串联光伏电池的制作方法

文档序号:16814263发布日期:2019-02-10 14:08阅读:335来源:国知局
串联光伏电池的制作方法

本发明涉及一种光伏电池领域。

特别地,本发明涉及光伏电池,包括两个光伏电池的垂直堆叠,也称为串联光伏电池。



背景技术:

双结(串联)太阳能电池是光伏产业发展的下一阶段。其依赖于以晶体硅电池为基础的当前最先进的技术。因此,硅电池是串联电池的后电池,在太阳光谱的红外范围获得能量。同时,另一电池(即前电池)在可见光和紫外的补充范围获得能量并且放置在上方。现有技术中有多种结构,并且在前电池为iii-v族的情况下进行说明。

对于所考虑的第一种结构,iii-v电池在硅电池上的机械转移,并且接触点位于每个电池上。若中间接触点连通,则用于串联电池的最后接触点为位于前后的两个接触点,称为两引线配置。若两个电池之间电绝缘,则使用四根引线,称为四引线配置。对于另一种结构,两个电池之间的转移在这些电池的内层之间通过原子级紧密接触点直接进行,这允许在没有如第一种情况中添加的接触点的情况下使电流通过。第三种配置不使用机械转移技术,而是在硅结上直接外延生长iii-v结,或者对于其它类型的前电池不采用此方法。在电气方面,两个电池直接与生长界面电接触。因此,得到了两引线电配置。所考虑的其它类型的前电池具有类似的现有技术,大多数是通过机械方式添加的两引线结构并且四引线电池。

当前的技术方案同样在于制作前单电池,特别是iii-v电池,涵盖整个硅电池。就电气方面而言,该配置对应于两引线连接的电池,其中,两个结串联形成并通过隧道结构相互连接。在此配置中,硅电池应当是其中n区和p区位于硅片的两侧。这预先排除了对于具有交错布置的后接触点的电池的使用,但是这具有更好的效率。

专利申请wo2017/093695描述了具有三个接触点的光伏电池。这样的电池允许例如将电子(n型载流子)从第一层转移到第二层,通过第一电极从第一层和第二层中收集电子,通过第二电极从第一层中收集空穴(p型载流子),以及通过第三电极从第二层中收集电子。该结构并不全部是单晶的,因为建议使用异质非晶硅结、氧化硅或非晶碳化硅合金。此外,该申请wo2017/093695主张除外延之外的另一种制作技术。与具有两个接触点的光伏电池一样,具有三个接触点的光伏电池应当使电流在两个电池之间流动。两个电池之间并不是电绝缘的。

同样,专利申请wo2009/047448以及同族申请涉及一种外延方法,该方法消除了不同单晶材料的层的晶胞参数差别。该申请主要提出微电子和光电子的应用,如led,但是并未提出光伏电池的具体应用。

串联光伏电池允许使光伏的理论效率超过40%。这使得实际中的模块的效率可以超过30%。应当注意的是,所考虑的硅电池的结构在电池的两侧实现了接触点,这与典型的perc、perl等类型的电池的情况相同。然而,市场上、特别是sunpower公司现有的性能最好的电池是具有交错布置的后接触点(interdigitatedbackcontact,ibc)的电池。最近的趋势在于三洋公司引入的异质结结构,以及ibc概念被引入到电池中以得到高达26.6%的效率。因此,硅电池是当前市场上主要使用的电池。



技术实现要素:

本发明的目的在于解决提供光伏电池的技术问题。

特别地,本发明的目的在于解决提供串联光伏电池、特别是在单晶硅下方使用光伏电池的技术问题。

更加特别地,本发明的目的在于解决提供串联光伏电池、特别是具有硅电池和iii-v类型(硫族、特别是铜铟镓硒cigs和镝化镉cdte,或钙钛矿pbnh4i3类型)电池的垂直堆叠的技术问题。

本发明的目的在于解决提供具有晶体层的堆叠、特别是主要为单晶有源层的堆叠的串联光伏电池的技术问题。

本发明的目的在于解决提供具有上结的一体连接结构的串联光伏电池。

本发明的目的还在于提供具有后接触点的单晶硅光伏电池的技术问题。在光伏电池的墙面堆叠有具有整体连接的结的电池以及例如iii-v类型(硫族(cigs、cdte)或钙钛矿)的结。

