一种氮化镓器件的制作方法

文档序号:17680193发布日期:2019-05-17 19:43阅读:253来源:国知局
一种氮化镓器件的制作方法

本实用新型涉及氮化镓裸芯片的封装技术,特别是一种氮化镓器件。



背景技术:

业内将从晶圆上切割下来,在封装前的单个单元的裸芯片叫做die。功率开关管均是封装后的芯片/器件。功率开关管在工作过程中会产生热量,积累的热量可能会让开关管的性能变差,甚至损坏开关管,因此需要在功率开关管的die封装成器件的过程中,想办法将芯片的热量散发到外部的环境中。

现有技术中常用的SMD封装器件,其结构一般为两种,一是没有外露散热金属片的全包封结构,这类型封装的器件,主要通过封装材料将内部die的热量传导或辐射到空气中这个途径来散热。因器件的封装材料一般热阻较大,此类型的封装散热能力有限,一般只适用于工作时只需要通过小电流的器件使用。

另一种是在器件底部配置有散热片,如图1和图2所示,在封装结构内部,将散热片和内部的die通过粘贴、焊接等低热阻的连接方式连在一起,如此die在工作中产生的热量,可通过低热阻的途径传输到散热片上,同时器件装配到PCB上时,还可通过PCB上的铜箔、过孔等方式加强散热。此类型的封装,因其内部集成的散热片面积有限,PCB的导热能力也有限,在大电流的应用场合,散热能力也不足。SOP-8封装底部带散热片的形式如图1所示,DFN封装底部带散热片的形式如图2所示。



技术实现要素:

针对现有技术中的问题,本实用新型提供一种导热性能好且散热能力强的氮化镓器件及氮化镓器件的封装方法。

第一方面,本实用新型提供一种氮化镓器件,包括氮化镓裸芯片,引线框架的引脚,用于对所述氮化镓裸芯片进行散热的基岛;

所述氮化镓裸芯片正面的电极采用引线与所述引脚连接,

所述氮化镓裸芯片背面与所述基岛直接接触;

所述氮化镓裸芯片、所述引脚和所述基岛封装成一个氮化镓器件,且部分基岛外露在所述氮化镓器件的顶部。

可选地,外露在所述氮化镓器件顶部的基岛与所述氮化镓器件顶部齐平。

可选地,外露在所述氮化镓器件顶部的基岛具有与其它散热装置连接的缺口结构,所述其它散热装置为与氮化镓器件独立的散热装置。

可选地,所述基岛的长宽大于所述氮化镓裸芯片的长宽。

可选地,所述氮化镓裸芯片背面与所述基岛直接接触,包括:

所述氮化镓裸芯片背面与所述基岛采用焊接方式连接;

或者,所述氮化镓裸芯片背面与所述基岛采用胶水粘接方式连接。

可选地,将所述氮化镓裸芯片、引脚和所述基岛封装成SMD形式的氮化镓器件。

本实用新型具有的有益效果:

1)本实用新型将氮化镓的die正装在基岛上,电极采用打线的方式跟引脚相连,对于氮化镓die封装成SMD器件来说,加工方式简单,从die到基岛的热阻也最小,利于将die的热量传导到基岛上。由此,解决了现有氮化镓芯片在封装成贴片的器件时,封装材料的热阻高,散热效果差,不利于发挥氮化镓功率管的电流通过能力问题。

2)在将GaN的die封装成SMD形式的器件时,在SMD的顶部增加散热片,如此可在SMD器件的上方,再使用外加的散热片来增强散热能力,让采用SMD封装的氮化镓器件能通过大电流,控制更大的功率。也就是说,解决了现有的SMD器件散热能力有限,不能充分发挥内部GaN芯片(即裸芯片)大电流的优势。

3)利用GaN的die无电极的一面电中性的特点,将电中性的一面跟SMD封装的散热片连到一起,由此在SMD外部加散热片时,只需要用导热性能良好的材料,不用考虑电绝缘的问题。即解决了现有技术中封装器件内部基岛带电,其内部基岛和外部散热片之间需增加绝缘材料的问题,同时,多个同类型的SMD器件应用在电路板上时,可以使用同一个外部散热片,降低散热的成本和占用的空间。也有利于将多个同类型的器件形成一个模组的形式使用。

