一种制备R-Fe-B系烧结磁体的装置的制作方法

文档序号:14965453发布日期:2018-07-18 02:16阅读:109来源:国知局

本实用新型涉及稀土永磁材料技术领域,具体地讲是一种制备R-Fe-B系烧结磁体的装置。

技术背景:

随着全球范围内新能源产业如风力发电、空调和冰箱压缩机、混合动力、燃料电池及纯电动汽车的迅速发展和技术进步,对R-Fe-B系稀土烧结磁体性能提出了更高的要求,尤其是为满足苛刻的使用环境对磁体的矫顽力提出了更高的要求,传统的提高矫顽力的方法是在原材料熔炼过程中添加铽或镝的纯金属或合金。但由于铽或镝大部分进入主相,虽然矫顽力明显提高,但是剩磁却有很大程度的降低。而且由于近年来全球稀土资源相对匮乏,镝或铽的价格又大幅度提高,因此降低生产成本、减少重稀土元素的用量,同时保证磁体高的磁性能成为钕铁硼行业的一个重要发展方向。

随着低重稀土、高矫顽力烧结钕铁硼材料的深入研究,晶界扩散工艺被提出并获得了较大的发展。该方法主要是人为的将镝或铽从烧结钕铁硼磁体沿着晶界扩散进入钕铁硼基体相,并择优分布于主相晶粒边缘,改善不均匀区各向异性,明显提高矫顽力且保持剩磁几乎不会下降。由于晶界扩散工艺在提高磁体矫顽力的同时不会降低磁体的剩磁和磁能积,而且重稀土用量少,具有重大实用意义。因此在最近十几年来,围绕晶界扩散进行了大量的研究工作,在镝或铽在磁体表面的堆积方式上做了大量研究。

中国专利CN 102768898A公开了将铽或镝的氧化物、氟化物或氟氧化物做成浆料涂敷在烧结磁体表面,之后对磁体进行热处理,使铽或镝沿晶界进入烧结磁体内部的方法,从而提高烧结磁体的矫顽力。但使用该方法处理后的磁体表面会粘附大量含铽或镝的粉末,即使清理后,表面仍残留少部分,造成材料的浪费,且使用该方法,涂敷浆料厚度不均匀,如此会造成在热处理后的磁体各处矫顽力不均匀,矫顽力提升不高,磁体容易退磁。

中国专利CN 102969110 A公开了蒸镀扩散法,将烧结磁铁放入处理室内,处理室内配置镝或铽至少一种蒸发材料,加热到规定温度使蒸发材料蒸发,使该蒸发的蒸发材料附着到烧结磁体表面,使该附着的蒸发材料的镝或铽的金属原子扩散到烧结磁体的晶界相中。使用该方法,烧结磁体跟蒸发材料镝或铽不能直接接触,烧结磁体需要放在网架或其它支撑体上,镝或铽的蒸汽与烧结磁体发生反应时,晶界相处于融化状态,在该条件下,由于重力作用,烧结磁体在网架或支撑体接触的部分发生畸变,需要进行二次整形处理,而且采用蒸镀的方法,蒸发出来的镝或铽蒸汽会部分凝固在处理室内壁及磁体支撑体上,不仅造成重金属的浪费而且也降低了生产效率。

中国专利CN101707107A还公开了一种使用重稀土元素镝或铽的氧化物、氟化物或氟氧化物,将烧结磁体掩埋其中后在真空烧结炉内进行热处理的方法。使用该方法处理后的磁体表面同样会粘附大量含铽或镝氧化物、氟化物或氟氧化物的粉末,即使清理后,表面仍残留少部分,造成材料的浪费,而且,此方法是固体颗粒粉末跟烧结磁体直接接触,在高温下扩散,扩散颗粒跟烧结磁体是点接触的,如此会造成烧结磁体不同位置扩散进去的铽或镝不均匀,从而热处理后的烧结磁体各处矫顽力不均匀,矫顽力提升不高,磁体容易退磁。

