电子设备的解封装的制作方法

文档序号:17440257发布日期:2019-04-17 04:39阅读:361来源:国知局
电子设备的解封装的制作方法

本发明涉及电子设备领域。更具体地,本发明涉及电子设备的处理,具体地,涉及使用感应等离子的微波进行半导体设备的解封装,以及涉及适于处理的装置和可获得的处理的半导体设备。



背景技术:

电子设备通常解封装,以用于失效分析和质量控制。解封装是过程,其中,封装在包装中的电子设备(例如,集成电路或印刷电路板)被处理以暴露电子的接合线和管芯以用于检查。重要的是,在该过程中,电子设备的金属接合线、金属接合衬垫、半导体管芯和其他的部件保持尽可能完好,使得可执行如光学显微术、扫描电子显微术(sem)、光电放射显微术等的进一步的分析。如果解封装过程对电子部件的任何零件导致太多损坏,则可移除可能的最初故障点以及会丢失重要的信息。

典型常规的解封装方法是使用热硝酸和热硫酸,以将塑模化合物蚀刻掉。酸蚀刻对于黄金线接合包装而言快(对于一个电子包装几分钟)并且工作良好。然而,近年来,在电子工业中存在从黄金线至铜线的转换,这对于酸解封装产生了问题。铜线比黄金线对由酸腐蚀和损坏更敏感。作为替代方法,已开发感应等离子微波(mip)的蚀刻(例如参见j.tang博士论文,题为:用于失效分析的铜线半导体设备的mip等离子解封装(mipplasmadecapsulationofcopper-wiredsemiconductordevicesforfailureanalysis),代尔夫特技术大学,2014;j.tang等,固态科学与技术的ecs期刊(ecsjournalofsolidstatescienceandtechnology),卷1,2012,第175-第178页,以及j.tang等,第11届电子包装技术和高密度包装的国际会议ieee论文集(proceedingsoftheieee11thinternationalconferenceonelectronicpackagingtechnologyandhighdensitypackaging),1034-1038页,ieee,西安,(2010),其整体并入本文)

已知的mip蚀刻方法基于从气体流微波感应等离子,该气体流包括氩气气体(ar)作为等离子载体气体,氧气气体(o2)作为等离子蚀刻剂气体,以及可选地氟源(例如,四氟化碳或cf4)作为可选的等离子蚀刻剂气体。这些方法特别适于蚀刻包括环氧树脂和硅填充剂的塑模化合物。环氧树脂部件由氧气气体蚀刻掉,以及硅填充剂由可选的呈现的氟原子和氟离子蚀刻掉。替代方式是通过在氧等离子处理以移除环氧树脂与超声波清洁之间交替以去除塑模化合物,其中,环氧树脂围绕硅微粒,超声波清洁移除松散的硅微粒。虽然与常规的使用酸进行解封装的方法相比,mip蚀刻提供优良的结果,但是仍然需要进一步的改进。

据估计,目前制造的电子线接合设备的约70%为基于铜线。铜线接合的缺陷是当管芯包括大量的互相连接的层(多层互相连接)时,铜的刚度可导致接合衬垫和管芯的破裂。因此,使用例如包括银的线的柔性线材料可以是有益的。然而,包括银的接合线的电子解封装通常认为是挑战的,甚至比包括铜接合线的电子设备的解封装更挑战。具有银接合线的问题是可在已知的解封装方法期间形成氧化银(以及如果cf4呈现在等离子中,则是氟化银)。氟化银具有低熔点,而氧化银具有低升华点。这两个性质导致对银接合线的不希望的损坏。

例如,在kerisit等,第21届ieeeipfa(2014)(ieee21stipfa(2014)),102-105页中描述的方法,其包括使用包括40%cf4和60%o2的气体混合物的等离子对具有基于银的合金线的包装进行解封装,导致损坏的银线。

用于处理电气设备的其它方法包括清洁和/或去毛边。这些方法面对如上所述的解封装的相同的挑战。



技术实现要素:

