一种并联式热交换电池包的制作方法

文档序号:14992781发布日期:2018-07-20 22:44阅读:313来源:国知局

本发明涉及新能源汽车技术领域,特别涉及一种并联式热交换电池包。



背景技术:

现在大多数电动汽车的动力电池包采用自然冷却或循环风冷却系统,然而自然冷却的方式往往在环境温度较高时或电池大功率充放电时难以起到有效降低电池单体的温度,风冷系统通常会造成电池包内不同位置的电芯之间温差过大。另外,在低温环境下,电池包利用循环热风对电池包加热时,也会造成电池包内电芯的温升不一致,从而使得电芯之间温差也过大。



技术实现要素:

为此,需要提供一种并联式热交换电池包,以解决现有技术中自然冷却及循环风冷却容易造成电池组之间温差大的问题。

为实现上述目的,发明人提供了一种并联式热交换电池包,包括供水管、水泵、加热器、空调热交换器、热交换板和电池组;

所述水泵、加热器和空调热交换器设置于供水管上,供水管包括总进水管和总出水管,总进水管连接于供水管的进水端,总出水管连接于供水管的出水端;

所述热交换板设置于总进水管和总出水管的两侧,包括前集流管、热交换管、后集流管、进水分管和出水分管,进水分管的一端与总出水管相连接,另一端与前集流管的进水侧相连接,出水分管的一端与总进水管相连接,另一端与前集流管的出水侧相连接,热交换管沿前集流管和后集流管的长度方向设置,两端分别与前集流管和后集流管相连接;

所述电池组与热交换管相接触。

进一步地,还包括导热绝缘泡棉,所述导热绝缘泡棉设置于电池组和热交换管之间。

进一步地,还包括壳体,所述热交换板和电池组设置于壳体内。

进一步地,所述水泵、加热器和空调热交换器设置于壳体外侧。

进一步地,所述进水分管和出水分管上设有阀门。

进一步地,还包括温度传感器,所述温度传感器设置于总进水管上。

进一步地,所述热交换管与电池组的接触面为平面结构。

区别于现有技术,上述技术方案具有如下优点:通过设置供水管一并连接加热器及空调热交换器,将制冷与制热系统整合至一条管线上,简化了管路;布设有热交换管的多组热交换板分别和电池组相接触,热交换板将电池包内的电池组分成多个冷却区块,并可通过预设于前集流管和后集流管之间的热交换管数量进行各个冷却区块大小的控制。

附图说明

图1为本发明实施例中供水管及热交换板的细部结构示意图;

图2为本发明实施例中供水管的细部结构示意图;

图3为本发明实施例中热交换管的剖面结构示意图;

图4为本发明实施例中电池包的整体结构示意图。

附图标记说明:

101、供水管;102、总进水管;103、总出水管;

104、温度传感器;

201、水泵;

301、加热器;

401、空调热交换器;

501、热交换板;502、前集流管;503、热交换管;

504、后集流管;505、进水分管;506、出水分管;507、阀门;

601、电池组;602、导热绝缘泡棉;

701、壳体。

具体实施方式

为详细说明技术方案的技术内容、构造特征、所实现目的及效果,以下结合具体实施例并配合附图详予说明。

请一并参阅图1至图4,本实施例公开了一种并联式热交换电池包,包括供水管101、水泵201、加热器301、空调热交换器401、热交换板501和电池组601。水泵201、加热器301和空调热交换器401连接于供水管101的管路上,空调热交换器401通过接口与车辆的空调管路相连接,供水管101的两端分别连接总进水管102和总出水管103,温度传感器104设置于总进水管102上。热交换板501沿总进水管102和总出水管103的长度方向设置,热交换板501包括前集流管502、热交换管503、后集流管504、进水分管505和出水分管506,前集流管502的两侧分为进水侧和出水侧,进水分管505的两端分别连接总出水管103和前集流管502的进水侧,出水分管506的两端分别连接总进水管102和前集流管502的出水侧,热交换管503沿前集流管503和后集流管504的长度方向设置,并在多根热交换管503形成的平面上形成电池组601的接触面,电池组601通过接触面与热交换管503相接触,热交换管503的两端分别与前集流管503和后集流管504管路连接。