中国专利CN201310209231B公开了一种采用热喷涂方法在烧结磁体表面喷涂金属镝或金属铽的方法。采用该方法粉末离化效果差,喷涂到烧结磁体表面的都是大颗粒,外观不好,影响扩散后烧结磁体的均匀性,而且该方法只能实现大面积喷涂,无法实现烧结磁体局部喷涂,从烧结磁体应用角度来讲,不利于贵金属的利用率提高;另一方面金属铽或金属镝属于易氧化金属,很难实现做成专利中作为喷涂材料的铽丝或镝丝,即使能够实现,加工成本也会很高;而且喷枪中阴极材料属于损耗品,降低了设备使用的稳定性。



技术实现要素:

本实用新型的目的是克服上述已有技术的不足,而提出一种制备R-Fe-B系烧结磁体的装置;主要解决现有技术中浆料涂覆法材料浪费、不同区域涂覆厚度不均匀问题,解决采用蒸镀方法磁钢畸变,需要二次整形、蒸镀材料利用率低问题,解决掩埋扩散接触材料接触不充分,性能提升不均匀的问题,也解决喷涂法只能大面积喷涂,无法实现局部喷涂的问题。

本实用新型技术技术方案是:一种制备R-Fe-B系烧结磁体的装置,包括密闭仓,其特殊之处在于,所述的密闭仓上设等离子喷枪和开设氩气补给口,等离子喷枪的正上方对应设金属镝或铽粉末储料斗;所述的密闭仓内设输送机构,输送机构上排布待镀膜的烧结磁体的扩散基体,输送机构位于等离子喷枪的正下方;在密闭仓内活动设翻面机构,翻面机构的翻面操作端能伸缩旋转;在密闭仓外一侧连接真空系统和电源及控制和水冷系统,在密闭仓外另一侧连接氩气循环系统及供气系统,氩气循环系统、供气系统与真空系统配合控制密闭仓内压强。

进一步的,所述的等离子喷枪为等离子体喷枪,其结构为三层耐高温石英管或陶瓷管组成,改变各管径大小能改变单次喷涂的宽度。

进一步的,所述的氩气循环系统包括氩气过滤、清洗及压缩。

进一步的,所述的输送机构为板链式,待镀膜的烧结磁体的扩散基体一面镀膜后,通过翻面机构实现翻面,进行另外一面镀膜。

本实用新型的一种制备R-Fe-B系烧结磁体的装置与已有技术相比具有如下积极效果,1、通过等离子体喷枪将镝金属或铽金属粉末沉积在R-Fe-B系烧结磁体的扩散基体表面上的区域、沉积形状可以指定,通过热处理的方式使烧结磁体的扩散基体表面沉积的金属铽或者镝在高温下通过晶界扩散进入烧结磁体的扩散基体内部,可大幅提高沉积区域烧结磁体的扩散基体的矫顽力;与现有的表面涂敷、真空蒸镀、掩埋扩散、热喷涂等方法进行晶界扩散处理相比,涂层厚度均匀,与烧结磁体的扩散基体结合强度高,外观好,无需二次整形处理,材料利用率高,扩散后得到的烧结磁体矫顽力均匀;2、粉末离散比雾化效果更好,而且喷涂区域可以指定,在烧结磁体产品使用性能相同的情况下,有效的节省了单片烧结磁体基体需要沉积的镝或铽使用量;3、喷枪结构简单,无消耗结构件,提高了使用的稳定性。

附图说明:

图1是本实用新型的专用装置结构示意图;

图2是距待镀膜烧结磁体的扩散基体边缘1mm沉积区域示意图;

图3是图2的边缘沉积取样示意图。

具体实施方式:

以下结合附图及实施方式,进一步阐述本实用新型,但以下描述的具体实施方式和实施例仅是说明本实用新型,而非是对本实用新型范围的限制,另外,本领域技术人员在阅读本实用新型后,以同等替代进行本实用新型改动或修改,均落在本申请权利要求书所限定范围内。