本发明的目的还在于解决提供四引线串联光伏电池的技术问题。

本发明的目的还在于解决本发明以产业方式、优选地为了限制产品成本提出的一个或多个技术问题。

附图说明

图1是根据本发明的实施例的多层材料的剖面图。

图2是根据本发明的多层材料的制作方法的一个实施例。

图3是根据本发明的多层材料的制作方法的一个实施例。

具体实施方式

本发明特别地涉及多层材料1。该多层材料1包括:

(i)多层、即“前层”的组100,用于形成前光伏电池;以及

(ii)多层、即“后层”的组400,用于形成后光伏电池。

前层组100和后层组400之间通过由外延材料制成的绝缘层30电绝缘。

根据一实施例,前层组100包括至少一个形成异质结20的层组合、后接触层40和前接触层50。异质结20包括第一材料24和第二材料26。后接触层40在异质结20后方。

优选地,后层组400包括至少一种单晶材料10(通常为单晶硅),并且优选地包括交错布置的接触电极40。

本发明涉及串联光伏电池。该串联光伏电池包括硅光伏电池(即后结)。硅光伏电池包括单晶硅层以及异质结(即前结)。单晶硅层在后面具有交错布置的接触点并且在前面具有外延绝缘层。异质结优选地包括一个或多个外延层。

外延层在组分上基本是均匀的并且例如可以包括一个或多个成分梯度。

优选地,前结具有交替结构:(i)导电区域;(ii)绝缘区域。导电区域形成前结的前接触点和后接触点。区域的交替使得前结的前接触点和后接触点之间能够横向导通。这被称为互连或整体连接。

通常,导电区域和绝缘区域的交替形成条带、优选地为平行的矩形条带、优选地为重复图案。

根据一实施例,本发明涉及多层结构1。该多层结构1包括:

(i)至少一种单晶材料10的层,具有前面11和后面12;

(ii)层组合,形成异质结20,异质结20包括第一材料24和第二材料26,异质结20具有前面21和后面22;

(iii)后接触层40,位于异质结20的后方并且具有前面41和后面42,前面41与异质结20的后面22接触;

(iv)电绝缘层30,具有前面和后面,电绝缘层30位于异质结20后方的后接触层40的后面42和单晶材料10的前面11之间,

电绝缘层30的前面31交替地与异质结20后方的后接触层40以及异质结20或绝缘材料90的后面22接触。

因此,有利地,多层材料1在后层组400中包括至少一种单晶材料10的层;以及在前层组100中包括形成异质结20的层组合、异质结20后方的后接触层40。

参照附图对本发明进行说明。该附图示出了实施例,但并不对本说明书中描述的发明的整体教导进行限定。

在前述电池中,有基于iii-v材料的电池(分别与镓族元素和砷族元素有关联),有基于i-iii-vi2类型的硫族化合物的电池(与铜、铟、硫、硒族),基于cdte类型的ii-vi化合物的硫族电池,以及最近出现的基于钙钛矿类型(pbnh4i3)的有机和无机混合材料。

因此,本发明特别地具有si结构/iii-v层/(cigs、cdte或钙钛矿)的结构。作为界面的iii-v层有利地便于对这些层进行外延生长,同时改善了串联应用中的特性。

单晶材料

通常,单晶材料10为后光伏电池的晶片(英文为wafer)。还可以称之为单晶衬底10。

优选地,单晶材料10包括或者由单晶硅组成。有利地,单晶硅可以包括掺杂区域,并且优选地包括不同掺杂区域。

通常,单晶材料层10的厚度为50至300μm,并且通常为100至200μm。

根据一变型,后面12包括交错布置的接触电极40。

例如,单晶材料10在后面12上至少一层后具有导电条带形式的接触点60。接触点60之间通常相距数百微米或数毫米。通常,导电条带的宽度约为0.5至5mm且具有相反极性。可以在实现本发明的多层材料之前或之后设置交错布置的电极。通常在对外延层进行生长之后设置电极。

