具有交叉偶极子辐射元件的多频带基站天线的制作方法

文档序号:19816724发布日期:2020-01-31 19:26阅读:234来源:国知局
具有交叉偶极子辐射元件的多频带基站天线的制作方法

对相关申请的交叉引用

本申请根据35u.s.c.§119要求2017年5月3日提交的美国临时专利申请第62/500,607号的优先权,其全部内容通过引用合并于此,如同其全部阐述一样。



背景技术:

本发明一般涉及无线电通信并且,更具体地说,涉及用于蜂窝通信系统的基站天线。

蜂窝通信系统在本领域中是公知的。在蜂窝通信系统中,地理区域被划分为一系列被称为“小区”的区域,这些“小区”由相应的基站服务。基站可以包括被配置为提供与基站所服务的小区内的移动订户的双向射频(“rf”)通信的一个或多个基站天线。在许多情况下,每个基站被划分为“扇区”。在也许是最常见的配置中,六边形的小区被分为三个120°扇区,并且每个扇区由具有约为65°的方位半功率波束宽度(hpbw)的一个或多个基站天线服务。典型地,基站天线安装在塔架或其他凸起结构上,由基站天线生成的辐射图案(在这里也被称为“天线波束”)向外指向。基站天线通常被实现为辐射元件的线性的或平面的相控阵列。

为了适应不断增长的蜂窝通信量,蜂窝运营商已经在各种新频带中增加了蜂窝服务。尽管在一些情况下,使用所谓的“宽带”或“超宽带”辐射元件的线性阵列在多个频带中提供服务是有可能的,但是在其他情况下,必须使用不同的辐射元件线性阵列(或平面阵列)来支持不同频带中的服务。在蜂窝通信的早期,每个线性阵列通常被实现为单独的基站天线。

随着频带数量的激增以及增加的扇区化变得越来越普遍(例如,将小区划分为六个、九个甚至十二个扇区),在典型基站处部署的基站天线的数量已显著增加。然而,由于例如天线塔的本地区域条例和/或重量和风载荷约束,在给定基站处可以部署的基站天线的数量通常存在限制。为了增加容量而不另外增加基站天线的数量,近年来已经引入了所谓的多频带基站天线,其中在单个天线中包括多个辐射元件线性阵列。一种非常常见的多频带基站天线设计是rvv天线,其包括用于在694-960mhz频带(通常被称为“r频带”)的一些或全部频带中提供服务的一个“低频带”辐射元件线性阵列和用于在1695-2690mhz频带(通常被称为“v频带”)的一些或全部频带中提供服务的两个“高频带”辐射元件线性阵列。这些线性阵列以并排方式被安装。

对rrvv基站天线也存在极大的兴趣,rrvv基站天线是指具有两个低频带辐射元件线性阵列和两个(或四个)高频带辐射元件线性阵列的基站天线。rrvv天线被用于包括4x4多输入多输出(“mimo”)应用的各种应用中,或被用作具有两个不同低频带(例如700mhz低频带线性阵列和800mhz低频带线性阵列)和两个不同的高频带(例如1800mhz高频带线性阵列和2100mhz高频带线性阵列)的多频带天线。然而,rrvv天线以商业上可接受的方式实现具有挑战性,因为在低频带中实现65°方位hpbw天线波束通常需要至少200mm宽的低频带辐射元件。当两个低频带阵列并排放置,高频带线性阵列在两者之间排列时,这导致基站天线具有大约600-760mm的宽度。这样的大天线可能具有非常高的风载荷,可能非常重,和/或制造可能很昂贵。运营商将更喜欢具有在300-380mm范围内的宽度的rrvv基站天线,300-380mm是现有技术中的基站天线的典型宽度。



技术实现要素:

根据本发明的实施例,提供了双极化辐射元件,该双极化辐射元件包括沿着第一轴延伸的第一偶极子以及沿着第二轴延伸的第二偶极子,该第一偶极子包括第一偶极子臂和第二偶极子臂,该第二偶极子包括第三偶极子臂和第四偶极子臂。第二轴大致垂直于第一轴。第一偶极子臂至第四偶极子臂中的每个偶极子臂具有间隔开的第一和第二导电段,第一和第二导电段一起形成大致椭圆形形状。

双极化辐射元件还可以包括至少一个馈电杆,该至少一个馈电杆大致垂直于由第一偶极子和第二偶极子限定的平面延伸。

在一些实施例中,第一偶极子臂的第一和第二导电段的远端彼此电连接,使得第一偶极子臂具有封闭的环结构。在其他实施例中,第一偶极子臂的第一导电段的远端与第一偶极子臂的第二导电段的远端间隔开,使得第一偶极子臂的第一和第二导电段仅通过第一偶极子臂的第一和第二导电段的近端彼此电连接。

在一些实施例中,第一至第四偶极子臂的第一导电段和第二导电段中的每个导电段包括具有第一平均宽度的第一加宽区段,具有第二平均宽度的第二加宽区段和具有第三平均宽度的缩窄区段,该缩窄区段在第一加宽区段和第二加宽区段之间。在这些实施例中,第三平均宽度可以小于第一平均宽度的一半并且小于第二平均宽度的一半。缩窄区段可以包括曲折的导电迹线。缩窄区段可以为在双极化辐射元件的工作频率范围内的最高频率的大约两倍的频率处的电流创建高阻抗。