4)将SMD器件顶部的散热片下方的封装体留一部分缺口,利于顶部的散热片通过机械的卡扣类装置将外部散热片和SMD器件的散热片良好地接触到一起帮助器件散热,同时固定外部的散热片。即解决了现有技术中封装器件内部的散热片与和外部散热片之间固定的问题,降低成本,且能够利于器件小型化。

5)在SMD的顶部配置电中性的散热片,如此容易满足电极之间的安全距离要求,同时不影响器件的散热。也就是说,在满足安全规范的要求下,可以将SMD封装的面积缩小,利于器件的小型化。

附图说明

图1为现有技术中SOP-8封装底部带散热片的结构示意图;

图2为现有技术中DFN封装底部带散热片的结构示意图;

图3为本实用新型实施例一提供的氮化镓器件的示意图;

图4为本实用新型的一种SMD封装器件的俯视图;

图5为本实用新型的一种SMD封装器件的仰视图;

图6为本实用新型中对应图4的SMD封装器件的侧视图;

图7为本实用新型中对应图5的SMD封装器件的侧视图;

图8为本实用新型图4至图7的内部结构示意图。

具体实施方式

为了更好的解释本实用新型,以便于理解,下面结合附图,通过具体实施方式,对本实用新型作详细描述。

为更好的理解本实用新型的内容,对本实用新型中使用的部分词语解释如下:

正装:将芯片的正面(包含电极的面)朝上,底部直接焊接在封装支架或基板上;

倒装:将芯片上下面翻转,正面(包含电极的面)朝下,正面上的电极直接焊接在设计好连接走线的PCB板上;

GaN HEMT:氮化镓高电子迁移率晶体管;GaN HEMT芯片的PN结为平面结构,三个极分布在同一个平面上,即die上的三个电极G、D、S在同一个平面上,在电极的另一面(背面)是电中性的。

实施例1

如图3所示,本实施例的氮化镓器件包括:包括氮化镓裸芯片3,引线框架的引脚1,用于对所述氮化镓裸芯片进行散热的基岛4;

所述氮化镓裸芯片正面的电极采用引线2与所述引脚1连接,

所述氮化镓裸芯片背面与所述基岛直接接触;

所述氮化镓裸芯片3、所述引脚1和所述基岛4封装成一个氮化镓器件,且部分基岛4外露在所述氮化镓器件的顶部。

举例来说,氮化镓裸芯片背面与所述基岛采用焊接方式连接;

或者,氮化镓裸芯片背面与所述基岛采用胶水粘接方式连接。本实施例中并不限定氮化镓芯片背面与基岛的连接方式,能够实现直接接触的任意连接方式均可。特别说明的是,本实施例中的基岛属于封装框架的部分结构。

此外,图3中还示出封装时使用的塑封材料5,该塑封材料5可使氮化镓器件将需要绝缘的地方隔开,同时和引脚、散热基岛一起确定氮化镓器件的外形。

在实际应用中,图1中的引线框架是由作为散热片的基岛4和引脚1组成。在封装成器件后,通常外露在氮化镓器件顶部的基岛可与所述氮化镓器件顶部齐平。

在具体应用中,前述的基岛为散热片的结构。由于裸芯片的无电极的一面为电中性,为此散热片与裸芯片直接接触时,散热片并不带电,在封装成器件之后,器件内作为散热片的基岛和器件外部的散热片连接时,无需考虑绝缘性能的问题,使得外露的基岛可与外部的散热片直接连接。

例如,外露在所述氮化镓器件顶部的基岛具有与其它散热装置(即外部的散热片)连接的缺口结构,所述其它散热装置为与氮化镓器件独立的散热装置。

结合图4至图7所示,图4示出了另一种SMD封装器件的俯视图,图5示出了此SMD封装器件的仰视图,图6示出了此SMD封装器件的侧视图。图7示出了此SMD封装器件的侧视图。另外,图8示出了图4至图7的内部结构示意图。

本实施例仅示出一种缺口结构,并不限定缺口的具体形状,能够和外部散热装置连接/卡接的缺口结构都可以,其都属于本实用新型的保护范围。图4至图7中所示的缺口结构通过模具设计制作。