根据一实施例,在重新放入外延室之前,该层后接触点60可以连续设置并进行构造(例如,通过光刻和刻蚀)。

有利地,单晶材料的特点是在整个表面上、特别是在前表面上保留了单晶特点。这允许外延生长串联电池的前结的材料,例如iii-v类型、硫族(cigs、cdte)或钙钛矿。

优选地,单晶材料10以及后表面12上的交错布置的电极形成第一光伏电池,并且优选地形成硅电池。

根据一变型,后电池形成后面上的硅电池。

绝缘层

有利地,本发明通过后结300和前结200的单晶材料的单晶特点来得到更好的光伏电池性能。后结300和前结200的单晶材料彼此是电气独立的。

绝缘层是使得前结200与后结300电气独立的电绝缘层。

根据一实施例,前光伏电池和后光伏电池具有独立的电连接500。

有利地,绝缘层30是单晶的。

有利地,绝缘层30是外延层。

正如本领域技术人员所知的,单晶材料10的前表面11的质量应当足以进行外延生长。

根据一变型,绝缘层30包括或由以下材料组成:氮化铝(aln)、和/或磷化铝(alp)、和/或磷化镓(gap)、和/或磷化铝和磷化镓的混合物((al,ga)p)、和/或氮化铝和氮化镓的混合物((al,ga)n)。

优选地,绝缘层30包括或由以下材料组成:氮化铝(aln)和/或磷化铝(alp)、和/或任一种包含aln或alp的合金、或者诸如gd2o3、al2o3和(ba,sr)tio3之类的氧化物。

根据一实施例,绝缘层30不是单晶氧化物。

根据一实施例,绝缘层30是单晶氧化物。例如,绝缘层30包括或由氧化铝组成。

根据一变型,绝缘层30包括或由以下材料组成:基于铝、钛、氧化锆、钆的氧化物。其中,尤其采用gd2o3、al2o3和(ba,sr)tio3。

根据一变型,绝缘层30通过化学气相沉积(cvd)、分子束外延法(mbe)或等离子增强化学气相沉积(pecvd)形成。

一般地,绝缘层30的厚度为0.1至5μm,并且通常为0.1至1μm。

异质结

根据一变型,前结200是iii-v异质结。

根据一变型,前结200是硫族异质结(cigs)。

根据一变型,前结200是锌黄锡矿(czts)类型或碲化镉(cdte)类型或其它多元无机半导体(例如,磷化物、砷化物或卤化物)类型的异质结。

根据一实施例,异质结垂直地包括或由以下材料组成:iii-v类型的半导体化合物或cigs((cu,ag)(in,ga,al),(s,se)2);并且优选地,在水平方向上为iii-v类型的半导体化合物的交替,结合或不结合cigs。

“i-iii-(vi)2”指的是i族、iii族和vi族元素的化合材料。

例如,可以是(ag,cu)(in,ga)(s,se)2类型的化合物。

优选地,异质结包括外延异质结,例如为iii-v或i-iii-vi-ii类型的。

有利地,前异质结具有整体结构。

根据一实施例,第一材料24和第二材料26串联为整体。

根据一变型,异质结包括或由不同类型的异质结组成。

根据一变型,前结200包括或由第一材料24和第二材料26组成。

根据一变型,第一材料24包括或由iii-v类型的化合物或cigs组成。

根据一变型,第二材料26包括或由iii-v类型的化合物、zn(s,o)或cds组成。

优选地,第二材料26包括或由iii-v类型的化合物组成,同时第一材料24是iii-v类型的化合物。

优选地,第二材料26包括或由zn(s,o)或cds组成,同时第一材料24为cigs。

根据一变型,第一材料24和第二材料26中的至少一个包括或由以下材料组成:从gainp、gaalas及其任意组合中选择的iii-v类型的化合物。

根据一变型,第一材料24和第二材料26中的至少一个通过pvd、cvd或者溶液沉积(ds),例如,电沉积(ed)。

优选地,当第一材料24包括或由cigs组成时,通过pvd、ds(ed)或cvd进行沉积。

优选地,当第一材料24和/或第二材料26包括或由iii-v化合物组成时,通过cvd或mbe进行沉积。

一般来说,第一材料24层的厚度为0.5至3μm,并且通常为1至2μm。

一般来说,第二材料26层的厚度为0.1至3μm,并且通常为0.5至2μm。

一般来说,第一材料24和/或第二材料26的两个半导体区域之间的绝缘区域(p2、p3)、通常为绝缘条带的宽度为5至40μm,并且通常为15至25μm,且例如为20μm。

