189来源:国知局

技术领域

本发明属于天线技术领域,具体地说,尤其涉及一种基于EBG结构的微带天线。



背景技术:

无线通信技术,是利用电磁波信号在自由空间中传播的特性进行信息交换的一种通信方式,一切无线电设备都是靠无线电波来进行工作的,而电磁波的发射和接收都要通过天线来实现,天线作为无线通信系统的门户,其辐射性能的好坏,直接影响到系统的通信质量,天线在现代无线通信中的作用无可替代,对天线性能的要求也逐渐提高。

如果天线比较靠近导体表面,天线所产生的电磁波在导体表面会引起反射波,而反射波相位与天线直接发射的电磁波的相位几乎相反,从而大大减小天线的发射效率,而且金属材料本身属于高电磁损耗材料,其各向异性、难以调控以及设备复杂,同时,降低天线系统的剖面轮廓和节省空间距离又成为通信设备向小型化发展的瓶颈,而通过介质材料与超构材料的融合,使材料与电磁波相互作用产生电磁耦合响应行为,即非金属介质基超构材料的使用是突破上述问题的重要途径。



技术实现要素:

本发明目的在于提供一种金属损耗率低、电磁波反射能力强、工作频带广的基于EBG结构的微带天线。

为了实现上述技术目的,本发明基于EBG结构的微带天线采用的技术方案为:

一种基于EBG结构的微带天线,包括介质基板、设于介质基板上表面的多层金属结构、设于介质基板底部的金属接地板以及设于金属结构中部的微带天线,所述金属结构包括设于两侧的第一EBG金属贴片、第二EBG金属贴片以及设于中间的第三EBG金属贴片,所述第一EBG金属贴片和第二EBG金属贴片首尾顺序衔接,且首尾之间设有空隙,所述第三EBG金属贴片中部设有用于连接第三EBG金属贴片和金属接地板的导电过孔,所述导电过孔外周蚀刻有多个沿导电过孔中心分布的四分之一圆环形槽,所述微带天线包括贴设于介质基板表面的天线辐射贴片,所述天线辐射贴片两侧对称设有弧形槽,中部设有“工”字形槽,所述弧形槽边缘形成同轴馈电点。

优选的,所述天线辐射贴片为圆形。

优选的,所述导电过孔为中空圆柱形。

优选的,所述“工”字形槽上下对称设置。通过将工字槽蚀刻在天线辐射贴片的上下侧,使天线的辐射特性得到很好的改善,抑制天线的表面波。

优选的,所述弧形槽左右对称设置。通过将弧形槽左右设置,从而提高天线的前后辐射比。

所述介质基板采用介质陶瓷制成,包括以下重量份的组分组成:51~57份的钛酸锶钡、35~40份的堇青石、10~15份的金属氧化物,金属氧化物为碳酸钙、氧化铜或三氧化二铁中的一种或几种。通过将陶瓷、堇青石以及金属共制,从而形成良好的二维光子晶体表面。

所述介质陶瓷的制备方法,包括以下步骤:

(1)配制堇青石原料,并将其研磨成颗粒直径小于1微米的超细粉,再配制钛酸锶钡原料,并将其研磨成颗粒直径小于1微米的超细粉;

(2)向加热炉内加入堇青石细粉,将温度上升至1460℃以上,使堇青石细粉融化,随后加入金属氧化物,继续熔融1h后,再加入钛酸锶钡细粉混合均匀后,升温至2060℃以上,烧结2~4h,将已制成的介质陶瓷粉碎研磨,制成致密介质陶瓷颗粒;

(3)在特氟龙基板表面钻设出周期分布的孔隙,再将介质陶瓷颗粒加入到孔隙中,从而形成介质陶瓷。

与现有技术相比,本发明的有益效果是:

本发明通过采用介质陶瓷作为介质基板,避免了金属欧姆损耗,可以实现损耗极低的超构材料,多个介质陶瓷呈周期排列于一个平面上,可使整个平面上的电磁波传播被禁止,提高了天线的定向增益;利用超构材料的低损耗,从而保证电磁能量的高效辐射;基于介质如陶瓷的全介质超构材料结构,可以通过温度、非线性等实现其工作频率的宽频调谐,从而扩展天线工作频带。

