太阳能电池及其制造方法与流程

文档序号:15235387发布日期:2018-08-21 20:28阅读:169来源:国知局

本发明涉及一种太阳能电池,更具体地,涉及一种基于晶片型太阳能电池和薄膜型太阳能电池的组合的太阳能电池。



背景技术:

太阳能电池是基于半导体特性将光能转换为电能的装置。

太阳能电池具有正(p)型半导体和负(n)型半导体彼此连接的pn结结构。当太阳光入射到具有pn结结构的太阳能电池上时,通过入射太阳光的能量,在半导体中产生空穴和电子。此时,由于在pn结中产生的电场,空穴(+)移动到p型半导体,并且电子(-)移动到n型半导体,从而产生电势而产生电力。

太阳能电池可以分为晶片型太阳能电池和薄膜型太阳能电池。

晶片型太阳能电池是通过使用诸如硅晶片的半导体材料本身作为基板而制造的太阳能电池。薄膜型太阳能电池是通过在诸如薄膜型玻璃的基板上形成半导体而制造的太阳能电池。

晶片型太阳能电池的效率比薄膜型太阳能电池的效率好,薄膜型太阳能电池具有与晶片型太阳能电池相比制造成本降低的优点。

因此,已经提出了基于晶片型太阳能电池和薄膜型太阳能电池的组合的太阳能电池。在下文中,将参照附图描述现有技术的太阳能电池。

图1a至图1e是示出根据现有技术的实施例的制造太阳能电池的工序的示意性工序剖视图。

首先,如图1a所示,准备半导体晶片10。

随后,如图1b所示,在半导体晶片10的上表面上形成第一半导体层20,在半导体晶片10的下表面上形成第二半导体层30。在这种情况下,由于工序特性,第一半导体层20形成直至半导体晶片10的侧表面以及半导体晶片10的上表面,并且第二半导体层30形成直至半导体晶片10的侧表面以及半导体晶片10的下表面。因此,如图所示,第一半导体层20和第二半导体层30可以在半导体晶片10的侧表面上彼此连接。

随后,如图1c所示,在第一半导体层20的上表面上形成第一透明导电层40,在第二半导体层30的下表面上形成第二透明导电层50。在这种情况下,由于工序特性,第一透明导电层40形成直至第一半导体层20的侧表面以及第一半导体层20的上表面,并且第二透明导电层50形成直至第二半导体层30的侧表面以及第二半导体层30的下表面。因此,如图所示,第一透明导电层40和第二透明导电层50可以在半导体晶片10的侧表面上彼此连接。

随后,如图1d所示,在第一透明导电层40的上表面上形成第一电极60,在第二透明导电层50的下表面上形成第二电极70。

随后,如图1e所示,通过除去第一透明导电层40、第一半导体层20和半导体晶片10中的每一个的边缘区域而形成分离部80。

在半导体晶片10的侧表面上形成的第一透明导电层40和第二透明导电层50之间的电连接被分离部80切断,并且在半导体晶片10的侧表面上形成的第一半导体层20和第二半导体层30之间的电连接被分离部80切断,从而防止在它们之间发生短路。

然而,该现有技术的方法具有以下缺点。

首先,在现有技术中,在图1e的上述工序中形成分离部80来防止短路,在这种情况下,诸如空穴或电子的载流子被捕获在分离部80的区域中,导致太阳能电池的效率降低的问题。

此外,参考图1e的箭头所指的放大图,作为污染物成分的颗粒90可以位于第一透明导电层40的上表面以及第二透明导电层50的下表面上。颗粒90可以在形成第一透明导电层40和第二透明导电层50的工序中产生,也可以在形成分离部80的工序中产生。如上所述,如果颗粒90位于第一透明导电层40的上表面以及第二透明导电层50的下表面上,则太阳光的透射率由于颗粒90而降低,而且,电流的流动被颗粒90阻碍,导致太阳能电池的效率降低的问题。



技术实现要素:

技术问题

本发明旨在解决现有技术的上述问题,并且本发明的目的是提供一种太阳能电池及其制造方法,在本发明的太阳能电池及其制造方法中,即使不形成分离部,也能防止在半导体晶片的侧表面发生短路,而且有效地除去位于透明导电层上的颗粒,从而提高效率。

技术方案

为了实现上述目的,本发明提供了一种太阳能电池的制造方法,该方法包括:在半导体晶片的上表面上形成第一半导体层并且在所述半导体晶片的下表面上形成极性与所述第一半导体层的极性不同的第二半导体层的工序;在所述第一半导体层的上表面上形成第一透明导电层而使所述第一半导体层的一部分暴露于外部并且在所述第二半导体层的下表面上形成第二透明导电层而使所述第二半导体层的一部分暴露于外部的工序;以及所述第一透明导电层和所述第二透明导电层中的至少一者上的等离子处理工序,其中所述等离子处理工序包括除去所述第一半导体层的暴露于外部的部分和所述第二半导体层的暴露于外部的部分的工序。

形成所述第一半导体层的工序可以包括在所述半导体晶片的侧表面上形成所述第一半导体层的工序,形成所述第二半导体层的工序可以包括在所述半导体晶片的侧表面上形成所述第二半导体层的工序。

所述第一半导体层的通过所述等离子处理工序除去的部分可以包括形成在所述半导体晶片的侧表面上的部分,并且所述第二半导体层的通过所述等离子处理工序除去的部分可以包括形成在所述半导体晶片的侧表面上的部分。

形成在所述半导体晶片的侧表面上的所述第一半导体层和形成在所述半导体晶片的侧表面上的所述第二半导体层可以彼此连接,可以通过所述等离子处理切断所述第一半导体层和所述第二半导体层之间的连接。

所述等离子处理工序可以包括除去位于所述第一透明导电层和所述第二透明导电层中的至少一者的表面上的颗粒的工序。

所述等离子处理工序之后的所述第一半导体层的一端和另一端可以分别与所述第一透明导电层的一端和另一端匹配。

此外,本发明提供一种太阳能电池的制造方法,该方法包括:在半导体晶片的上表面和下表面上分别形成在所述半导体晶片的侧表面上彼此连接的第一半导体层和第二半导体层的工序;在所述第一半导体层的上表面和所述第二半导体层的下表面上分别形成第一透明导电层和第二透明导电层而使所述第一半导体层和所述第二半导体层在所述半导体晶片的侧表面上的部分暴露于外部的工序;通过使用所述第一透明导电层和所述第二透明导电层作为掩模除去所述第一半导体层和所述第二半导体层的在所述半导体晶片的侧表面上暴露的所述部分,切断所述第一半导体层和所述第二半导体层之间的电连接的工序;以及除去位于所述第一透明导电层和所述第二透明导电层中的至少一者的表面上的颗粒的工序。

除去所述第一半导体层和所述第二半导体层的在所述半导体晶片的侧表面上暴露的所述部分的工序与除去颗粒的工序可以同时进行。

除去所述第一半导体层和所述第二半导体层的在所述半导体晶片的侧表面上暴露的所述部分的工序和除去颗粒的工序可以通过等离子处理同时进行。

除去所述第一半导体层和所述第二半导体层的在所述半导体晶片的侧表面上暴露的所述部分的工序之后的所述第一半导体层的一端和另一端可以分别与所述第一透明导电层的一端和另一端匹配。

此外,本发明提供一种太阳能电池,包括:半导体晶片;第一半导体层,设置在所述半导体晶片的上表面上;第一透明导电层,设置在所述第一半导体层的上表面上;第二半导体层,设置在所述半导体晶片的下表面上,所述第二半导体层具有与所述第一半导体层的极性不同的极性;以及第二透明导电层,设置在所述第二半导体层的下表面上,其中,所述第一半导体层的一端和另一端与所述第一透明导电层的一端和另一端匹配。

