一种大栅宽的GaN基微波功率器件的制作方法

文档序号:14937883发布日期:2018-07-13 19:45阅读:178来源:国知局

本实用新型涉及半导体器件技术领域,具体涉及可用于高频率、高功率的无线通信、雷达等领域的一种大栅宽的GaN基微波功率器件。



背景技术:

随着现代武器装备和航空航天、核能、通信技术、汽车电子、开关电源的发展,对半导体器件的性能提出了更高的要求。作为宽禁带半导体材料的典型代表,GaN基材料具有禁带宽度大、电子饱和漂移速度高、临界击穿场强高、热导率高、稳定性好、耐腐蚀、抗辐射等特点,可用于制作高温、高频及大功率电子器件。另外,GaN还具有优良的电子特性,可以和AlGaN形成调制掺杂的AlGaN/GaN异质结构,该结构在室温下可以获得高于1500cm2/Vs的电子迁移率,以及高达3×107cm/s的峰值电子速度和2×107cm/s的饱和电子速度,并获得比第二代化合物半导体异质结构更高的二维电子气密度,被誉为是研制微波功率器件的理想材料。因此,基于AlGaN/GaN异质结的微波功率器件在高频率、高功率的无线通信、雷达等领域具有非常好的应用前景。

GaN基微波功率器件的总输出功率和器件的栅极宽度密切相关,为了提高器件的总功率,就要增大器件的栅宽。然而简单地增加单个栅指的宽度会增大寄生电阻。从节省芯片面积、提高成品率、减小电信号的相移等多种因素考虑,合理的做法是采用多栅结构,即采用多根较小宽度的栅组合成较大的栅宽。常见的多栅结构有平行栅和鱼骨形栅两种。在平行栅结构中,信号从栅电极输入,分配到每个栅指,放大后再漏端被收集。中间的栅指信号和两侧的栅指信号有明显的相差,造成漏端信号产生相移。栅指个数越多,这种情况越严重,所造成的功率附加效率的下降越多。在鱼骨形栅结构中,信号向更远的栅指单元传输时,栅指上信号的传输路程增大,则漏极收集信号再传递出去的路程减小,反之亦然,因此信号传输的总路程不变,每个栅指单元信号所经历的总路程相同。不同栅指间信号的相移大为缩小,使功率附加效率提高。同时,鱼骨形栅结构的栅指向两侧分布,还更利于器件散热。鱼骨形栅结构的缺点是每个漏端的空气桥都要从栅和源电极上跨过,造成较大的寄生电容,使得信号增益下降。综合来看,平行栅结构和鱼骨形栅结构在提高器件总功率的同时,也带来了功率附加效率下降、信号增益下降等问题。



技术实现要素:

本实用新型的目的在于克服上述已有技术的缺陷,从优化器件栅指分布的角度提出一种大栅宽的GaN基微波功率器件及其制造方法,提高器件的总输出功率和效率、减小芯片面积、降低工艺难度、提高良品率。

本实用新型的目的至少通过如下技术方案之一实现。

一种大栅宽的GaN基微波功率器件及其制造方法,其特征在于该器件包括AlGaN/GaN异质结外延层、覆盖在AlGaN/GaN异质结外延层上的第一介质层、长条状的源电极、鱼骨状分布的漏电极、环状的栅电极、隔离上下两层电极的第二介质层、互连金属电极pad。

进一步地,AlGaN/GaN异质结外延层从下至上包括衬底、氮化物成核层、氮化物缓冲层、GaN沟道层、AlGaN势垒层;衬底材质为蓝宝石、硅或碳化硅,氮化物成核层为GaN或AlN,氮化物缓冲层为GaN、AlGaN、渐变组分AlGaN或其组合,GaN沟道层和AlGaN势垒层之间具有高电子迁移率的二维电子气。

进一步地,覆盖在AlGaN/GaN异质结外延层上的第一介质层为SiN、SiO2、SiON、Ga2O3、Al2O3、AlN、HfO2中的一种,或者是其组合而成多层结构,厚度为10nm~50nm。