本实用新型中所使用的烧结磁体毛坯及烧结磁体的扩散基体采用行业内公知的现有技术制备,制备R-Fe-B系烧结磁体的装置,如图1所示;装置包括密闭仓11,在密闭仓11上安装等离子喷枪1和开设氩气补给口8,等离子喷枪1为等离子体喷枪,结构为三层耐高温石英管或陶瓷管组成,改变各管径大小可改变单次喷涂的宽度;在等离子喷枪1的正上方对应位置安装金属镝或铽粉末储料斗2;在密闭仓11内安装输送机构4,输送机构4为板链式,输送机构4上排布待镀膜的烧结磁体的扩散基体5,输送机构4位于等离子喷枪1的正下方;同时密闭仓11内安装翻面机构6,翻面机构6的翻面操作端能伸缩旋转,待镀膜的烧结磁体的扩散基体5一面镀膜完成后通过翻面机构6进行反转,进行另外一面镀膜;在密闭仓11外一侧连接真空系统7和电源及控制和水冷系统10,在密闭仓11外另一侧连接氩气循环系统3及供气系统9,氩气循环系统3包括氩气过滤、清洗及压缩系统;由氩气循环系统3、供气系统9与真空系统7配合作用维持密闭仓11压强与工艺设定一致,从而有效地控制密闭仓11内部环境及工作气氛。

工作时,在等离子喷枪1内的电感线圈输入27.12MHz射频电流,电源功率为6000W,采用电火花放电器激活喷枪内工作气体以产生等离子体,金属镝或铽粉末从储料斗2下落,被载气带到等离子体喷枪产生的热等离子区,金属镝或金属铽粉末在等离子区域迅速吸热后熔融,并在表面张力及电磁力作用下离散和雾化成微小球形液滴,同时在载气的吹动下,进入密闭仓11后沉积在待镀膜的烧结磁体的扩散基体5的表面上,形成均匀的金属镝或金属铽薄膜;待镀膜的烧结磁体的扩散基体5在密闭仓内的输送机构4上紧密排布,选择通入载气和反应气体速度,可控制待镀膜的烧结磁体的扩散基体5表面沉积镝或铽的速度,当烧结磁体的扩散基体一面沉积完成后,烧结磁体的扩散基体通过翻面机构6翻面,对另一面进行沉积;沉积后的烧结磁体的扩散基体放入真空烧结炉,在400~1000℃下对烧结磁体的扩散基体进行吸收处理,处理时间为10~90h,真空炉内真空度保持在10-2Pa~10-4Pa,或在真空炉内采用10~30kPa的氩气保护气氛下进行处理,使镝金属或铽金属沿晶界扩散到烧结磁体的扩散基体内部,得到本实用新型的烧结磁体。

以下实施例均采用上述专用装置。

实施例1,以沉积材料为铽金属为例;在惰性气体环境下熔炼金属合金,该合金由:Nd:24.5%,Pr:6%,B:1%,Co:1.5%,Ti:0.1%,Al:0.5%,Cu:0.2%,Ga:0.2%和余量Fe组成;将熔融的金属合金通过速凝薄带工艺进行浇注,得到厚度0.2~0.5mm的片状合金薄片;薄片经过氢处理、气流磨制粉,制成平均粒度为4μm的合金粉末;对制得的合金粉末在2T磁场下取向成型,继而进行等静压,制得压坯;将压坯在1050℃下烧结4h,而后在480℃下时效3h得到烧结磁体毛坯;继而通过机加工将烧结磁体毛坯加工成尺寸20mm×16mm×1.8mm磁体;然后进行除油、酸洗、活化、去离子水清洗、烘干等清洁处理;作为烧结磁体的扩散基体,标记为B1;

取B1烧结磁体的扩散基体300片放入密闭仓内,调整等离子体喷枪中的载气、反应气和冷却气的流量分别是2L/min,8L/min和10L/min,调节真空系统及氩气循环系统,保证工作时仓内的氩气压力保持在0.1kPa和氧含量控制在500ppm以下,设定金属铽粉末通过载气被送入等离子焰炬内的速度为5g/min,粉末粒度为50~100μm,等离子体喷枪距B1烧结磁体的扩散基体表面距离保持5mm;在载气带动下,金属镝或金属铽粉末被送到等离子焰炬内迅速吸热后熔融,并在表面张力及电磁力作用下离散和雾化成微小球形液滴,在B1烧结磁体的扩散基体表面沉积10μm厚的铽,沉积完一面后B1烧结磁体的扩散基体实现翻转,在另一面沉积10μm厚的铽;