所述第二半导体层的一端和另一端可以与所述第二透明导电层的一端和另一端匹配。

所述第一半导体层的一端和另一端可以与所述半导体晶片的一端和另一端不匹配,并且所述第二半导体层的一端和另一端可以与所述半导体晶片的一端和另一端不匹配。

有益效果

根据本发明内容,获得以下效果。

根据本发明的实施例,通过在所述第一透明导电层的上表面和所述第二透明导电层的下表面上进行等离子处理,在所述半导体晶片的侧表面上所述第一半导体层和所述第二半导体层之间的连接被切断,从而防止它们之间发生短路。此外,通过在所述第一透明导电层的上表面和所述第二透明导电层的下表面上进行等离子处理,除去在所述第一透明导电层的上表面和所述第二透明导电层的下表面上产生的颗粒,从而解决由于颗粒造成的太阳光的透射率降低和电流的流动受阻的问题。

附图说明

图1a至1e是示出根据现有技术的实施例的制造太阳能电池的工序的示意性工序剖视图;

图2a至2e是示出根据本发明的实施例的制造太阳能电池的工序的示意性工序剖视图;

图3a至3e是示出根据本发明的另一个实施例的制造太阳能电池的工序的示意性工序剖视图;

图4是示出通过测量根据实施例的太阳能电池的效率和根据比较例的太阳能电池的效率而获得的结果的图。

具体实施方式

本发明的优点和特征及其实现方法将通过参考附图描述的以下实施例来说明。然而,本发明可以以不同的形式实施,并且不应被解释为限于本文所阐述的实施例。相反,提供这些实施例,使得本公开是全面和完整的,并且将向本领域技术人员充分地传达本发明的范围。此外,本发明仅由权利要求的范围限定。

用于描述本发明的实施例的附图中披露的形状、尺寸、比例、角度和数量仅仅是示例,因此,本发明不限于所示的细节。相同的附图标记始终表示相同的元件。在下面的描述中,当确定相关已知功能或配置的详细描述不必要地模糊本发明的重点时,将省略详细描述。在使用本说明书中描述的“包含”、“具有”和“包括”的情况下,可以添加另一部分,除非使用“仅”。单数形式的术语可以包括复数形式,除非引用相反形式。

在构成元素时,尽管没有明确的描述,元素也被解释为包括错误范围。

在描述位置关系时,例如,当两部分之间的位置关系被描述为“在~上”、“在~上面”、“在~下面”和“下一个~”时,可以在两部分之间设置一个或多个其他部分,除非使用“刚好”或“直接”。

在描述时间关系时,例如,当时间顺序被描述为“之后”、“随后”、“接下来”和“之前”时,可以包括不连续的情况,除非使用“正当”或“直接”。

应当理解,尽管本文可使用术语“第一”、“第二”等来描述各种元件,但这些元件不应受这些术语的限制。这些术语仅用于将一个元件与另一个元件区分开。例如,第一元件可以被称为第二元件,并且类似地,第二元件可以被称为第一元件,而不脱离本发明的范围。

本发明的各种实施例的特征可以部分地或全部地彼此结合或组合,并且可以彼此不同地相互操作,并如本领域技术人员可以充分理解的在技术上被驱动。本发明的实施例可以彼此独立地进行,或者可以以共同依赖关系一起进行。

在下文中,将参照附图详细描述本发明的示例性实施例。

图2a至2e是示出根据本发明的实施例的制造太阳能电池的工序的示意性工序剖视图。

首先,如图2a所示,准备半导体晶片100。

半导体晶片100具有一定的导电极性。半导体晶片100可以由硅晶片形成,具体地,可以由n型硅晶片或p型硅晶片形成。尽管未示出,但半导体晶片100的上表面和下表面可以具有凹凸结构,并且在这种情况下,在下述工序中,形成在半导体晶片100的上表面和下表面上的层分别以凹凸结构形成。

