半导体装置的制作方法

文档序号:16509389发布日期:2019-01-05 09:14阅读:148来源:国知局
半导体装置的制作方法

本申请基于2016年5月17日提出的日本专利申请第2016-98875号主张优先权,这里通过参照而引用其记载内容。

本发明涉及在共通的半导体基板上形成有具有绝缘栅极构造的绝缘栅双极型晶体管元件(以下称作igbt元件)和续流二极管元件(以下称作fwd元件)的半导体装置。



背景技术:

以往,作为例如在逆变器等中使用的开关元件,提出了在共通的半导体基板上形成有具有igbt元件的igbt区域和具有fwd元件的fwd区域的半导体装置(例如,参照专利文献1)。

具体而言,在该半导体装置中,在构成n型的漂移层的半导体基板的表层部形成有基底层,以将基底层贯通的方式形成有多个沟槽。并且,在各沟槽中,依次形成有栅极绝缘膜及栅极电极。此外,在基底层的表层部,以与沟槽接触的方式形成有n+型的发射极区域。在半导体基板的背面侧,形成有p+型的集电极层及n+型的阴极层。

并且,在半导体基板的表面侧,形成有与基底层及发射极区域电连接的上部电极。在半导体基板的背面侧,形成有与集电极层及阴极层电连接的下部电极。

在这样的半导体装置中,将在半导体基板的背面侧形成有集电极层的区域作为具有igbt元件的igbt区域,将形成有阴极层的区域作为具有fwd元件的fwd区域。另外,在fwd区域中,通过做成上述结构,由n型的阴极层及漂移层和p型的基底层构成具有pn结的fwd元件。

在上述半导体装置中,igbt元件如果在上部电极上被施加比下部电极低的电压、并且在栅极电极上被施加规定电压,则在基底层中的与沟槽接触的部分上形成n型的反型层(即沟道)。并且,igbt元件从发射极区域经由反型层向漂移层供给电子,并且从集电极层向漂移层供给空穴,通过电导率调制而漂移层的电阻值下降,成为导通状态。

此外,fwd元件如果在上部电极上被施加比下部电极高的电压,则从基底层向漂移层供给空穴并从阴极层向漂移层供给电子,成为导通状态。然后,fwd元件如果在下部电极上被施加比上部电极高的电压,则积蓄在fwd元件内的空穴被向上部电极拉近并且电子被向下部电极拉近,从而成为产生恢复(recovery)电流的恢复状态,在经过恢复状态后成为截止状态。

现有技术文献

专利文献

专利文献1:日本特许第5157201号公报



技术实现要素:

但是,本发明者们发现,在这样的半导体装置中,在使fwd元件从导通状态成为截止状态时的恢复状态下,有以下的问题。即,在这样的半导体装置中,在恢复状态下,在漂移层与基底层之间构成的耗尽层向下部电极侧(即,半导体基板的背面侧)延伸,从而恢复时的浪涌峰值电压容易变大。并且,担心由于恢复时的浪涌峰值电压变大而半导体装置被破坏。

本发明的目的是提供一种能够降低恢复时的浪涌峰值电压的半导体装置。

根据本发明的一技术方案,在共通的半导体基板上形成有具有igbt元件的igbt区域和具有fwd元件的fwd区域的半导体装置中,具备:第1导电型的漂移层;第2导电型的基底层,形成在漂移层上;第1导电型的发射极区域,是基底层的表层部,夹着基底层而与漂移层隔开间隔地形成,被设为比漂移层高的杂质浓度;栅极绝缘膜,配置在位于发射极区域与漂移层之间的基底层的表面;栅极电极,配置在栅极绝缘膜上;第1导电型的场阻挡层,配置在夹着漂移层而与基底层相反的一侧,被设为比漂移层高的杂质浓度;第2导电型的集电极层,配置在夹着场阻挡层而与漂移层相反的一侧;第1导电型的阴极层,配置在夹着场阻挡层而与漂移层相反的一侧,并且与集电极层邻接;第1电极,与基底层及发射极区域电连接;以及第2电极,与集电极层及阴极层电连接;在阴极层上,在与集电极层分离的位置,形成有与第2电极电连接并且与场阻挡层构成pn结的第2导电型的载流子注入层;从在fwd元件中流过正向电流的状态起将该电流切断时,fwd元件内的第1载流子穿过位于载流子注入层上的场阻挡层向阴极层流动,由此从第2电极经由载流子注入层向漂移层注入第2载流子。