进一步地,源电极和漏电极贯穿整个第一介质层,与AlGaN势垒层接触。形成源电极和漏电极的材料为Ti/Al多层金属体系,如Ti/Al/Ni/Au。源电极和漏电极通过高温退火与AlGaN势垒层形成欧姆接触。

进一步地,有多根长条状的源电极平行地分布在AlGaN/GaN异质结外延层的表面,形成多个栅指单元。

进一步地,多根漏电极以类似鱼骨的形状分布在AlGaN/GaN异质结外延层的表面,每根鱼刺(漏电极)都与源电极平行,所有的漏电极均通过中间的鱼脊连接在一起。且每根漏电极都与一根源电极形成一个栅指单元,所有漏电极和源电极构成多个栅指单元。

进一步地,栅电极在第一介质层之上,底部与第一介质层接触,栅电极与AlGaN/GaN异质结外延层之间是第一介质层。形成栅电极的材料为Ni/Au等具有良好导电性的多层金属体系。

进一步地,栅电极分布在源电极和漏电极之间,以环状的形式包围源电极,与一根源电极和一根漏电极组成一个栅指单元。

进一步地,第二介质层位于第一介质层上方,并且覆盖源电极、漏电极和栅电极,其材料为SiN、SiO2、SiON中的一种,或者是其组合而成多层结构,厚度为300nm~500nm。

进一步地,部分区域的源电极、漏电极和栅电极上方的第二介质层被去除,形成通孔,通孔的形状可以是正方形、长方形、圆形中的一种,通孔的宽度不超过通孔下方的电极的尺寸,即通孔面积小于电极面积。

进一步地,互连金属电极pad通过第二介质层上的通孔,分别与源电极、漏电极和栅电极连接,分别形成用于器件测试和封装的源电极、漏电极和栅电极。互连金属电极pad的材料为Ti/Al/Au等具有良好导电性且在空气中稳定和表面不易的多层金属体系。

进一步地,互连金属电极pad与源电极相连时,以第二介质层作为介质桥,从栅电极和漏电极上方跨过。

制备所述的一种大栅宽的GaN基微波功率器件的方法,包括如下步骤:

1)外延工艺:通过金属有机气相沉积的方法,在衬底上依次外延生长氮化物成核层、氮化物缓冲层、GaN沟道层、AlGaN势垒层,形成AlGaN/GaN异质结外延层;

2)器件隔离:通过光刻工艺定义有源区,采用光刻胶对有源区进行覆盖保护,利用ICP刻蚀去除有源区外的AlGaN/GaN异质结,刻蚀的深度大于AlGaN势垒层,去除AlGaN势垒层和一部分GaN沟道层,以实现不同器件之间的隔离;

3)介质沉积工艺:在AlGaN/GaN异质结外延层上沉积第一介质层,材料为SiN、SiO2、SiON、Ga2O3、Al2O3、AlN、HfO2中的一种,或者是其组合而成多层结构,厚度为10nm~50nm,沉积方式可以是金属有机化学气相沉积MOCVD、等离子增强化学气相沉PECVD、低压化学气相沉积LPCVD中的一种;

4)栅极工艺:通过电子束蒸发或者磁控溅射的方式在第一介质层上沉积栅极金属薄膜,材料为Ni/Au等具有良好导电性的多层金属体系。通过电子束曝光工艺在金属薄膜上定义栅电极图形,通过ICP或者RIE的方式对栅极金属薄膜进行刻蚀,然后去除光刻胶,剩下栅电极。

5)源漏极工艺:通过负胶光刻工艺在第一介质层上定义源电极和漏电极图形。通过ICP将源电极和漏电极图形位置处的第一介质层完全刻蚀去除。通过电子束蒸发或者磁控溅射的方式沉积源漏电极金属薄膜,材料为Ti/Al多层金属体系,如Ti/Al/Ni/Au。然后通过剥离工艺,形成源电极和漏电极。将样品置于氮气氛围下,在800摄氏度以上的高温中退火30s,使源漏电极金属与AlGaN/GaN异质结外延层形成欧姆接触。