随后,如图2b所示,可以在半导体晶片100的一个表面(例如,半导体晶片100的上表面)上形成第一半导体层200,并且可以在半导体晶片100的另一个表面(例如,半导体晶片100的下表面)上形成第二半导体层300。

可以在半导体晶片100的一个表面上以薄膜型式形成第一半导体层200,在这种情况下,第一半导体层200可以与半导体晶片100一起形成pn结。因此,如果半导体晶片100由n型硅晶片形成,则第一半导体层200可以由p型半导体层形成。具体地,第一半导体层200可以由其上掺杂有诸如硼(b)的组iii元素的p型非晶硅形成。通常,由于空穴的漂移迁移率低于电子的漂移迁移率,因此为了将基于入射光的空穴的收集效率最大化,优选靠近受光面形成p型半导体层,因此,优选靠近受光面的第一半导体层200由p型半导体层形成。

在半导体晶片100的下表面上以薄膜型形成第二半导体层300,在这种情况下,第二半导体层300形成为具有与第一半导体层200的极性不同的极性。因此,如果第一半导体层200由其上掺杂有诸如硼(b)的组iii元素的p型半导体层形成,则第二半导体层300由其上掺杂有诸如磷(p)的组5元素的n型半导体层形成。具体地,第二半导体层300可以由n型非晶硅形成。

第一半导体层200和第二半导体层300可以通过等离子体增强化学的气相沉积(pecvd)工序形成。在这种情况下,由于工序特性,第一半导体层200形成直至半导体晶片100的侧表面以及半导体晶片100的上表面,并且第二半导体层300形成直至半导体晶片100的侧表面以及半导体晶片100的下表面。因此,如图所示,第一半导体层200和第二半导体层300可以在半导体晶片100的侧表面上彼此连接。

形成第一半导体层200的工序和形成第二半导体层300的工序不限于它们之间的特殊顺序。

随后,如图2c所示,在第一半导体层200的一个表面(例如,第一半导体层200的上表面)上形成第一透明导电层400,并且在第二半导体层300的另一个表面(例如,第二半导体层300的下表面)上形成第二透明导电层500。

第一透明导电层400保护第一半导体层200,收集在半导体晶片100中产生的载流子(例如,空穴),并使收集的空穴移动到下述的第一电极(参见图2e的附图标记600)。第二透明导电层500保护第二半导体层300,收集在半导体晶片100中产生的载流子(例如,电子),并使收集的电子移动到下述的第二电极(参见图2e的附图标记700)。

第一透明导电层400和第二透明导电层500可以由诸如氧化铟锡(ito)、znoh、zno:b、zno:al、azo或iwo的透明导电材料形成。

第一透明导电层400和第二透明导电层500可以通过使用溅射工序形成。在这种情况下,通过使用掩模,仅在第一半导体层200的上表面上形成第一透明导电层400,而不在第一半导体层200的侧表面上形成第一透明导电层400,而且,仅在第二半导体层300的下表面上形成第二透明导电层500,而不在第二半导体层300的侧表面上形成第二透明导电层500。因此,在半导体晶片100的侧表面上第一半导体层200和第二半导体层300暴露于外部。

在通过使用溅射工序形成第一透明导电层400和第二透明导电层500的情况下,可能在第一透明导电层400的上表面和第二透明导电层500的下表面中产生作为污染物成分的颗粒900。颗粒900降低太阳光的透射率并且阻碍电流的流动而使太阳能电池的效率降低,因此,在下述工序中被除去。

形成第一透明导电层400的工序和形成第二透明导电层500的工序不限于它们之间的特殊顺序。

随后,如图2d所示,在第一透明导电层400的上表面和第二透明导电层500的下表面上进行等离子处理。

以这种方式,当在第一透明导电层400的上表面和第二透明导电层500的下表面上进行等离子处理时,在半导体晶片100的侧表面上暴露于外部的、第一半导体层200的部分和第二半导体层300的部分被除去。因此,在半导体晶片100的侧表面第一半导体层200和第二半导体层300之间的连接被切断,从而防止在它们之间发生短路。