进一步地,结合图3进行说明,本实施例中基岛即作为散热片使用,其长宽大于或等于氮化镓裸芯片的长宽,以增加散热基岛的面积,利于内部氮化镓die的散热。

另外,SMD封装的功率器件,其体积较小,寄生电感、电容效应比直插类器件要小,有利于发挥氮化镓功率开关的高速开关特性,氮化镓功率开关管作为最新的第三代半导体,在封装时,都尽量都采用SMD封装,以发挥氮化镓功率开关管的性能。为此,本实施例中将所述氮化镓裸芯片、引脚和所述基岛封装成SMD形式的氮化镓器件。需要说明的是,图3和图8中的氮化镓器件的引脚代表两种结构的氮化镓器件。

由此,本实用新型解决了现有氮化镓芯片在封装成贴片的器件时,封装材料的热阻高,散热效果差,不利于发挥氮化镓功率管的电流通过能力问题。

在将GaN的die进行SMD封装时,在die顶部增加作为散热片使用的基岛,如此可在SMD器件的上方,再使用外加的散热片来增强散热能力,让采用SMD封装的氮化镓器件能通过大电流,控制更大的功率。也就是说,解决了现有的SMD器件散热能力有限,不能充分发挥内部GaN芯片(即裸芯片)大电流的优势。

利用GaN的die无电极的一面电中性的特点,将电中性的一面跟SMD封装的散热片连到一起,由此在SMD外部加散热片时,只需要用导热性能良好的材料,不用考虑电绝缘的问题。即解决了现有技术中封装器件内部散热片带电,其内部散热片和外部散热片之间增加绝缘性能材料的问题。

实施例2

本实用新型还提供一种氮化镓器件的封装方法,其包括:

S1、将氮化镓裸芯片正面的电极采用引线连接到引线框架的引脚上;

S2、将氮化镓裸芯片背面与所述基岛直接连接;

S3、将所述氮化镓裸芯片、引脚和所述基岛封装成一个氮化镓器件,且部分基岛外露在所述氮化镓器件的顶部。

具体地,上述步骤S2中裸芯片和基岛的连接方式为:所述氮化镓裸芯片背面与所述基岛采用焊接方式连接;或者,所述氮化镓裸芯片背面与所述基岛采用胶水粘接方式连接。

本实施例的氮化镓器件还包括:对外露在所述氮化镓器件顶部的基岛设置与其它散热装置连接的缺口结构,所述其它散热装置为与氮化镓器件独立的散热装置。

以DFN的封装为例,

S1、如图3所示,采用基岛4和引脚1在相对应两个平面上的引线框架;

S2、将氮化镓裸芯片die3正装在基岛4上,die和基岛的连接,可采用焊接、胶水连接或其它方式;

S3、将die上的电极通过引线2连接到引线框架的引脚1上;

S4、填充封装材料,将die、引线、封装体内部的框架等覆盖,将基岛没焊接die的一面露出,但跟同面的封装体在同一个平面;

S5、封装固化成型后切筋、整形,即为成品。

注:顶部的散热片面积可比封装的面积小,持平,或比封装的面积大。

此外,若采用其他形式的SMD封装,和上述S1至S4的过程基本一样,在S5步骤中出了切筋外,还需对引脚进行打弯。

特别说明的是,如图4至图7所示,作为基岛的散热片下方的塑封体留有缺口,以方便外部散热片的装配。

即,氮化镓功率开关管在封装成SMD器件时,散热片框架朝上,将氮化镓die不含电极的一面倒装在SMD的散热片框架上。此外,顶部基岛散热片下方的封装体留有缺口,留出的缺口方便固定外部散热片,可不需要在PCB上打孔实现,方便连接和固定外部的散热片/散热装置。

SMD顶部的散热片为电中性,不用考虑安全规范、绝缘问题,有利于外部散热片的选择与安装。

进一步地,前述的位于封装框架内的起散热作用的基岛还可以作为PCB板使用,此时,氮化镓裸芯片正装在作为PCB板的基岛上,裸芯片的电极通过PCB板引线连接裸芯片的外部,再通过引线或直接与引脚焊接的方式完成电气连接,再注塑封装。

还需要说明的是,本实用新型中提及的示例性实施例,基于一系列的步骤或者装置描述一些方法或系统。但是,本实用新型不局限于上述步骤的顺序,也就是说,可以按照实施例中提及的顺序执行步骤,也可以不同于实施例中的顺序,或者若干步骤同时执行。

上述各个实施例可以相互参照,本实施例不对各个实施例进行限定。

最后应说明的是:以上所述的各实施例仅用于说明本实用新型的技术方案,而非对其限制;尽管参照前述实施例对本实用新型进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分或全部技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本实用新型各实施例技术方案的范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1