由此,在恢复时能够抑制在基底层与漂移层之间构成的耗尽层朝向第2电极侧延伸,能够降低恢复时的浪涌峰值电压。

附图说明

图1是半导体装置的另一面侧的平面示意图。

图2是沿着图1中的ii-ii线的剖视图。

图3是表示流过恢复电流时的电子的运动的示意图。

图4是表示恢复时的耗尽层的示意图。

图5是表示耗尽层的电场强度的图。

图6是表示恢复时的浪涌峰值电压与载流子注入层的宽度的关系的图。

图7是表示载流子注入层的所需最小宽度与场阻挡层的杂质浓度的关系的图。

具体实施方式

以下,基于附图对本发明的实施方式进行说明。另外,在以下的各实施方式相互中,对于相互相同或等同的部分赋予相同的标号而进行说明。

(第1实施方式)

参照附图对第1实施方式进行说明。另外,本实施方式的半导体装置优选的是例如作为在逆变器、dc/dc变换器等的电源电路中使用的功率开关元件而被利用。

如图1所示,半导体装置是在相同的芯片内形成有具有igbt元件1a的igbt区域1和具有fwd元件2a的fwd区域2的rc(即,reverseconducting,逆导)-igbt。

具体而言,如图2所示,半导体装置具有构成n型的漂移层11的半导体基板10。另外,在本实施方式中,半导体基板10由硅基板构成。并且,在漂移层11上(即,半导体基板10的一面10a侧)形成有p型的基底层12。另外,基底层12例如通过在从半导体基板10的一面10a侧将p型的杂质进行离子注入后进行热处理而形成。

并且,在半导体基板10上,以将基底层12贯通而到达漂移层11的方式形成有多个沟槽13。由此,由沟槽13将基底层12分离为多个。在本实施方式中,多个沟槽13分别形成在igbt区域1及fwd区域2中,沿着半导体基板10的一面10a的平面方向中的一方向(即,图2中的纸面垂直方向)等间隔地形成。

在基底层12的表层部(即,半导体基板10的一面10a侧),分别形成有与漂移层11相比设为比高杂质浓度的n+型的发射极区域14、以及与基底层12相比设为高杂质浓度的p+型的接触区域15。具体而言,发射极区域14以在基底层12内使端部终止、并且与沟槽13的侧面接触的方式形成。此外,接触区域15与发射极区域14同样,以在基底层12内使端部终止的方式形成。

更详细地讲,发射极区域14设为如下构造,即:在沟槽13间的区域中,以沿着沟槽13的长度方向而接触在沟槽13的侧面上的方式以棒状延伸设置、在比沟槽13的前端靠内侧处使端部终止。此外,接触区域15被2个发射极区域14夹着而沿着沟槽13的长度方向(即,发射极区域14)以棒状延伸设置。另外,本实施方式的接触区域15以半导体基板10的一面10a为基准,形成得比发射极区域14深。

各沟槽13被栅极绝缘膜16和栅极电极17埋入,该栅极绝缘膜16以覆盖各沟槽13的壁面的方式形成,该栅极电极17形成在该栅极绝缘膜16之上,由多晶硅等构成。由此,构成沟槽栅极构造。另外,在本实施方式中,沟槽13的壁面中的位于发射极区域14与漂移层11之间的部分相当于位于发射极区域与漂移层之间的基底层的表面。

在半导体基板10的一面10a上,形成有由bpsg等构成的层间绝缘膜18。并且,在层间绝缘膜18上,形成有经由形成在层间绝缘膜18上的接触孔18a而与发射极区域14及接触区域15(即,基底层12)电连接的上部电极19。即,在层间绝缘膜18上,形成有在igbt区域1中作为发射极电极发挥功能、在fwd区域2中作为阳极电极发挥功能的上部电极19。另外,在本实施方式中,上部电极19相当于第1电极。