6)介质沉积:第一介质层上方沉积第二介质层,并完全覆盖源电极、漏电极和栅电极。第二介质层的材料为SiN、SiO2、SiON中的一种,或者是其组合而成多层结构,厚度为300nm~500nm,沉积方式是等离子增强化学气相沉PECVD。

7)通孔刻蚀工艺:通过光刻工艺,在第二介质层上,对应源电极、漏电极、栅电极的位置定义通孔图形,利用ICP刻蚀通孔位置处的第二介质层材料,使该位置的第二介质层完全去除,暴露出下方的电极;

8)互连金属pad:通过光刻工艺,定义互连金属pad图形。通过电子束蒸发沉积互连金属,材料为Ti/Al/Au等具有良好导电性且在空气中稳定和不易氧化的多层金属体系。

进一步地,所述栅极工艺和所述源漏极工艺的次序可以互换。

与现有技术相比,本实用新型具有如下优点和技术效果:

该器件是基于AlGaN/GaN异质结的GaN基高电子迁移率晶体管,通过优化栅指分布,形成鱼骨形漏极的大栅宽器件结构,避免了传统的平行栅和鱼骨形栅等多指栅结构中的电信号相移、寄生电容等问题,信号增益高、功率附加效率高、输出功率高。同时,器件的制造工艺简单,节省芯片面积,重复性好。本实用新型的大栅宽的GaN基微波功率器件,适用于高频率、高功率的无线通信、雷达等领域。

附图说明

图1是本实用新型中的一种大栅宽的GaN基微波功率器件的俯视示意图。

图2a~图2l是本实用新型实例中一种大栅宽的GaN基微波功率器件的制备过程示意图。

具体实施方式

以下结合附图和实例对本实用新型的具体实施作进一步说明,但本实用新型的实施和保护不限于此,需指出的是,以下若有未特别详细说明之过程或工艺参数,均是本领域技术人员可参照现有技术实现的。

参照图1,一种大栅宽的GaN基微波功率器件及其制造方法,包括:AlGaN/GaN异质结外延层1、覆盖在AlGaN/GaN异质结外延层上的第一介质层2、长条状的源电极3、鱼骨状分布的漏电极4、环状的栅电极5、隔离上下两层电极的第二介质层6、互连金属电极pad7。

AlGaN/GaN异质结外延层从下至上包括衬底、氮化物成核层、氮化物缓冲层、GaN沟道层、AlGaN势垒层;衬底材质碳化硅,氮化物成核层为GaN、氮化物缓冲层为GaN,GaN沟道层和AlGaN势垒层之间具有高电子迁移率的二维电子气。第一介质层2为SiN,厚度为30nm。源电极3和漏电极4贯穿整个第一介质层,与AlGaN势垒层接触。形成源电极和漏电极的材料为Ti/Al/Ni/Au=20/100/10/50nm。源电极3和漏电极4通过高温退火与AlGaN势垒层形成欧姆接触。有多根长条状的源电极3平行地分布在AlGaN/GaN异质结外延层的表面,形成多个栅指单元。进一步地,多根漏电极4以类似鱼骨的形状分布在AlGaN/GaN异质结外延层的表面,每根鱼刺漏电极都与源电极3平行,所有的漏电极4均通过中间的鱼脊连接在一起。且每根漏电极4都与一根源电极3形成一个栅指单元,所有漏电极4和源电极3构成多个栅指单元。栅电极5在第一介质层2之上,底部与第一介质层2接触,栅电极与AlGaN/GaN异质结外延层1之间是第一介质层。形成栅电极的材料为Ni/Au=50/50nm。栅电极分布在源电极和漏电极之间,以环状的形式包围源电极,与一根源电极和一根漏电极组成一个栅指单元。第二介质层6位于第一介质层2上方,并且覆盖源电极3、漏电极4和栅电极5,其材料为SiN,厚度为500nm。部分区域的源电极3、漏电极4和栅电极5上方的第二介质层6被去除,形成通孔8,通孔8的形状是正方形,通孔8的宽度不超过通孔8下方的电极的尺寸,即通孔8面积小于电极面积。互连金属电极pad7通过第二介质层6上的通孔8,分别与源电极3、漏电极4和栅电极5连接,分别形成用于器件测试和封装的源电极、漏电极和栅电极。互连金属电极pad的材料为Ti/Al/Au=50/450/50nm。互连金属电极pad与源电极相连时,以第二介质层作为介质桥,从栅电极和漏电极上方跨过。