出人意外的是,本发明人发现通过使用包括氢的等离子可克服或至少部分地克服上述缺陷。这种含氢等离子适于在不损坏电子设备或其接合线的情况下处理电子设备。

因此,本发明的第一方面是用于处理封装在塑料包装中的电子设备的方法,所述方法包括以下步骤:

a)提供包括氢源的气体流;

b)通过微波从所述气体微波感应含氢的等离子流;

c)将含氢的等离子流引导至塑料包装,以蚀刻塑料包装。

处理电子设备可包括解封装、清洁、去毛边等中的至少一个。因而,除了解封装之外,本方法还可有益地用于诸如去毛边的其它处理。去毛边是去除过量的塑料包装材料,该过量的塑料包装材料例如在将封装的电子设备封装在塑料包装中之后,保持在封装的电子设备上。由于本发明的方法使得能够快速蚀刻塑料包装,因而其特别适于解封装封装的电子设备。

如本文中所使用,术语电子设备或部件可包括有源部件、无源部件以及有源部件和无源部件的组合,其中,有源部件为诸如包括二极管、晶体管、集成电路等的半导体;无源部件为诸如电阻器、电容器、磁(感应)设备等;有源部件和无源部件的组合可选地安装在诸如印刷电路板或引线框架上的基板上。

因而,例如,封装的电子设备通常包括封装的半导体设备、封装的电容器、封装的感应器、封装的电阻器、封装的印刷电路板以及其组合。如本文中使用的术语封装的电子设备包括电子设备,该电子设备完全地或部分地封装、罐装、涂覆、(电)绝缘等在塑料包装中。因而,本方法适于处理包括塑料包装的任何电子设备。塑料包装在本领域中是已知的,并且通常提供针对冲击和蚀刻的保护,保持用于从外电路连接至设备的接触插脚或引线,以及使设备中生成的热量消散。

特别适于本发明的装置是mip蚀刻装置,如wo2013/184000中所描述,wo2013/184000以其整体并入本文。该设备可通过jiacoinstrumentsb.v.(代尔夫特,荷兰)在市场上买到。该mip蚀刻装置包括beenakker腔,在文献中也称为‘beenakker-型tm010-模式微波共振腔’,因为其产生特别好的结果。

在其它应用中也使用含氢的等离子。例如,可从硅晶片表面蚀刻达到1μm的薄有机聚酰亚胺薄膜或光刻胶层掉(参见robb,j.电化学.soc.:固态科学与技术(1984)(solidstatescienceandtechnology(1984))1670-1674和us4340456)。该已知应用的蚀刻速度比/min(30nm/min)小。对于薄的聚酰亚胺薄膜,该速度是可接受的,但是通常需要更高的蚀刻速度(例如,比1μm/min高),以用于将包括塑模化合物的包装蚀刻掉,以便在可接受的时间期间内使管芯和接合线暴露。这种包装通常较厚,例如从10μm至1000μm,通常为50μm-500μm。因而,本发明的塑料包装不应与薄绝缘层混淆,该薄绝缘层例如为用作金属间电介质或钝化层或用作硅晶片或芯片上的应力消除层。

通过感应等离子(步骤b)以及在大气压力下将塑料包装蚀刻掉可获得特别优选的蚀刻速度。通过感应等离子以及在大气压力下使用该感应等离子,与在真空(或减小压力诸如比0.05巴小)下感应并使用的等离子相比,该等离子具有更高的密度(通常高1000倍),使得可更有效地蚀刻掉塑料包装。

根据本发明的电子设备的塑料包装可包括常规的塑模化合物,该常规的塑模化合物包括10%重量-30%重量的有机材料(例如环氧树脂)以及70%重量-90%重量的诸如硅填充剂(例如石英)的无机材料。塑料包装可包括各种半导体包装或管芯中的其它有机聚合物材料,该其它有机聚合物材料为诸如有机聚合物管芯附着物材料、厚(>5μm)(有机)薄膜覆盖线材料、管芯涂覆材料、硅树脂材料、重新分配层材料等。