在漂移层11中的与基底层12侧相反侧(即,半导体基板10的另一面10b侧),形成有与漂移层11相比设为高杂质浓度的n型的场阻挡层(以下称作fs层)20。

并且,在igbt区域1中,在夹着fs层20而与漂移层11相反侧,形成有p+型的集电极层21,在fwd区域2中,在夹着fs层20而与漂移层11相反侧,形成有n+型的阴极层22。即,在夹着fs层20而与漂移层11相反侧,邻接形成有集电极层21和阴极层22。并且,igbt区域1和fwd区域2根据形成在半导体基板10的另一面10b侧的层是集电极层21还是阴极层22而被划分。即,在本实施方式中,集电极层21上的部分被设为igbt区域1,阴极层22上的部分被设为fwd区域2。另外,阴极层22如图1所示,沿着半导体基板10的平面方向中的一个方向(即,图1中纸面上下方向)延伸设置。

此外,如图2所示,在夹着集电极层21及阴极层22而与漂移层11相反侧(即,半导体基板10的另一面10b),形成有与集电极层21及阴极层22电连接的下部电极23。即,形成有在igbt区域1中作为集电极电极发挥功能、在fwd区域2中作为阴极电极发挥功能的下部电极23。在本实施方式中,下部电极23相当于第2电极。

并且,通过如上述那样构成,在fwd区域2中,以基底层12及接触区域15为阳极,以漂移层11、fs层20、阴极层22为阴极,构成了pn结的fwd元件2a。

此外,阴极层22与下部电极23电连接并与fs层20构成pn结,在从集电极层21离开的位置处形成有p+型的载流子注入层24。具体而言,载流子注入层24如图1及图2所示,沿着阴极层22的延伸设置方向进行延伸设置,并且包含阴极层22的宽度方向上的中心,相对于该中心呈左右对称地形成。更详细地讲,载流子注入层24形成为,使该载流子注入层24的宽度方向上的中心与阴极层22的宽度方向上的中心一致。

另外,本实施方式的阴极层22的宽度方向,是与半导体基板10的平面方向平行的方向,是与阴极层22的延伸设置方向正交的方向(即,图2中纸面左右方向)。此外,本实施方式的载流子注入层24的宽度方向,是与半导体基板10的平面方向平行的方向,是与载流子注入层24的延伸设置方向正交的方向(即,图2中纸面左右方向)。

以上是本实施方式的半导体装置的结构。另外,在本实施方式中,n型、n+型、n型相当于第1导电型,p型、p+型相当于第2导电型。接着,对上述半导体装置的动作进行说明。

首先,半导体装置中,如果下部电极23上被施加了比上部电极19高的电压,则形成在基底层12与漂移层11之间的pn结成为反向导通状态而形成耗尽层。并且,当栅极电极17上被施加了作为小于绝缘栅极构造的阈值电压vth的低电位(例如0v)的电压时,在上部电极19与下部电极23之间不流过电流。

并且,为了使igbt元件1a成为导通状态,在下部电极23上施加着比上部电极19高的电压的状态下,在栅极电极17上施加作为绝缘栅极构造的阈值电压vth以上的、高电位的电压。由此,在基底层12中的、与配置有栅极电极17的沟槽13相接触的部分处,形成反型层。并且,igbt元件1a中,电子经由反型层从发射极区域14向漂移层11供给,空穴从集电极层21向漂移层11供给,通过电导率调制,漂移层11的电阻值下降,由此成为导通状态。

此外,当将igbt元件1a设为截止状态,将fwd元件2a设为导通状态(即,使fwd元件2a进行二极管动作)时,对向上部电极19和下部电极23施加的电压进行切换,在上部电极19上施加比下部电极23高的电压。并且,在栅极电极17上施加作为不到绝缘栅极构造的阈值电压vth的、低电位(例如0v)的电压。由此,在基底层12中的与沟槽13接触的部分上不再形成反型层,通过被从基底层12供给空穴并且被从阴极层22供给电子,fwd元件2a进行二极管动作。

然后,当使fwd元件2a从导通状态成为截止状态时,进行在下部电极23上施加比上部电极19高的电压的反向电压施加。即,从在fwd元件2a中流过正向电流的状态起将该电流切断时,进行在下部电极23上施加比上部电极19高的电压的反向电压施加。由此,fwd元件2a成为恢复状态。即,基底层12中的空穴被向上部电极19侧拉近并且漂移层11中的电子被向下部电极23侧拉近,由此产生恢复电流,基底层12与漂移层11之间的耗尽层延伸。