一般来说,异质结20更确切地为后接触点p(第一材料24)和前接触点n(第二材料26)。但是也有可能是相反的。选择能够容易解除的唯一电连接技术。

后接触层40

通常,前结200在后面包括后接触层40。

根据一变型,后接触层40包括或由以下材料组成:氮化镓(gan)或磷化镓(gap)或其与iii族和v族中的其它元素的任意组合。其电学特性例如可以通过使用现有技术中n型或p型掺杂元素进行掺杂来确定。

根据一变型,后接触层40通过cvd、pecvd或mbe形成。

一般来说,后接触层40的厚度为0.1至3μm,并且通常为0.5至1μm。

一般来说,后接触层40的两个绝缘区域(p1)(通常为两个绝缘条带)之间的导电区域的宽度为3至10mm,并且通常为5至8mm。

一般来说,后接触层40的两个导电区域之间的绝缘区域(p1)(通常为绝缘条带)的宽度为5至40μm,并且通常为10至20μm。

前接触层50

通常,前结200在前面上包括前接触层50。

通常,根据本发明的多层材料1包括:

(iv)光子透明导电层50,位于异质结20的前面21。

一般来说,前接触层50包括或由透明导电材料、并且通常为透明导电氧化物层(tco)组成。

优选地,前接触层50包括或由以下材料组成:掺杂氧化锌(zno)、氧化铟锡(ito)或其任意组合。

优选地,前接触层50通过pvd、ds(ed)或cvd形成。

一般来说,前接触层50的厚度为0.5至3μm,并且通常为1至2μm。

一般来说,前接触层50的两个区域之间的绝缘区域(p3)(通常为绝缘条带)的宽度为5至50μm,且通常为15至25μm,且例如为20μm。

有利地,异质结被构造为各层交替,以使得第一材料24层和第二材料50层交替地与后接触层40接触。因此,邻近的导电区域之间横向电导通,前接触层和后接触层之间交替导通,从而形成前光伏电池的串联导通。

本发明能够实现具有整体连接的前结。众所周知,用于在cigs、cdte和非晶硅类型的薄层中形成电池模块并且与将前结与硅结构相连以具有这两种类型的电池的优点。前光伏电池可以认为是迷你光伏模块。

本发明能够实现同时垂直(垂直串联电池)和水平(间导电区域,通常为间条带,以及绝缘层30的两侧的每一级的前光伏间电池)堆叠的结构。

本发明能够实现其中前层组100形成前电池的结构。前电池吸收波长小于800nm的光子,并且对波长大于该长度的光子是透明的以使得该光子能够被后电池(通常为硅电池)吸收。前电池的禁带能量约为1.6至1.8ev。

根据一实施例,绝缘层30是透明的,从而使后光伏电池达到最佳工作状态。例如,绝缘层30对于能量小于前电池的1.6至1.8ev的禁带能量并且直到后电池的1.12ev的禁带能量(通常为硅电池)的光子是透明的。这使得能够高效地将介于这两个禁带能量之间的光子转换为电能。

特定材料

根据一变型,多层材料1包括硅电池、具有异质结20的电池以及后接触层40的垂直堆叠。硅电池形成单晶材料10层。异质结20优选地为iii-v类型的,硫族(cigs、cdte)或钙钛矿。后接触层40由iii-v材料组成、优选地基于gan或gap。

根据一变型,单晶材料10层的组合、形成异质结20的层、电绝缘层30以及这些层之间可能的中间层形成单晶层组合,并且优选地全部为单晶的。

有利地,根据一变型,第一材料24和第二材料26是iii-v类型的硅外延(单晶材料10)且在硅10和第一材料24之间、且更特别地在硅10和后接触层40之间具有绝缘外延层30。