还可以以诸如0.5巴的轻微减小压力实现提高效率。因此,在优选实施方式中,步骤b和步骤c以0.05巴至1巴的压力实施,但优选地以大气压力实施。

等离子蚀刻可分成三类:利用诸如ar+的离子的物理轰击的离子研磨;通过诸如o˙或f˙的中性自由基的化学蚀刻;以及离子研磨和化学蚀刻组合的反应离子蚀刻(rie,reactiveionetching)。对于解封装,优选使用化学蚀刻,以防止对电子设备的管芯和接合线造成任何不需要的损坏。对于化学蚀刻,到达包装的等离子通常包括自由基,并且基本上没有离子。通过在真空下感应等离子并且将经过(例如长管或下游真空室)长距离等离子输送至包装,可获得到达包装的中性的等离子的余辉,以使得由于与管/室壁以及与电子或气体分子/离子的重新组合,使得基本上仅在朝向包装的路径的开始处(感应等离子处)存在离子,从而导致在到达位于路径的端部处的包装的等离子中,基本上没有离子。替代地,还可在大气压力下感应等离子,使得感应的离子与等离子中的电子或壁再结合。在大气压力下,分子、原子自由基和离子的密度在量级上比真空中高很多,离子的平均自由路径在大气条件中比真空中更小。因而,大气压力下的离子将比真空中显著更快地再结合。因而,为了实现化学蚀刻,优选的是,在大气压力下实施步骤b和步骤c。作为替代或除在大气压力下实施步骤b和步骤c之外,在等离子周围可存在法拉第笼,使得将离子和电子限制在法拉第筒内,以防止离子到达基板。

已发现的是,使用含氢等离子可不仅对包括银的电子设备有益,而是通常对包括铜、银、黄金、钯、铝、锡或其合金的电子设备均有益。这些金属可存在于接合线、焊球、引线框架、重新分配层、放置管芯的表面和/或电子设备的接合衬垫中。与使用氧作为蚀刻剂气体的常规酸解封装或mip蚀刻相比,含氢的等离子导致更温和的解封装方法,并且因而对电子设备零件造成损坏较小。含氢的等离子可从包括氢气体或碳氢化合物作为氢源的气体流感应等离子。亚稳态的氢分子和中性的自由基氢(h˙)可分别经由h-h或c-h接合的均裂或通过h+与电子的重新组合,而从氢气体或碳氢化合物获得。

当在本发明中使用诸如ch4的碳氢化合物时,可具体有益的是,气体流还包括一些氧,以避免碳沉积在例如微波腔或排出管的蚀刻装置中。

在不希望由理论束缚的情况下,发明人相信氢与塑料包装发生化学反应,因而裂解c-c接合,以形成c-h接合,并且随后形成挥发性化合物。因而,与当使用氧作为蚀刻剂气体并且认为形成c-o接合以及随后形成co2时相比,化学蚀刻机构可以是不同的。

为了将包装蚀刻掉,通常还需要主动地去除硅填充剂(如果存在),使得获得高蚀刻速度。为此,气体流中可存在诸如四氟化碳的氟源。氟源产生氟(f˙),氟(f˙)与硅填充剂顺利地反应,从而生成等离子。替代地或另外地,为了使用如上所述的氟源,步骤c)之后可以是步骤d),步骤d)包括在流体中对电子设备进行超声清洁。所述流体不应不期望地损坏电子设备,并且因此可包括例如(去离子)水、有机溶剂或其组合。优选地,流体包括非离子的溶剂(例如丙酮),该非离子的溶剂不会潜在地导致对电子设备零件(例如半导体管芯)上的金属的蚀刻。流体的具体功能是将能量从超声波清洗器转移至样品,从而释放玻璃珠。非常优选的是,流体不损坏(例如腐蚀)电子设备。

当使用超声清洁时,步骤d)中的超声清洁通常与由等离子蚀刻包装(由步骤a-步骤c实现)交替进行。实际上,当使用超声清洁时,该方法通常包括步骤a-步骤d的5至20个循环。

先前已开发了用于氧基等离子蚀刻的超声清洁(参见例如j.tang等,固态科学与技术的ecs期刊,卷1,2012,第175-第178页(j.tangetal.,ecsjournalofsolidstatescienceandtechnology,vol.1,2012,p.p175-p178)),并且特别优选地作为氟基硅填充剂去除的替代物,因为其避免对包括氟源的蚀刻剂气体的需求,并使得对解封装的电子元件产生的损坏较小。因此,优选的是,气体流包括比5%体积小、优选地比1%体积小的诸如四氟化碳的氟源,更优选地基本上没有诸如四氟化碳的氟源。