在一些实施例中,形成第一偶极子臂的第一和第二导电段的组合表面积大于形成第二偶极子臂的第一和第二导电段的组合表面积。在这样的实施例中,双极化辐射元件可以被安装在基站天线上,并且第一偶极子臂比第二偶极子臂更靠近基站天线的侧边缘。

在一些实施例中,每个偶极子臂的第一和第二导电段可以包括印刷电路板的导电段。

在一些实施例中,第一偶极子臂的第一和第二导电段之间的区域的至少一半可以是开放式区域。

在一些实施例中,第一偶极子臂的第一导电段的第一曲折迹线和第一偶极子臂的第二导电段的第二曲折迹线延伸到第一偶极子臂的在第一偶极子臂的第一和第二导电段之间的内部区段中。在一些实施例中,第一偶极子臂上的所有曲折迹线段朝向第一偶极子臂的在第一偶极子臂的第一和第二导电段之间的内部区段延伸。

在一些实施例中,第一偶极子以+45°极化直接辐射射频(“rf”)信号,并且第二偶极子以-45°极化直接辐射射频信号。

在一些实施例中,导电板被安装在第一和第二偶极子的中心部分上方。在一些实施例中,导电板可以位于第一和第二偶极子的工作波长的0.05倍的距离内,其中,该工作波长是与双极化辐射元件的工作频带的中心频率相对应的波长。

根据本发明的另外的实施例,提供了双极化辐射元件,该双极化辐射元件包括沿着第一轴延伸的第一偶极子以及沿着第二轴延伸的第二偶极子,该第一偶极子包括第一偶极子臂和第二偶极子臂,该第二偶极子包括第三偶极子臂和第四偶极子臂,并且第二轴大致垂直于第一轴。第一至第四偶极子臂中的每个偶极子臂具有间隔开的第一和第二电流路径,并且第一和第二偶极子臂的间隔开的第一和第二电流路径中的每个电流路径的中心部分平行于第一轴延伸,并且第三和第四偶极子臂的间隔开的第一和第二电流路径中的每个电流路径的中心部分平行于第二轴延伸。

在一些实施例中,第一至第四偶极子臂中的每个偶极子臂具有间隔开的第一和第二导电段,并且第一电流路径沿着第一导电段并且第二电流路径沿着第二导电段。

在一些实施例中,第一至第四偶极子臂中的每个偶极子臂上的间隔开的第一和第二导电段一起形成大致椭圆形形状。在其他实施例中,第一至第四偶极子臂中的每个偶极子臂上的间隔开的第一和第二导电段一起形成大致矩形形状。

在一些实施例中,第一至第四偶极子臂的第一导电段和第二导电段中的每个导电段包括具有第一平均宽度的第一加宽区段、具有第二平均宽度的第二加宽区段和具有第三平均宽度的缩窄区段,该缩窄区段在第一加宽区段和第二加宽区段之间。在这些实施例中,第三平均宽度可以小于第一平均宽度的一半并且小于第二平均宽度的一半。缩窄区段可以为在双极化辐射元件的工作频率范围内的最高频率的大约两倍的频率处的电流创建高阻抗。缩窄区段可以是曲折的导电迹线。

在一些实施例中,形成第一偶极子臂的第一和第二导电段的组合表面积大于形成第二偶极子臂的第一和第二导电段的组合表面积。在这样的实施例中,双极化辐射元件可以被安装在基站天线上,并且第一偶极子臂可以比第二偶极子臂更靠近基站天线的侧边缘。

在一些实施例中,第一偶极子臂的第一导电段包括第一曲折迹线,并且第一偶极子臂的第二导电段包括第二曲折迹线,并且第一和第二曲折迹线延伸到第一偶极子臂的在第一偶极子臂的第一和第二导电段之间的内部区段中。在一些实施例中,第一偶极子臂的第一和第二导电段一起包括多个曲折迹线段,并且包括在第一偶极子臂的第一和第二导电段中的所有曲折迹线段朝向第一偶极子臂的在第一偶极子臂的第一和第二导电段之间的内部区段延伸。

在一些实施例中,第一偶极子臂的第一和第二导电段的远端彼此电连接,使得第一偶极子臂具有封闭的环结构。例如,第一偶极子臂的第一和第二导电段的远端通过曲折的导电迹线彼此电连接。在其他实施例中,第一偶极子臂的第一导电段的远端与第一偶极子臂的第二导电段的远端间隔开,使得第一偶极子臂的第一和第二导电段仅通过第一偶极子臂的第一和第二导电段的近端被彼此电连接。

