太阳能电池制造方法、用该方法制造的太阳能电池和衬底座与流程

文档序号:16509455发布日期:2019-01-05 09:14阅读:158来源:国知局
太阳能电池制造方法、用该方法制造的太阳能电池和衬底座与流程

为了在太阳能电池的透明介电前侧覆层和/或背侧覆层例如透明导电氧化物层(tco层)上形成接触层格栅结构例如像银指结构作为集电极,在现有技术中一般采用电镀技术用掩模施加所述银指且掩模事后又被去除。掩模材料还有与其施加和去除相关的步骤是成本高昂的并且可能导致对太阳能电池特性的不利影响。

另外,带有外露tco涂层的太阳能电池的问题在于,它在尤其在高温下的湿气作用下可能显著损失功率。在湿气作用下出现的tco层的(电)化学分解或腐蚀导致串联电阻(rs)增大和由此造成的太阳能电池满充系数(ff)的降级。太阳能电池的转化系数(eta)明显衰落。尤其是所谓的两面带有敞露的tco的双面太阳能电池易于出现这种腐蚀现象。但本发明也可以被用于具有单面tco涂层的太阳能电池。

为了防蚀保护tco表面,可以在tco上施加绝缘层例如氧化硅层、氮化硅层或氮氧化硅层。但它必须在tco层应通过接触层格栅结构或触点指导电触点接通的地方又被去除,或者应该在这些区域甚至最初未被沉积。为此,一般采用掩模技术或者在金属化结构上沉积的介电层通过激光烧蚀或掩模时刻被局部露出,以便印制金属结构或者通过电镀来产生。但这有如下缺点,通过敞露该密封介电层提供用于随后湿气入侵的潜在泄漏路径。

为了在tco上形成绝缘涂层并且还能以技术简单的方式适当地导电触点接通该tco,在出版物ep2662900a1中提出了放弃掩模并且由低熔点材料的第一导电层和第二导电层形成接触层格栅结构。为此,在透明介电前侧覆层(tco层)上用低熔点材料施加第一导电层,随后全面沉积一个绝缘层,通过加热熔化第一导电层,第一导电层上的绝缘层由此裂开。因所述裂开而在绝缘层中出现裂纹,随后沉积的第二导电层侵入其中并且可以建立至第一导电层和进而至tco层的导电接触。

在此技术中必须只在随后的触点位置上形成第一导电层且也只能在那里加热。就是说,人们在此也需要至少一个结构化沉积或结构化,但还是面对要如何完成局部加热的问题,且必须尝试在加热步骤将太阳能电池的温度负荷保持尽量低,以便没有不利地影响到太阳能电池特性。

因此,本发明的任务是提供一种太阳能电池制造方法,其通过真正简单的高效方式实现适用于太阳能电池的tco层的湿气防护的形成,另外实现简单的、高质量的且未不利影响到太阳能电池性能的太阳能电池导电触点接通。另外,应该提供可基于该方法制造的太阳能电池。另外,前述类型的衬底座应该被改进,使得它适用于该方法。

一方面,该任务通过一种根据前述类型的方法完成,在这里,为了沉积前侧覆层而采用表面选择性pecvd沉积,并且以这样的厚度沉积该前侧覆层,使得前侧覆层紧接在其层沉积之后在没有附加的热处理和/或化学处理情况下只在环绕前侧接触层格栅结构的区域上而没有在前侧接触层格栅结构上形成一个封闭层。

出乎意料地证明了,该前侧覆层在pecvd沉积中首先只沉积在导电透明的前侧电极层上,而没有或仅以最低程度沉积在接触层格栅结构上,即是表面选择性沉积的。为此,前侧覆层也可以在已经完成接触层格栅结构形成之后被沉积,而不需要事后从接触层格栅结构上刻蚀掉前侧覆层。就是说,它可以采取太阳能电池的完全金属化,随后在整个太阳能电池上沉积锁湿的非导电的透明介电前侧覆层,其封锁该前侧电极层。

在沉积时的这种表面选择性在其它的层沉积方法例如原子层涂覆(ald)、溅射或蒸镀方法中是做不到的。

在此,在本发明中作为前侧覆层例如考虑sio/n层,其通常已经作为抗反射钝化层应用在太阳能电池中。而亲水的alox层不太适合作为前侧覆层,但例如相对于位于其下的氧化硅层可以作为由氧化硅和氧化铝构成的前侧覆层的上层位地被优选用于吸湿,进而用作使其阻隔层。

根据本发明被用于形成前侧覆层的pecvd方法还有如下优点,在低温范围内即在≤200℃的温度发挥作用,本发明方法由此尤其也适合用在温敏太阳能电池例如具有无定形纳晶和/或微晶硅表面钝化的异质结太阳能电池中。