气体流中的氢源的相对数量可从0.1%体积至100%体积变化。可使用基本上包括氢气(例如多于95%体积的氢气)的气体流,但通常因为安全原因而不那么优选。另外,从基本上包括氢气的所述气体流感应并且维持等离子流具有挑战性,并且通常需要在真空(例如,压力小于0.1巴)中实施。因此,优选的是,气体流包括0.1%体积至50%体积,更优选0.1%体积至20%体积的氢源。

除氢源之外,气体流还可包括诸如惰性气体和/或氮气的一种或多种载体气体。特别优选的惰性气体示例是氩气和氦气。惰性气体和/或氮气有助于维持等离子,并且减少与诸如氢气和碳氢化合物的典型氢源有关的安全隐患。载体气体有助于维持稳定的大气压力的等离子。优选的是,气体流包括多于95%体积的载体气体。然而,还可能够生成纯氢气等离子,具体在等离子是在减小压力(真空)下生成和保持的情况下。

已发现的是,含氧的等离子对电子设备造成不希望的损坏,例如对电子设备中的银接合线或铜接合线造成损坏。因此,优选地,气体流包括比5%体积小、优选地比1%体积小的氧气。最优选地,气体流基本上不包括氧。然而,少量氧可有助于蚀刻过程而不产生负面副作用。因此,基本上不包括氧通常意味着可存在的氧的数量不对电子设备造成不期望的损坏。氧的通常数量可以是相对于氢气的数量的10%体积。在具体实施方式中,气体流不包括氧气。

还发现的是,诸如nh3、no、no2、nf3、cl2、hcl、ch3cl、f2、hf、ch3f、ch2f2、chf3、cf4、c2f6、c3f8、h2s、so2、sf6的其它气体也可损坏银线。虽然nh3本身不会严重地损坏银线,但是其可形成no、no2、hno3而严重地损坏银线,特别是在具有大量o2的情况下。因而,优选的是,气体流基本上不包括这些其它气体。

因而,根据本发明,气体流可基本上包括氢气(h2)、烃气或蒸气(例如ch4、c2h6)、氮气(n2)、一种或多种惰性气体或其组合。对于基本上包括意味的是,气体流包括多于90%体积、优选地多于95%体积、更优选地多于99%体积的所述气体。通常,适于本发明的气体混合物是惰性气体,具体是氩、氖和/或氦,与氢、碳氢化合物以及其组合结合,可选地还包括氮气。这样的混合物的示例是:ar/h2、he/h2、ar/ch4、he/ch4、ar/c2h6、he/c2h6、ar/h2/ch4、he/h2/ch4、ar/h2/c2h6、he/h2/c2h6、ar/h2/n2和he/h2/n2。

特别优选的气体流是流动速度为1400sccm的氩气与流动速度为400sccm的的氩气/氢混合物(95%体积/5%体积)的混合物。这些气体组成是市场上可买到的标准气体。该气体流具有98.9%体积比1.1%体积的ar比h2的比率。

“sccm”是本领域的标准术语,意味着标准立方厘米每分钟的流动速度。标准条件通常是0℃的温度以及1.01巴的压力。

本发明的气体流可以是多个气体流的混合物。适于本发明的蚀刻装置可例如连接至一个或多个气体源(例如瓶子),其中,气体流可在进入装置之前或在装置内进行组合。碳氢化合物可例如经由通过包括液体状态的碳氢化合物的容器使载体气体流鼓泡而获得。

特别适合用作气体流的气体混合物是那些已知作为形成气体和/或保护气体的气体混合物。形成气体是包括约5%体积氢气以及约95%体积的如氮气或稀有气体的惰性气体的气体混合物,并且通常由半导体设备制造商在半导体设备的铜线接合期间使用。保护气体是包括约1%体积~30%体积的氢气与约70%体积~99%体积的氩气的气体混合物,并且通常在焊接过程期间使用。因而,半导体设备制造商通常已具有包括可用的形成气体和/或保护气体的基础设施。因此,使用形成气体和/或保护气体是特别有益的,因为这限制了实施本发明而需要建立新的基础设施和系统。因此,使用诸如形成气体和/或保护气体的含氢的气体以用于处理电子设备,优选地用于解封装半导体,是本发明的另一方面。作为对包括5%体积氢气的形成气体的替代,包括1%体积至30%体积的其它市场上可买到的气体混合物也可用于本发明。