将经过沉积处理后的B1烧结磁体的扩散基体置于真空烧结炉内,在900℃温度下,真空条件下(压强10-2-10-3Pa范围内)处理6h,之后在400℃下时效处理4h,通氩气冷却至室温;打开真空烧结炉炉门,得到本实用新型烧结磁体;任意取3件样品测试其性能,样品标号分别为S1、S2、S3。经过测量分析,其性能见表1。

对比例1,在惰性气体环境下熔炼金属合金,该合金由:铽:3.5%,Nd:21.8%,Pr:5.5%,B:0.98%,Co:1.1%,Ti:0.1%,Al:0.1%,Cu:0.2%,Ga:0.2%和余量Fe组成。将熔融的金属合金通过速凝薄带工艺进行浇注,得到厚度0.2~0.5mm的片状合金薄片;薄片经过氢处理、气流磨制粉,制成平均粒度为4μm的合金粉末;对制得的合金粉末在2T磁场下取向成型,继而进行等静压,制得压坯;将压坯在1080℃下烧结4h,而后在500℃下时效3h得到烧结磁体毛坯,继而加工成与实施例1尺寸一样的测试样品,标记为D1、D2、D3。进行测量磁性能,结果见表2。

对比例2,采用与实施例1同样的经过熔炼、破碎、压型、烧结、热处理、机加工后的烧结磁体的扩散基体,采用蒸镀方式在烧结磁体的扩散基体表面沉积一层厚度10μm的金属铽,蒸镀后实施与实施例1同样的扩散工艺,得到烧结磁体,任意取3件样品测试其性能,样品标记为Z1-Z3,进行测量磁性能,结果见表3。

表1. 实施例1样品磁性能

表2. 对比例1样品磁性能

表3. 对比例2样品磁性能

以上各表中表中:Br-剩磁;Hcj-内禀矫顽力;(BH)max-最大磁能积;Hk/Hcj-退磁曲线方形度。

通过B1和S1、S2、S3的磁性能比较,可以看出,经过表面沉积铽之后进行热处理得到的烧结磁体取得了良好的效果,矫顽力从15.39kOe分别上升到24.8kOe、24.71kOe和25.36kOe;矫顽力得到大幅提升,剩磁、方形度和磁能积略微降低;取该烧结磁体碾碎并混合均匀后做成分分析,结果显示,烧结磁体铽含量增加0.6%。

实施例1与对比例1相比,尽管二者都可达到同样的磁性能,但对比例1中铽含量为3.5%,而实施例1中仅需0.6%即可达到同样的磁性能。大大的节约了重稀土的含量,降低了原材料成本。

实施例1与对比例2样品各项磁性能参数基本相同,采用电感耦合等离子镀膜方法可达到蒸镀方法相同的效果,但材料利用率却大大提高。

实施例2,本实施例中,沉积材料为镝金属;在惰性气体环境下熔炼金属合金,该合金由:Nd:26%,Pr:6.5%,B:0.97%,Co:2%,Ti:0.1%,Al:0.7%,Cu:0.15%,Ga:0.2%和余量Fe组成;将熔融的金属合金通过速凝薄带工艺进行浇注,得到厚度0.2~0.5mm的片状合金薄片;薄片经过氢处理、气流磨制粉,制成平均粒度为4.8μm的合金粉末;对制得的合金粉末在2T磁场下取向成型,继而进行等静压,制得压坯;将压坯在1080℃下烧结4h,而后在520℃下效3h得到烧结磁体毛坯;继而通过机加工将烧结磁体毛坯加工成尺寸20mm×16mm×12mm的磁体;最后进行除油、酸洗、活化、去离子水清洗、烘干等清洁处理。该磁体作为烧结磁体的扩散基体,标记为B2;