根据本发明的一个实施方式,这样的锁湿也可以设置在太阳能电池背侧上。在此,背侧金属化结构的形成具有如下步骤:形成背侧金属接触层格栅结构以便导电触点接通背侧发射极或背面表面区位;在背侧接触层格栅结构形成之后背侧pecvd沉积一个非导电的透明介电背侧覆层;其中为了沉积背侧覆层而采用表面选择性pecvd沉积,并且该背侧覆层以这样的厚度被沉积,即该背侧覆层紧接在其层沉积之后在没有附加的热处理和/或化学处理情况下只在环绕背侧接触层格栅结构的区域上而没有在背侧接触层格栅结构上形成一个封闭层。

因此,本发明的方法例如也可以被用在双面太阳能电池例如双面异质结背侧发射极太阳能电池中。

所述前侧和/或背侧接触层格栅结构可以首先作为晶核层结构形成,其随后被强化。为此在本发明方法的一个变型中规定,在前侧接触层格栅结构上在采用前侧覆层材料作为电镀掩蔽层而没有在先的结构化和/或至少部分去除前侧覆层的情况下电镀沉积至少一个前侧金属接触增厚层,和/或在背侧接触层格栅结构上在采用背侧覆层材料作为电镀掩蔽层而没有在先的结构化和/或至少部分去除背侧覆层的情况下电镀沉积至少一个背侧金属接触增厚层。

在此,所述前侧和/或背侧接触层格栅结构首先作为晶核层或籽晶结构呈很薄的金属化结构状例如指状或导条状被施加如被印制到导电透明的前侧电极层和/或背侧电极层的表面并被加热。作为籽晶结构材料,例如可以采用膏糊如银膏。

在施加籽晶结构之后,所述前侧覆层和/或背侧覆层借助pecvd沉积被沉积到各自太阳能电池侧面。在pecvd沉积中,如上所述,籽晶结构未被涂覆或未被全面涂覆。由此,籽晶结构可以在前侧覆层和/或背侧覆层沉积之后在不必在籽晶结构上除去它的情况下例如被电镀再加强。为了电镀再加强,可以采用例如lip(光致电镀)方法。作为接触增厚层的材料,考虑银,但也可考虑铜。最好但非唯一地可电镀获得的金属接触增厚层在本发明方法的实施方式中很好地附着在籽晶结构并且提高其导电能力。

本发明方法的这个变型有如下优点,即不必附加沉积sion层作为电镀掩模,因为包围籽晶结构的且位于导电透明的前侧电极层和/或背侧电极层上的前侧覆层和/或背侧覆层已经担负掩模功能。

此外,利用该方法控制可以获得更高的电池效率。因此由此得到以下可能,例如是ito层的导电透明的前侧电极层和/或背侧电极层制作得较薄,或者前侧电极层和/或背侧电极层的厚度的大部分被所述前侧覆层和/或背侧覆层即sion层替代。由此,太阳能电池的抗反射层是透明的。太阳能电池的光学由此不仅在吸收借助较薄的tco层被减弱的紫外范围内、也在红外范围内被明显改善。此外,当作为前侧电极和/或背侧电极层采用ito(铟锡氧化物)时省掉了铟。

另外,通过本发明方法的变型可以节省被用来制造的接触层格栅结构的银膏,且尽管如此还获得接触层格栅结构的触点指的很好的导电能力。该方法适用于带有和不带总线的模块布线,而不用冒附加能耗的危险。尽管本发明采用了保护涂覆,也得到接触层格栅结构的良好触点接通和/或钎焊能力。

本发明的前侧覆层和背侧覆层因此具有多重功能。它们可被用作防反光层或防反射层、防蚀层或封锁层和/或触点籽晶结构电镀二次加强用掩模。

在本发明的适当设计中,所述前侧金属接触层格栅结构在前侧覆层沉积前和/或所述背侧金属接触层格栅结构在背侧覆层沉积前通过退火被固化。

尤其有效的是,所述前侧覆层的和背侧覆层的形成在加工过程中在同一加工装置内先后紧接地进行。

用于制造透明介电的前侧覆层和/或透明介电的背侧覆层的微波辅助pecvd沉积被证明是极其完美的。或者在本发明中,用于制造透明介电的前侧覆层和/或透明介电的背侧覆层的pecvd沉积可以是hf(高频)pecvd、vhf(超高频)pecvd或者采用etp(膨胀热等离子体)源的pecvd。但是,原则上也可以代替用于制造透明介电的前侧覆层和/或透明介电的背侧覆层的pecvd地采用热丝cvd。

为了沉积前侧覆层和/或背侧覆层,最好采用至少一个siox层、sinx层、sioxny层、alox层、alnx层、tio2层、至少一种导电氧化物或由前述材料中的至少两种的组合物构成的层或层组。