在进行等离子处理时,第一透明导电层400和第二透明导电层500中的每一个可用作掩模,因此,所述部分已被除去的第一半导体层200的一端200a和另一端200b可与第一透明导电层400的一端400a和另一端400b匹配,并且所述部分已被除去的第二半导体层300的一端300a和另一端300b可与第二透明导电层500的一端500a和另一端500b匹配。

第一透明导电层400的一端400a和另一端400b可能与半导体晶片100的一端100a和另一端100b不匹配,在这种情况下,第一半导体层200的一端200a和另一端200b与半导体晶片100的一端100a和另一端100b不匹配。另外,第二透明导电层500的一端500a和另一端500b可能与半导体晶片100的一端100a和另一端100b不匹配,在这种情况下,第二半导体层300的一端300a和另一端300b与半导体晶片100的一端100a和另一端100b不匹配。

此外,当在第一透明导电层400的上表面和第二透明导电层500的下表面上进行等离子处理时,可除去出现在第一透明导电层400的上表面和第二透明导电层500的下表面上的颗粒900。

如上所述,根据本发明的实施例,通过在第一透明导电层400的上表面和第二透明导电层500的下表面上进行等离子处理,在半导体晶片100的侧表面切断第一半导体层200和第二半导体层300之间的连接,以防止在它们之间发生短路,而且,颗粒900被除去,从而解决了由于颗粒导致太阳光的透射率降低和电流的流动受阻的问题。也就是说,通过等离子处理,可以同时进行切断第一半导体层200和第二半导体层300之间的连接的工序以及除去颗粒900的工序。

可以进行等离子处理以蚀刻第一半导体层200、第二半导体层300和颗粒900,而不蚀刻第一透明导电层400和第二透明导电层500,具体地,可以使用卤素等离子体,例如cl2等离子体。通过照射cl2等离子体,cl2气体可以被射频(rf)电力电离而产生离子,所述离子可以结合于构造第一半导体层200和第二半导体层300以及颗粒900的硅元件,从而进行干法蚀刻。

第一透明导电层400的上表面上的等离子处理和第二透明导电层500的下表面上的等离子处理不限于它们之间的特殊顺序。

随后,如图2e所示,在第一透明导电层400的一个表面(具体地,第一透明导电层400的上表面)上形成第一电极600,在第二透明导电层500的另一个表面(具体地,第二透明导电层500的下表面)上形成第二电极700。

第一电极600构造太阳能电池的前表面,因此,第一电极600以某种形式以图案方式形成,以使太阳光透射到太阳能电池的内部。

第二电极700构造太阳能电池的后表面,因此,第二电极700可以全体地形成在第二透明导电层500的下表面上,而不以某种图案形成。然而,如图所示,第二电极700也可以以某种形式以图案方式形成,在这种情况下,反射的太阳光可以入射通过太阳能电池的后表面。

第一电极600和第二电极700可以由导电性良好的金属材料形成,例如ag、al、ag+al、ag+mg、ag+mn、ag+sb、ag+zn、ag+mo、ag+ni、ag+cu或ag+al+zn。

第一电极600和第二电极700可以通过诸如丝网印刷、喷墨印刷、凹版印刷、凹版胶印、反转印刷、柔版印刷或微接触印刷等印刷工序形成。

形成第一电极600的工序和形成第二电极700的工序不限于它们之间的特殊顺序。

图2d所示的上述等离子处理工序可以在形成图2e所示的第一电极600和第二电极700的工序之后进行。

图3a至3e是示出根据本发明的另一个实施例的制造太阳能电池的工序的示意性工序剖视图。在下文中,不重复与图2a至2e的实施例相同的元件的描述。

首先,如图3a所示,准备半导体晶片100。

随后,如图3b所示,在半导体晶片100的一个表面(例如,半导体晶片100的上表面)上形成第一本征半导体层150,在第一本征半导体层150的上表面上形成第一半导体层200。而且,在半导体晶片100的另一个表面(例如,半导体晶片100的下表面)上形成第二本征半导体层250,在第二本征半导体层250的下表面上形成第二半导体层300。