取B2烧结磁体的扩散基体300片放入密闭仓内,调整等离子体喷枪中的载气、反应气和冷却气的流量分别是10L/min,20L/min和30L/min,调节真空系统及氩气循环系统,保证工作时仓内的氩气压力保持在0.08MPa和氧含量控制在500ppm以下,设定金属镝粉末通过载气被送入等离子焰炬内的速度为20g/min,粉末粒度为100~200μm,等离子体喷枪距B2烧结磁体的扩散基体表面距离保持20mm,在B2烧结磁体的扩散基体表面沉积80μm厚的镝,沉积完一面后B2烧结磁体的扩散基体实现翻转,在另一面沉积80μm厚的镝;

将经过沉积处理后的B2烧结磁体的扩散基体置于真空烧结炉内,在960℃温度下,真空条件下(压强10-2~10-3Pa范围内)处理84h,之后在500℃下时效处理6h,通氩气冷却至室温;打开真空烧结炉炉门,得到本实用新型的烧结磁体;任意取3件样品测试其性能,样品标号分别为S4、S5、S6;经过测量分析,其性能见表4。

对比例3,在惰性气体环境下熔炼金属合金,该合金由:镝:2.5%,Nd:21.5%,Pr:7%,B:0.95%,Co:1.1%,Ti:0.1%,Al:0.2%,Cu:0.15%,Ga:0.2%和余量Fe组成。将熔融的金属合金通过速凝薄带工艺进行浇注,得到厚度0.2~0.5mm的片状合金薄片;薄片经过氢处理、气流磨制粉,制成平均粒度为4.5μm的合金粉末;对制得的合金粉末在2T磁场下取向成型,继而进行等静压,制得压坯;将压坯在1070℃下烧结4h,而后在500℃下效3h得到烧结磁体毛坯,继而加工成与实施例1尺寸一样的测试样品,标记为D4、D5、D6。进行测量磁性能,结果见表5。

对比例4,采用与实施例2同样的经过熔炼、破碎、压型、烧结、热处理、机加工后烧结磁体的扩散基体,采用蒸镀方式在烧结磁体的扩散基体表面沉积一层厚度80μm的金属镝,蒸镀后实施与实施例2同样的扩散工艺,得到烧结磁体,任意取3件样品测试其性能,样品标记为Z4-Z6,进行测量磁性能,结果见表6。

表4. 实施例2样品磁性能

表5. 对比例3样品磁性能

表6. 对比例4样品磁性能

通过B2和S4、S5、S6的磁性能比较,可以看出,经过表面喷涂镝之后热处理得到的烧结磁体取得了良好的效果,矫顽力从16.6kOe分别上升到21.72kOe,21.8kOe和21.61kOe。矫顽力得到大幅提升,剩磁、方形度和磁能积略微降低;取该烧结碾碎并混合均匀后做成分分析,结果显示,烧结磁体镝含量增加0.85%。

实施例2与对比例3相比,尽管二者都可达到同样的磁性能,但对比例2中镝含量为2.5%,而实施例中仅需0.85%即可达到同样的磁性能。大大的节约了重稀土的含量,降低了原材料成本。

实施例2与对比例4样品各项磁性能参数基本相同,采用等离子喷涂方法可达到蒸镀方法相同的效果,但材料利用率却大大提高。

实施例3,本实施例中,沉积材料仍为铽金属;本实施例采用与实施例1一样的原材料成分、制造、加工、镀膜沉积、热处理工艺;烧结磁体的扩散基体的尺寸20mm×16mm×1.8mm;此次只沉积与磁化方向相垂直的两个面的距边缘1mm宽的区域,如图2所示;扩散后将样品沿长、宽切割为1×1mm,高度为得到的烧结磁体厚度,取样方式如图3所示,标号为S7~S12,其中S7和S8取样于沉积的边缘区域,S9~S12取样于未沉积区域,测试后的性能见表7。

表7. 实施例3样品磁性能

从测试数据来看,扩散进铽金属的S7,S8样品矫顽力性能得到了提升,从15.39kOe分别提升到24.81kOe和25.22kOe,样品S9~S12矫顽力保持不变。

以上所述仅为本实用新型的较佳实施例,并不用以限制本实用新型,凡在本实用新型的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本实用新型的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1