根据上述结构,在具体操作时,启动水泵,使供水管内的液体开始流动,位于供水管总进水管上的温度传感器对流动的液体进行温度检测。当电池在工作过程或在较高气温的情况下温度升高时,流动的液体温度随电池组的温度一起升高,此时开启空调,空调管路对空调热交换器进行冷却。热交换器对供水管内的液体进行冷却,完成冷却的液体沿总出水管分流至各个进水分管,进水分管将液体输送至前集流管的进水侧内,前集流管的进水侧将液体分流至连接进水侧的各个热交换管内,并随后流入后集流管中。后集流管中的液体传递至连接前集流管出水侧的热交换管内,并通过前集流管出水端的出水分管回流至总进水管,并回到空调热交换器处重新进行降温处理。在分别连接前集流管进水侧和出水侧的热交换管形成了u形结构的冷却回路,使得总进水管和总出水管得以平行设置于一个区域内,便于将进出水管进行整合,提高空间利用率,与热交换管相接触的电池组与热交换管内的液体进行换热,使电池降温。当天气寒冷等情况出现,电池包温度降低时,温度传感器检测到液体温度降低时,使加热器开启,对液体进行升温,液体沿冷却时相同的液体流向对电池包进行加热。

请参阅图1和图2,在上述实施例中,还包括阀门507,所述阀门507设置于进水分管505和出水分管506上,也可设置于进水分管505和出水分管506的任意之一上,阀门507为电控阀门,并与车载电脑电连接,温度传感器设置于各个电池组601上,通过在进水分管及出水分管上设置电控阀门,可通过电控阀门进行液体流量控制,对热交换电池包内任意一块热交换板进行加热或冷却效率的控制,便于对不同区域的电池组之间的温度差进行调整。

请参阅图3,在上述实施例中,还包括导热绝缘泡棉602,所述导热绝缘泡棉602设置于电池组601和热交换管503之间,通过在热交换管和电池组之间设置导热绝缘泡棉,便于增大热交换管与电池组之间的接触面积,提高热交换效率并减少热交换时电池组上的温度差。

请参阅图3,在上述实施例中,所述热交换管503与电池组601的接触面为平面结构,通过将热交换管503与电池组601的接触面设置为平面结构,便于提高热交换管与电池组的接触面积。

请参阅图4,在上述实施例中,还包括壳体701,所述壳体701包覆于电池组601及热交换板501的外侧,供水管101连接水泵201、加热器301和空调热交换器401的部分设置于壳体701外侧,通过在电池组和热交换板外侧设置壳体,使得电池包得以通过壳体进行保护,通过将水泵、加热器和空调热交换器设置于壳体外,便于进行管线的连接以及部件的检修。

在上述实施例中,前集流管的进水侧和出水侧之间设有隔挡,通过在前集流管内设置隔挡,避免液体由前集流管的进水侧直接流向出水侧。

在上述实施例中,每个热交换板由六根热交换管组成板面结构,在某些实施例中,热交换板上的数量也可为两根、四根或六根以上的热交换管组成,以调整热交换板的大小适配不同尺寸的电池组,以及调整热交换管路的密度。

在某些实施例中,可设置两组电池组,分别设置于热交换板的两面,通过在热交换板的两面设置电池组,增加每个热交换板可冷却的电池组数量;也可将热交换板叠放于电池组的顶面及底面,通过将电池组的顶面和底面分别接触热交换板,使电池组的两面均可进行冷却,减少电池组内的温差。

需要说明的是,尽管在本文中已经对上述各实施例进行了描述,但并非因此限制本发明的专利保护范围。因此,基于本发明的创新理念,对本文所述实施例进行的变更和修改,或利用本发明说明书及附图内容所作的等效结构或等效流程变换,直接或间接地将以上技术方案运用在其他相关的技术领域,均包括在本发明的专利保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1