第一本征半导体层150可以利用通过使用等离子体增强的化学气相沉积(pecvd)工序形成本征(i)非晶硅层的工序,形成在半导体晶片100的上表面上,第二本征半导体层250可以利用通过使用等离子体增强的化学气相沉积(pecvd)工序形成本征(i)非晶硅层的工序,形成在半导体晶片100的下表面上。

如在图2b的上述实施例的工序中,当通过使用高浓度掺杂气体在半导体晶片100的表面上形成第一半导体层200或第二半导体层300时,存在由于高浓度掺杂气体而在半导体晶片100的表面产生缺陷的可能性。在本发明的另一个实施例中,在半导体晶片100的上表面上形成第一本征半导体层150,然后在第一本征半导体层150上形成第一半导体层200,从而防止在半导体晶片100的上表面产生缺陷。另外,在半导体晶片100的下表面上形成第二本征半导体层250,然后在第二本征半导体层250的下表面上形成第二半导体层300,从而防止在半导体晶片100的下表面产生缺陷。

随后,如图3c所示,在第一半导体层200的一个表面(例如,第一半导体层200的上表面)上形成第一透明导电层400,并且在第二半导体层300的另一个表面(例如,第二半导体层300的下表面)上形成第二透明导电层500。

第一透明导电层400仅形成在第一半导体层200的上表面上,而不形成在第一半导体层200的侧表面上,第二透明导电层500仅形成在第二半导体层300的下表面上,而不形成在第二半导体层300的侧表面上。因此,第一半导体层200和第二半导体层300在半导体晶片100的侧表面暴露于外部。

此时,可能在第一透明导电层400的上表面和第二透明导电层500的下表面产生作为污染物成分的颗粒900。

随后,如图3d所示,在第一透明导电层400的上表面和第二透明导电层500的下表面上进行等离子处理。

以这种方式,通过在第一透明导电层400的上表面和第二透明导电层500的下表面上进行等离子处理,第一半导体层200和第二半导体层300的在半导体晶片100的侧表面暴露于外部的部分被除去,同时,颗粒900被除去。

随后,如图3e所示,在第一透明导电层400的一个表面(具体地,第一透明导电层400的上表面)上形成第一电极600,在第二透明导电层500的另一个表面(具体地,第二透明导电层500的下表面)上形成第二电极700。

尽管未具体示出,但是在图2a至2e的上述实施例和图3a至3e的实施例中,第一半导体层200可以用依次形成在半导体晶片100的上表面上的低浓度掺杂层和高浓度掺杂层构造,并且第二半导体层300可以用在半导体晶片100的下表面上依次形成的低浓度掺杂层和高浓度掺杂层构造。这里,低浓度和高浓度是相对概念,并且低浓度掺杂层表示掺杂剂的浓度相对低于高浓度掺杂层。

图4是示出通过测量根据实施例的太阳能电池的效率和根据比较例的太阳能电池的效率而获得的结果的图。所述比较例涉及上述如图1a至1e中制造的太阳能电池,并且实施例涉及上述如图2a至2e中制造的太阳能电池。

如图4所示,可以看出,相比于比较例,实施例中的太阳能电池的效率、开路电压voc和填充因子ff更好。

在上文中,已经参考附图更详细地描述了本发明的实施例,但是本发明不限于实施例,并且可以在不脱离本发明的技术精神的范围内进行各种修改。因此,应当理解,上述实施例从各个方面都是示例性的,不是限制性的。应当解释为,本发明的范围由下述权利要求而不是详细说明限定,并且权利要求的含义和范围以及从它们的等同概念推断的所有变化或变型被包含在本发明的范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1