有利地,根据一变型,第一材料24被外延生长以在硅(单晶材料10)上形成硫族或钙钛矿层(cigs、cdte),且在硅10和第一材料24之间、更特别地在硅10和后接触层40之间形成绝缘外延层30。第二材料26可以形成缓冲层并且可以通过本领域技术人员所知的外延之外的其它技术(特别是针对例如zn(o,s)或cds层)来设置。

有利地,根据一变型,多层材料1形成整个或部分的四引线或四点接触点的串联电池,其中,将单晶硅与后接触点和前面的迷你光伏模块相连。

根据一变型,多层材料1包括以下通过直接或非直接接触形成的连续的各层:

绝缘层30:(alx,ga(1-x))p,其中,x取值范围为0至1;或者(alx,ga(1-x))n,其中,x取值范围为0至1;

后接触层40:gan或gap;

第一材料24层:iii-v(例如,gainp或gaalas);

第二材料26层:iii-v(例如,gainp或gaalas);

前接触层50:ito或zno。

根据一变型,多层材料1包括以下通过直接或非直接接触形成的连续的各层:

绝缘层30:(alx,ga(1-x))p,其中,x取值范围为0至1;或者(alx,ga(1-x))n,其中,x取值范围为0至1;

后接触层40:gan或gap;

第一材料24层:cigs;

第二材料26层:例如,zn(o,s)或cds;

前接触层50:ito或zno。

根据一变型,多层材料1包括通过直接或非直接接触形成的连续的各层:si/aln/gan/cigs/tco。

根据一变型,多层材料1包括通过直接或非直接接触形成的连续的各层:si/alp/gap/cigs/tco。

根据一变型,cdte材料或(例如,与硫、硒、锌、镁的)合金、或者钙钛矿取代以上配置中的cigs。为了完成前电池所必要的上层是用于现有技术所的电池特定的层。

根据一变型,多层材料1包括通过直接或非直接接触形成的连续的各层:iii-v/(cd,zn)(s,se)/(cd,zn)te/tco。

有利地,这些材料允许在必要时满足晶胞参数的差异性。

有利地,这些材料允许在必要时满足材料的光学和结构对应性

有利地,这些材料允许在必要时满足材料的电对应性。

优选地,绝缘层30直接外延生长在单晶材料10上,通常为单晶硅,

优选地,对于iii-v类型的电池:gainp或gaalas层外延生长在同样是外延的aln或alp绝缘层上。

电接触点通常可以在多层材料1的半导体层完成之后立即形成。

因此,所形成的串联光伏电池包括在后方接触的后光伏电池和在前方接触的前光伏电池。这些光伏电池是电独立的。

例如,可以通过电接触点将串后结300的后面串联连接。

例如,可以通过电接触点将串前结200的前面串联连接。

因此,两个网络上下串联并且彼此电绝缘。

通常,根据本发明的多层材料1的各层垂直堆叠并且彼此直接接触、可能地通过一个或多个中间层隔离。

方法

本发明还涉及一种制作根据本发明的多层材料1的方法。

根据一变型,该方法连续地包括:

(i)制备单晶材料10,单晶材料具有前面11和后面12;

(ii)在单晶材料10的前面11上沉积或生长电绝缘层30,电绝缘层30具有前面31和后面32;

(iii)在电绝缘层30的前面31上沉积或生长的后接触层40,后接触层40位于异质结20后方并且具有前面41和后面42,后接触层40的前面41与异质结20的后面22接触;

(iv)在后接触层40的前面41上沉积或生长异质结20的一层第一材料24并沉积或生长一层第二材料26,异质结20具有前面21和后面22;

(v)构造p1第一绝缘区域p1,第一绝缘区域p1将后接触层40的导电区域绝缘;通过构造p1形成位于电绝缘层30的前面31与异质结20后方的后接触层40和异质结20的后面22的交替接触;优选地在沉积或生长第一材料24和第二材料26之前或之后进行构造p1;