尤其优选地,为了沉积前侧覆层而采用至少一个siox层,和/或为了沉积背侧覆层而采用至少一个sinx层。因此例如可以在太阳能电池前侧上施加厚度在70纳米和100纳米之间的sio2层作为前侧覆层,和/或在太阳能电池背侧上施加厚度在80纳米和120纳米之间的sinx层作为背侧覆层。

在本发明方法的一个可选设计方案中,前侧覆层和/或背侧覆层在沉积时至少部分掺杂碳。例如可以进行四甲基硅烷混合成所用的硅烷化合物。通过掺杂碳,例如可以降低前侧覆层和/或背侧覆层的湿蚀刻速度或化学侵蚀能力。

在本发明方法中,所述前侧覆层和/或背侧覆层最好在尽量低的温度下、即在50-250℃的温度范围内、尤其最好在≤200℃的温度被沉积。例如2到3分钟的150-200℃的短暂附加温度升高在pecvd过程中改善了触点指的导电能力以及其在tco上的触点接通。由此得到太阳能电池的填充系数ff的例如+0.5%的略微升高以及太阳能电池转化系数eta的例如+0.2%的略微升高。

为了形成所述前侧和/或背侧接触层格栅结构和所述至少一个前侧和/或至少一个背侧接触增厚层,可以有利地采用至少一种导电氧化物、至少一种金属、至少一种金属合金或前述材料中的至少两种的组合。

为了形成所述前侧和/或背侧接触层格栅结构和所述至少一个前侧和/或至少一个背侧接触增厚层,在本发明方法中最好选择如下材料,其主要地,即超过50%地由银或铜构成。

尤其合适的是,所述前侧和/或背侧接触层格栅结构在采用膏糊情况下作为指状结构形式来印制。

在本发明的方法中,为了形成前侧电极层和/或背侧电极层而最好采用透明导电氧化物即tco层例如ito层。

为了获得很有效的电池防蚀保护而建议,包含半导体衬底边缘的覆层在内地完全在整个前侧形成该前侧覆层,和/或包含半导体衬底边缘的覆层在内地完全在整个背侧形成该背侧覆层。可借此获得的包含晶圆边缘在内的已金属化的太阳能电池tco表面的两侧完全无间隙的气密封锁有效防止了湿气侵蚀tco,不仅在模块层面上,也在电池层面上。结果是没有或仅很轻微的tco降解。

这样的包含半导体衬底边缘在内的覆层只在采用合适的衬底座时才能获得。因此,本发明提出一种衬底座,其具有板状承载格栅,其具有至少一个被套框包围的空心承载凹窝用于分别容纳一个平面的半导体衬底,其中,从套框的所有侧面,保持钩突伸入该承载凹窝,并且在每个保持钩上设有至少一个保持销,保持销平行于待容纳的半导体衬底的表面取向。

该承载格栅优选具有至少两个相邻的通过套框的框梁分隔开的承载凹窝,并且该保持钩被固定在框梁上且在框梁的两侧设有分别突入其中一个承载凹窝中的保持架。

以下结合附图来详述本发明的优选实施方式、其变化过程或结构、功能和优点,其中:

图1至图3示意性示出本发明的方法过程;

图4示意性示出本发明的衬底座的一个实施方式的俯视图;

图5示意性示出带有本发明衬底座的保持架的框梁的横截面,其中两个半导体衬底被示意性示出地安放在保持架的保持销上。

如结合图1所看到地,在本发明的方法中首先提供至少一个半导体衬底2。半导体衬底2是第一传导类型的,即可以是n型掺杂的或p型掺杂的。该半导体衬底2一般但并不一定由n型掺杂的硅构成。

在半导体衬底2的两侧,在如图1所示的实施方式中,在半导体衬底上设置本征非晶半导体层3、4,在所示例子中是几纳米厚的i-a-si层。作为本征非晶半导体层3、4的替代或补充,也可以在本发明的其它实施方式中采用例如由硅构成的本征纳晶和/或微晶半导体层。

在本征非晶半导体层3、4上,分别设置导电的非晶掺杂半导体层5、6。作为非晶掺杂半导体层5、6的替代或补充,在本发明的其它实施方式中也可以采用例如由硅构成的纳晶和/或微晶掺杂半导体层。在图1所示的实施例中,在位于半导体前侧上的本征非晶硅层3上在形成前侧发射极情况下设置p型掺杂非晶硅层5,即它具有与半导体衬底2相反的传导类型。另外,在图1所示的实施例中,在位于半导体背侧的本征非晶硅层5上在形成背侧表面区位情况下设置n型掺杂非晶硅层6,即它具有与半导体衬底2相同的传导类型。