本发明的另一方面是处理的电子设备,优选为解封装的半导体设备,该解封装的半导体设备包括具有银的一个或多个部件,该一个或多个部件例如为银接合线、放置管芯的镀银的引线框架和/或银表面,该解封装的半导体设备能够通过根据如本文中以上描述的发明的解封装的方法来获得。当实施根据本发明的解封装的方法时,处理的电子设备的所述一个或多个部件包括保持基本上完好的表面。因而,根据本发明的包括银的解封装的设备包括表面,与不是通过本发明的方法获得而是通过使用含氧气体流或常规的酸解封装方法获得的包括银的解封装的设备相比,该表面较平滑和损坏较小,其中,本发明解封装的设备的银上不存在或存在较少裂缝、点蚀或氧化银。

附图说明

图1示出了根据本发明的包括银接合线的解封装的半导体设备。

图2示出了不根据本发明的包括银接合线的对比的解封装的半导体设备。

具体实施方式

本发明的另一方面是等离子蚀刻装置,该等离子蚀刻装置包括等离子排出管,该等离子排出管包括如氮化铝(aln)或氮化硼(bn)的无氧材料,作为适于包括含氢等离子的材料。已发现的是,aln和bn材料具有特别高的熔点、优良的导热系数,并且是电子绝缘体。另外,aln和bn材料的无氧特征减少了如上所述的氧的不希望的影响。

优选地,根据本发明的装置是如wo2013/184000中描述的mip蚀刻装置的改进版,其中wo2013/184000整体并入本文。优选地,根据本发明的装置包括作为等离子源的beenakker腔,该beenakker腔连接至具有如上所述的材料的等离子排出管。

通常,根据本发明的装置包括等离子源(例如,beenakker腔),该等离子源允许在大气条件下从气体流持续生成等离子,从而排除对真空生成部件的需求。等离子源配有用于以等离子流形式排出等离子的等离子排出管。等离子流借助于排出管沿着预定的流动轨迹被引导朝向电子设备的包装表面。连接气体供应导管与等离子排出管,以及排出管延伸穿过等离子源的中心。排出管包括如氮化铝(aln)或氮化硼(bn)的无氧材料,并且可具有在2mm至10mm(例如,约6mm)之间的外管直径,以及约0.5mm至3mm(例如,约1.2mm)的内管直径。排出管长度可以是30mm至150mm(例如,约10cm)。排出管有效地使在等离子源内的排出管内流动的气体与由形成腔的共振室的中空结构封闭的剩余空隙隔离。

本装置通常还包括定位在距等离子排出管大致垂直距离处的采样保持器。采样保持器提供用于保持采样的表面。

为了使描述清楚而简明,在本文中,特征描述为相同或分开的实施方式的部分,然而,应理解的是,本发明的范围可包括具有所有所描述的特征或所描述的特征中的一些的组合的实施方式。

本发明可由以下示例示出。

示例1

在由jiacoinstrumentsb.v.(代尔夫特,荷兰)在市场上销售的、在wo2013/184000中描述的mip蚀刻装置中,从使用1400sccm的氩气流作为载体气体的、具有400sccm的流动速度的包括氩气和氢气(95:5)的气体流感应等离子。该等离子与超声波清洁结合,以用于解封装包括银接合线和塑料包装的半导体设备,其中,塑料包装包括10%环氧树脂和90%硅填充剂。获得解封装的半导体设备,该解封装的半导体设备在目测检查时示出清洁线表面(图1)。

示例2

使用包括氩气、氮气和氢气的气体流(即,以1400sccm的氩气(100%体积)的第一流与以25sccm的氮与氢(分别为95%体积和5%体积)的第二流的混合物)重复示例1中描述的试验。获得解封装的半导体设备,该解封装的半导体设备在目测检查时示出可接受清洁的与轻微受损的银线表面。

示例比较

使用包括ar/n2、ar/o2(图2)、o2/cf4的气体流重复示例1中描述的试验(无超声波清洁),或使用常规的酸解封装方法完成解封装。表1中总结了结果。

表1示例比较

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1