电绝缘层30位于异质结20的后接触层40的后面42和单晶材料10的前面11之间。

根据一变型,该方法包括:

(vi)构造p2第二绝缘区域p2,第二绝缘区域使异质结20的半导体区域绝缘;

第一绝缘区域p1和第二绝缘区域p2在多层材料1的各层的垂直堆叠中不重叠。

根据一变型,该方法包括:

(viii)在异质结20的前面21上沉积或生长光子透明导电层50;以及

(ix)构造p3第二绝缘区域p3,第二绝缘区域使导电层50的导电区域绝缘。

在多层材料1的各层的堆叠中,第一绝缘区域p1、第二绝缘区域p2和第三绝缘区域p3不重叠。

有利地,在步骤p2中构造第一材料24层和第二材料26层。

有利地,在步骤p3中构造第一材料24层和第二材料26层。

根据一变型,优选地在异质结20的前面21上沉积或生长光子透明导电层50之前进行构造p2。

根据一实施例,如图2中所示,该方法包括制备串联电池。该方法包括:制备用于后接触点的单晶硅光伏电池;通过外延生长在单晶硅的前面上沉积绝缘层30;通过外延生长在绝缘层30的前面上沉积后接触层40;通过外延生长沉积第一材料24层以形成异质结20的第一层;(通过外延生长或者其它,如cigs和钙钛矿的情况中)在第一材料24层上沉积第二材料26以形成异质结20的第二层;在前接触层50、第一材料24层和第二材料26层构造p3沟槽;沉积串联电池的前面的保护层,例如玻璃层。

根据一实施例,如图3中所示,该方法包括制备串联电池。该方法包括:制备用于后接触点的单晶硅光伏电池;通过外延生长在单晶硅10的前面上沉积绝缘层30;通过外延生长在绝缘层30的前面31上沉积后接触层40;(通过外延生长或其它,如cigs和钙钛矿的情况中)在第一材料24层上沉积第二材料26以形成异质结20的第二层;一旦这些层完成,在第一材料24层、第二材料26层和后接触层40上构造p1沟槽;在第一材料24层和第二材料26层上构造p2沟槽;沉积透明导电材料的前接触层50;在前接触层50、第一材料24层和第二材料26层上构造p3沟槽;沉积串联电池的前面的保护层,例如玻璃层。在构造沟槽p1之后,填充电绝缘材料90。该电绝缘材料90优选地对于太阳光谱(通常为300nm至1200nm的波长)透明,并且例如为聚合物。

为了容易地实现整体连接,根据一实施例,构造p1、p2和p3应当以从左至右或从右至左的顺序连续并重复进行。

因此,在硅表面上实现绝缘外延层,之后生长iii-v层并构造为横向条带,从而实现外延条带之间的整体连接。

有利地,iii-v结或其它结(cigs、cdte、钙钛矿)的后接触层40在水平平面内具有良好的导电性。

本发明还涉及根据本发明的制作方法获得的多层材料1。

本发明能够实现具有极高效率的iii-v硅串联电池,优选地因为在硅电池上外延生长用于交错布置的后接触点的iii-v结而具有四引线配置以及实现了iii-v结的整体连接。

本发明可以用于iii-v类型、cigs、cdte、钙钛矿混合物、或者其它多元无机材料(硫族化物、磷化物、砷化物、卤化物等)的前电池。

本发明提出了新的结构,允许将外延电池的优点与四引线配置的优点相结合。外延配置实际上被限制为两引线类型的。

应用

本发明还涉及光伏电池,其特征在于包括或者由以下材料组成:一个或多个根据本发明的、或者通过本发明的方法获得的多层材料1,并且优选地形成双结(也称为串联电池)。

本发明还涉及移动或固定装置,包括电发生器,其特征在于,通过一个或多个根据本发明的、或者通过本发明的方法获得的多层材料1来产生电。

本发明还涉及基于电磁辐射产生电的方法,其特征在于,一个或多个根据本发明的、或者通过本发明的方法获得的多层材料1暴露在电磁辐射中、优选地在前面101上,并且,尤其通过位于后面102上的交错布置的接触电极60来收集电路。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1