此时,通过在载流子注入层24与fs层20之间构成的pn结的势垒(potentialbarrier),到达了载流子注入层24上的fs层20的电子不能经由载流子注入层24到达下部电极23。因此,如图3所示,到达了载流子注入层24上的fs层20的电子在fs层20中沿着半导体基板10的平面方向移动后,从邻接于载流子注入层24的阴极层22向下部电极23流动。因而,载流子注入层24上的fs层20的电位下降,由载流子注入层24和fs层20构成的pn结间的电压上升。

并且,如图4所示,如果由载流子注入层24和fs层20构成的pn结间的电压超过势垒(即,约0.7v),则成为在载流子注入层24和fs层20上施加了正向电压的状态。由此,经由载流子注入层24向漂移层11注入空穴,漂移层11中的空间电荷密度上升。因此,与没有载流子注入层24的情况相比,耗尽层更不易向半导体基板10的另一面10b侧延伸。即,如图5所示,与没有载流子注入层24的情况相比,在fs层20侧,电场强度成为0的位置为从fs层20离开的位置。另外,在本实施方式中,电子相当于第1载流子,空穴相当于第2载流子。

此外,为了在恢复时从载流子注入层24向漂移层11注入空穴,如上述那样,需要由载流子注入层24和fs层20构成的pn结间的电压超过势垒。即,如果载流子注入层24的宽度过短,则载流子注入层24上的fs层20的电位不充分下降,由载流子注入层24和fs层20构成的pn结间的电压不充分上升。换言之,如果电子的fs层20沿半导体基板10的平面方向移动的距离过短,则载流子注入层24上的fs层20的电位不充分下降,由载流子注入层24和fs层20构成的pn结间的电压不充分上升。

例如,如图6所示,在载流子注入层24的宽度不到40μm时,恢复时的浪涌峰值电压较高,而如果载流子注入层24的宽度成为40μm以上,则恢复时的浪涌峰值电压急剧地下降。这是因为,在载流子注入层24的宽度不到40μm的情况下,在恢复时,由载流子注入层24和fs层20构成的pn结间的电压没有充分地上升,不从载流子注入层24注入空穴。此外,载流子注入层24的宽度为40μm以上、恢复时的浪涌峰值电压变低是为了,在恢复时,由载流子注入层24和fs层20构成的pn结间的电压充分上升,从载流子注入层24注入空穴。

另外,图6是在上述说明的半导体装置中、将fs层20的杂质浓度设为3.0×1016cm-3,将阴极层22的宽度(即,fwd区域2的宽度)设为一定,使载流子注入层24的宽度变化时的模拟结果。因此,在图6中,当载流子注入层24的宽度是20μm到40μm时及45μm到60μm时,通过载流子注入层24的宽度变长而恢复时的浪涌峰值电压逐渐变低是为了,通过使载流子注入层24的宽度变化,从而阴极层22的剩余的宽度相对地变化。即,是为了,当fwd元件2a是导通状态时,从阴极层22向漂移层11供给的电子的总量变化。

此外,即使为了在恢复时从载流子注入层24向漂移层11注入空穴而使不仅是载流子注入层24、连fs层20的杂质浓度也过高,载流子注入层24上的fs层20的电位也不充分下降。即,即使fs层20的电阻值过低,载流子注入层24上的fs层20的电位也不充分下降。

因而,本发明者们关于fs层20的杂质浓度与载流子注入层24的宽度的相关关系进行了专门研究,得到了图7所示的模拟结果。另外,图7是半导体基板10的厚度为75~85μm、电阻率为40~50ω·m的800v耐压带(breakdownvoltageband)的半导体装置的模拟结果。此外,图7中的载流子注入层24的所需最小宽度是指,由载流子注入层24和fs层20构成的pn结间的电压超过势垒(即,约0.7v)所需要的载流子注入层24的最小宽度。

如图7所示,fs层20的杂质浓度和载流子注入层24的所需最小宽度处于比例关系,fs层20的杂质浓度越高,载流子注入层24的所需最小宽度越长。并且,本发明者们基于图7发现,如果将fs层20的杂质浓度设为nfs[cm-3],将载流子注入层24的所需最小宽度设为w[μm],则通过满足下式,在恢复时,由载流子注入层24和fs层20构成的pn结间的电压成为势垒以上。