仅作为举例,如图2a~图2l,具体实施步骤如下:

步骤一,外延工艺。通过金属有机气相沉积MOCVD的方法,在衬底上依次外延生长GaN成核层、GaN缓冲层、GaN沟道层、AlGaN势垒层,形成AlGaN/GaN异质结外延层1,如图2a所示;

步骤二,器件隔离:通过光刻工艺定义有源区,采用光刻胶对有源区进行覆盖保护。利用ICP刻蚀去除有源区外的AlGaN/GaN异质结,刻蚀的深度大于AlGaN势垒层,为200nm,去除AlGaN势垒层和一部分GaN沟道层,以实现不同器件之间的隔离,如图2b所示;

步骤三,介质沉积工艺。在AlGaN/GaN异质结外延层上沉积第一介质层2,材料为SiN,厚度为30nm,如图2c所示,沉积方式是低压化学气相沉积LPCVD;

步骤四,栅极工艺。通过电子束蒸发在第一介质层上沉积栅极金属薄膜,金属材料为Ni/Au=50/50nm。通过电子束曝光工艺在金属薄膜上定义栅电极图形,通过ICP对栅极金属薄膜进行刻蚀,然后去除光刻胶,形成栅电极5,如图2d所示。栅电极5的分布如图所示2e所示。

步骤五,源漏极工艺。通过负胶光刻工艺在第一介质层2上定义源电极和漏电极图形。利用ICP通过氟基离子刻蚀将源电极和漏电极图形位置处的第一介质层2完全刻蚀去除。通过电子束蒸发沉积源漏电极金属薄膜,金属材料为Ti/Al/Ni/Au=20/100/10/50nm。然后通过剥离工艺,形成源电极3和漏电极4,如图2f所示。将样品置于氮气氛围下,在850度中退火30s,使源漏电极金属与AlGaN/GaN异质结外延层1形成欧姆接触。源电极3和漏电极4的分布如图2g所示。

步骤六,介质沉积。第一介质层2上方沉积第二介质层6,并完全覆盖源电极3、漏电极4和栅电极5,如图2h所示。第二介质层的材料为SiN,厚度为500nm,沉积方式是等离子增强化学气相沉PECVD。

步骤七,通孔刻蚀工艺。通过光刻工艺,在第二介质层6上,对应源电极3、漏电极4和栅电极5的位置定义通孔图形8。其中,在每根源电极3上均有通孔图形,在鱼脊处的漏电极4上有通孔图形,在最外环的栅电极5上有通孔图形,通孔8的分布如图2i所示。利用ICP通过氟基离子刻蚀通孔8位置处的第二介质层6材料,使该位置的第二介质层完全去除,暴露出下方的电极,如图2j所示;

步骤八,互连金属pad。通过光刻工艺,定义互连金属pad图形。通过电子束蒸发沉积互连金属Ti/Al/Au=50/450/50nm,然后通过剥离工艺形成互连金属pad7。互连金属pad7的图形如图2k所示。

该器件是基于AlGaN/GaN异质结的GaN基高电子迁移率晶体管,通过优化栅指分布,形成鱼骨形漏极的大栅宽器件结构,避免了传统的平行栅和鱼骨形栅等多指栅结构中的电信号相移、寄生电容等问题,信号增益高、功率附加效率高、输出功率高。同时,器件的制造工艺简单,节省芯片面积,重复性好。本实用新型的大栅宽的GaN基微波功率器件,适用于高频率、高功率的无线通信、雷达等领域。

上述实施例仅本实用新型的优选实例,不构成对本实用新型的任何限制,显然对于本领域的专业人员来说,在了解了本实用新型内容和原理后,能够在不背离本实用新型的原理和范围的情况下,根据本实用新型的方法进行形式和细节上的各种修正和改变,但是这些基于本实用新型的修正和改变仍在本实用新型的权利要求保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1