附图说明

图1是本发明的俯视图;

图2是本发明中金属结构的结构示意图;

图3是本发明的主视图;

图4是本发明微带天线加载/未加载EBG结构时的S11以及S21参数对比图。

图中:1.介质基板;2.金属接地板;3.第一EBG金属贴片;4.第二EBG金属贴片;5.第三EBG金属贴片;6.空隙;7.导电过孔;8.四分之一圆环形槽;9.天线辐射贴片;10.弧形槽;11.“工”字形槽;12.同轴馈电点。

具体实施方式

下面结合附图和具体实施方式,进一步阐明本发明,应理解这些实施方式仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定的范围。

如图1—图4所示,一种基于EBG结构的微带天线,包括介质基板1、设于介质基板1上表面的多层金属结构、设于介质基板1底部的金属接地板2以及设于金属结构中部的微带天线,所述金属结构包括设于两侧的第一EBG金属贴片3、第二EBG金属贴片4以及设于中间的第三EBG金属贴片5,所述第一EBG金属贴片3和第二EBG金属贴片4首尾顺序衔接,且首尾之间设有空隙6,所述第三EBG金属贴片5中部设有用于连接第三EBG金属贴片5和金属接地板2的导电过孔7,所述导电过孔7为中空圆柱形,所述导电过孔7外周蚀刻有多个沿导电过孔7中心分布的四分之一圆环形槽8,所述微带天线包括贴设于介质基板1表面的圆形天线辐射贴片9,所述天线辐射贴片9两侧对称设有弧形槽10,中部设有上下对称设置的“工”字形槽11,所述弧形槽10左右对称设置,所述弧形槽10边缘形成同轴馈电点12。

天线辐射贴片9在设置时,与EBG金属贴片存在一定距离,避免距离太近而产生较强的耦合,从而干扰天线的方向,距离太远,则无法有效传播天线反射的电磁波,此时需增加天线尺寸,违背尺寸小的要求。

所述介质基板采用介质陶瓷制成,包括以下重量份的组分组成:51~57份的钛酸锶钡、35~40份的堇青石、10~15份的金属氧化物,金属氧化物为碳酸钙、氧化铜或三氧化二铁中的一种或几种。

所述介质陶瓷的制备方法,包括以下步骤:

(1)配制堇青石原料,并将其研磨成颗粒直径小于1微米的超细粉,再配制钛酸锶钡原料,并将其研磨成颗粒直径小于1微米的超细粉;

(2)向加热炉内加入堇青石细粉,将温度上升至1460℃以上,使堇青石细粉融化,随后加入金属氧化物,继续熔融1h后,再加入钛酸锶钡细粉混合均匀后,升温至2060℃以上,烧结2~4h,将已制成的介质陶瓷粉碎研磨,制成致密介质陶瓷颗粒;

(3)在特氟龙基板表面钻设出周期分布的孔隙,再将介质陶瓷颗粒加入到孔隙中,从而形成介质陶瓷。

当电磁波工作于结构本征频率周围的时候,无论电磁波在EBG结构表面的入射角是多少,其反射角接近于零,即反射波几乎与法线方向平行,使得不同方向入射的电磁波最终都趋近于法线方向反射到自由空间,因此,天线的辐射能量更加集中,方向性得到较好的改善;

采用介质陶瓷作为介质基板,利用超构材料自身特性,即具有自然界中的材料所不具备的超常性质的人工材料,实现金属欧姆损耗的降低,同时通过温度、非线性等手段,实现天线工作频带的扩展,介质陶瓷颗粒的磁谐振频率不随电磁波模态和入射方向变化,表现出良好的各向同性特性。

如图4所示,本发明加载EBG结构的微带天线S11小于-10dB宽带范围为5.10GHz—7.30 GHz和11.10 GHz—13.60 GHz,而未加载EBG结构的微带天线S11小于-10dB宽带范围为7.85GHz—8.15 GHz,相比于未加载EBG结构的天线,本发明微带天线的宽带明显拓宽。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1