在本发明的其它未示出的实施方式中,也可以在半导体衬底2的前侧上设置前侧表面区位,并在半导体衬底2的背侧上设置背侧发射极。

在图1的例子中,在前侧发射极上设有导电透明的前侧电极层7,其在所示实施方式中是tco层例如ito层。另外,在背侧表面区位上也设有导电透明的背侧电极层8,其在所示实施方式中是tco层例如ito层。

另外,在前侧电极层7上设置用于前侧发射极的导电接通的前侧金属接触层格栅结构9,并且在背侧电极层8上设置用于背侧表面区位的导电接通的背侧金属接触层格栅结构10。所述前侧和背侧金属接触层格栅结构9、10在所示实施例中是印制的薄的指状银籽晶结构。

如图2所示,在随后的方法步骤中,利用pecvd沉积全面地在图1所示的结构上沉积非导电的透明介电前侧覆层11。在此,前侧覆层11仅沉积在环绕接触层格栅结构9的区域即前侧电极层7上,但没有或仅最低程度地沉积在接触层格栅结构9本身上。

此外,在图1所示结构的背侧上利用pecvd沉积来沉积非导电的透明介电背侧覆层12。在此,背侧覆层12仅沉积在环绕接触层格栅结构10的区域即背侧电极层8上,但没有或仅最低程度地沉积在接触层格栅结构10本身上。

即,在前侧电极层或背侧电极层7、8的tco上进行前侧覆层11和背侧覆层12不受干扰的层膜生长,但在接触层格栅结构9或10的银膏指上没有或只有略微生长。人们在此提到自定向pecvd沉积。

前侧覆层11的形成包含半导体衬底2的边缘的覆层11‘在内地完全在整个前侧上进行,并且背侧覆层12的形成包含半导体衬底2的边缘的覆层12‘在内地完全在整个背侧上进行。半导体衬底2的边缘的覆层11‘、12‘从半导体衬底2的前侧15或背侧16起大致呈楔形延伸,并且能彼此邻接或相互覆盖。

如图3所示,在前侧覆层11沉积之后,在采用前侧覆层11材料作为电镀掩蔽层而没有在先的结构化和/或至少部分去除前侧覆层11的情况下将前侧金属接触增厚层13电镀沉积到前侧接触层格栅结构9上。另外,在背侧覆层12沉积之后也如图3所示地在采用背侧覆层12材料作为电镀掩蔽层而没有在先的结构化和/或至少部分去除背侧覆层12的情况下将侧金属接触增厚层14电镀沉积到背侧接触层格栅结构10上。接触增厚层13或14一般在电镀期间侧向增长略超过用作籽晶层的接触层格栅结构9或10。

结果,出现了在图3中以横剖视图示意性示出的太阳能电池1,其具有设置用于光入射的前侧15和与前侧15对置的背侧16。

利用上述方法制造的太阳能电池1可以在涂覆上前侧覆层11和背侧覆层12之前和之后同样良好导电接通。通过前侧覆层11和背侧覆层12形成的封锁层保持完全完好无损并且无需事后局部露出以建立在前侧接触层格栅结构9和对应的接触增厚层13之间以及在背侧接触层格栅结构10和对应的接触增厚层14之间的电接触。

为了形成前侧覆层和背侧覆层11、12,在本发明中最好采用siox层和/或sinx层,其是透光的并且在选择了最佳层厚情况下甚至改善太阳能电池1的防反光。因此,通过双arc功能、例如像通过tco和sio2来增大太阳能电池的短路电流isc并提升其转化效率eta。

原则上,本发明方法的tco层的封锁步骤也可以被用在薄膜模块中。

图4示意性示出了本发明的衬底座17的实施方式的俯视图。衬底座17是所谓的晶圆载体,其具有包括多个成排成列布置的承载凹窝19的承载格栅18。在此情况下,每个承载凹窝19被形成套框的框梁22包围。承载凹窝19分别用于容纳平面的半导体衬底2。

从套框的所有侧,固定在框梁22上的或与之连成一体的保持钩20向下突伸入承载凹窝19。在此,如图5所示,在每个保持钩20上设有保持销21,其平行于待容纳的半导体衬底2的表面25取向。半导体衬底2如此被置入承载凹窝19中,即它被保持在从每个围绕承载凹窝19的框梁22起的保持钩20上,在这里,半导体衬底2分别安放在保持销21上。

如图4所示,承载格栅18具有多个彼此相邻的分别通过套框的框梁22分隔开的承载凹窝19。在承载凹窝19中,分别在框梁22上如此固定带有至少一个保持件23的保持架24上,即,位于保持架24上的保持钩20连同设于其上的保持销21分别伸入其至一个所述承载凹窝19。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1