(数式1)w>6.8×10-16×nfs+20

因而,在本实施方式中,载流子注入层24及fs层20构成为满足上述数式。

如以上说明的那样,在本实施方式中,在阴极层22中形成有载流子注入层24,在恢复时,从载流子注入层24向漂移层11注入空穴。因此,在恢复时,能够抑制在基底层12与漂移层11之间构成的耗尽层朝向半导体基板10的另一面10b侧延伸,能够降低恢复时的浪涌峰值电压。

此外,由于抑制了耗尽层朝向半导体基板10的另一面10b侧延伸,所以还能够为了实现低损失化而将半导体基板10的板厚减薄。进而,也能够,例如在为了抑制igbt元件1a的跳回(snap-back)现象而将igbt元件1a的宽度加宽,随之在将fwd元件2a的宽度加宽的半导体装置中应用本实施方式的载流子注入层24。由此,能够在抑制跳回现象的同时降低恢复时的浪涌峰值电压。

此外,载流子注入层24以包含阴极层22的宽度方向上的中心的方式配置。即,载流子注入层24配置于在恢复时电子密度容易成为最高的位置。因此,穿过载流子注入层24上的fs层20的电子密度变高。因而,fs层20的电位充分下降,由载流子注入层24和fs层20构成的pn结间的电压充分上升,能够容易地从载流子注入层24向漂移层11注入空穴。

进而,在本实施方式中,载流子注入层24及fs层20构成为,满足上述数式1。因此,在恢复时,能够抑制不从载流子注入层24向漂移层11注入空穴、恢复时的浪涌峰值电压不被降低的不良状况。

此外,载流子注入层24在阴极层22中仅配置1个。因此,还能够在减小恢复时的浪涌峰值电压的大小的同时,抑制fwd元件2a的导通电压变高。

即,如果举图6为例进行说明,则载流子注入层24如果宽度成为40μm以上,则在恢复时被注入空穴,恢复时的浪涌峰值电压的大小变小。即,在设置多个载流子注入层24的情况下,为了使得在恢复时从各载流子注入层24向漂移层11注入空穴,需要分别设为40μm以上。例如,在图6的例子中,在将1个载流子注入层24的宽度设为90μm的情况下,能得到50μm的宽度的减小效果。相对于此,例如在配置2个载流子注入层24的情况下,如果通过将2个载流子注入层24的宽度分别设为45μm而使整体上具有90μm的宽度,则在各个载流子注入层24中仅能得到5μm的宽度的减小效果。此外,在配置2个载流子注入层24的情况下,如果想要通过将2个宽度分别设为65μm而在各载流子注入层24中得到各25μm(即,整体上50μm)的减小效果,则载流子注入层24的整体的宽度成为130μm。在此情况下,当fwd元件2a是导通状态时从阴极层22注入的电子变少,导致fwd元件2a的导通电压变高。因而,通过如本实施方式那样仅配置1个载流子注入层24,能够在减小恢复时的浪涌峰值电压的大小的同时,抑制fwd元件2a的导通电压变高。

(其他实施方式)

将本发明依据实施方式进行了记述,但应理解的是本发明并不限定于该实施方式或构造。本发明也包含各种各样的变形例及等价范围内的变形。除此以外,各种各样的组合或形态、进而在它们中仅包含一个要素、其以上或其以下的其他的组合或形态也包含在本发明的范畴或思想范围中。

例如,在上述第1实施方式中,对将第1导电型设为n型、将第2导电型设为p型的例子进行了说明,但也可以将第1导电型设为p型,将第2导电型设为n型。

此外,在上述第1实施方式中,也可以不是沟槽栅极型的半导体装置,而是做成在半导体基板10的一面10a上配置栅极电极17的平面型的半导体装置。

进而,在上述第1实施方式中,载流子注入层24也可以不形成为包含阴极层22的宽度的中心。即使做成这样的半导体装置,也只要在恢复时从载流子注入层24向漂移层11注入空穴,就能够得到与上述第1实施方式同样的效果。另外,在载流子注入层24的宽度方向上的中心与阴极层22的宽度方向上的中心偏差的情况下,由于穿过载流子注入层24上的fs层20的电子密度减小,所以图7中的载流子注入层24的所需最小宽度向上方(即,变长的方向)平行移动。

此外,在上述第1实施方式中,也可以形成多个载流子注入层24。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1