根据本发明的还有的另外的实施例,提供了用于基站天线的双极化辐射元件,其包括沿着第一轴延伸的第一偶极子以及沿着第二轴延伸的第二偶极子,该第一偶极子包括第一偶极子臂和第二偶极子臂,该第二偶极子包括第三偶极子臂和第四偶极子臂,并且第二轴大体垂直于第一轴。第一至第四偶极子臂中的每个偶极子臂具有限定相应的第一和第二电流路径的间隔开的第一和第二导电段,并且第一至第四偶极子臂的第一和第二导电段中的每个导电段包括多个加宽区段和在这些加宽区段当中的相邻区段之间的多个缩窄的曲折迹线区段。第一偶极子臂的加宽区段当中的第一加宽区段比第二偶极子臂的加宽区段当中的第一加宽区段更宽,第二偶极子臂的第一加宽区段与第一偶极子臂的第一加宽区段距第一轴和第二轴交叉的点的距离相同。

根据本发明的再另外的实施例,提供了调谐基站天线的方法。基站天线可以包括在工作频带内发送和接收信号的第一辐射元件线性阵列和在工作频带内发送和接收信号的第二辐射元件线性阵列,每个辐射元件包括第一至第四偶极子臂。工作频带至少具有在第一频率范围内的第一子频带和在第二频率范围内的第二子频带,第一和第二子频带被不是工作频带的一部分的第三频带分开。根据这些方法,可以选择在相应的辐射元件上的第一至第四偶极子臂中的相邻的偶极子臂之间的相应间隙的大小,以将当第一线性阵列发送信号时在第二线性阵列上生成的共模谐振调谐在第三频带内。

在一些实施例中,第一和第二子频带都在694-960mhz频带内。在一些实施例中,第三频带是799-823mhz频带。

在本发明的再另外的实施例中,提供了基站天线,其包括在工作频带内发送和接收信号的第一辐射元件线性阵列和在工作频带内发送和接收信号的第二辐射元件线性阵列。第一和第二辐射元件线性阵列中的每个辐射元件包括在垂直平面中延伸的第一偶极子和第二偶极子,并且导电板被安装在第一和第二偶极子的中心部分上方。导电板位于第一和第二偶极子的工作波长的0.05倍的距离内,其中工作波长是对应于工作频带的中心频率的波长。

在一些实施例中,导电板被配置为对当第一线性阵列发送信号时在第二线性阵列上生成的并且在第一和第二线性阵列的工作频带内的共模谐振的频率进行偏移,使得共模谐振落在工作频带外。

附图说明

图1是根据本发明实施例的基站天线的侧面透视图。

图2是移除了天线罩的图1的基站天线的透视图。

图3是移除了天线罩的图1的基站天线的前视图。

图4是移除了天线罩的图1的基站天线的侧视图。

图5和图6是图1-4的基站天线的各个部分的放大透视图。

图7是图1-6的基站天线的低频带辐射元件组件之一的放大透视图。

图8是图7的低频带辐射元件组件的顶视图。

图9是图7的低频带辐射元件组件的侧视图。

图10是示出了包括在图7-9的低频带辐射元件组件中的低频带辐射元件之一的偶极子的顶视图。

图11是示出了根据本发明的另外的实施例的低频带辐射元件的偶极子的顶视图。

图12是图1-6的基站天线的高频带辐射元件组件之一的放大透视图。

图13a至图13c是示出了可被包括在图1-6的基站天线的辐射元件的馈电杆上的共模滤波器的示例实现方案的示意图。

图14是示出了可以被集成到图1-6的基站天线的低频带辐射元件的偶极子臂中的共模滤波器的示例实现方案的示意图。

图15是根据本发明实施例的低频带辐射元件组件的透视图,该低频带辐射元件组件包括被安装在每个低频带辐射元件的偶极子臂的中心区段上方的相应的导电板。

具体实施方式

本发明的实施例一般而言涉及用于双频带基站天线的双极化低频带辐射元件以及相关的基站天线和方法。这样的双频带天线可能能够在两个或更多个蜂窝频带中支持两个或更多个主要的空中接口标准,并允许无线运营商减少部署在基站处的天线的数量,从而降低塔租赁成本,同时加快上市速度。

双频带基站天线设计中的挑战是减小一个频带上的rf信号被另一频带上的辐射元件散射的影响。散射是不期望的,因为它可能会影响方位平面和仰角平面二者中天线波束的形状,并且该影响可能会随频率显著变化,这可能使得使用其他技术很难补偿这些影响。此外,至少在方位平面中,散射趋于以不期望的方式影响波束宽度、波束形状、指向角度、增益和前后比(front-to-backratio)。根据本发明的某些实施例的低频带辐射元件可以被设计成对靠近放置的高频带辐射元件的天线图案具有减小的影响(即减小的散射)。

根据本发明的实施例,提供了具有交叉偶极子双极化辐射元件的基站天线,该交叉偶极子双极化辐射元件包括沿着相应的第一和第二垂直轴延伸的第一和第二偶极子。每个偶极子可以包括一对偶极子臂。每个偶极子臂具有间隔开的第一和第二导电段,第一和第二导电段一起形成大致椭圆形形状或大致细长的矩形形状。每个偶极子臂的间隔开的第一和第二导电段可以包括平行于它们相应的偶极子的轴延伸的中心部分。第一偶极子可以以+45°极化直接辐射rf信号,并且第二偶极子可以以-45°极化直接辐射rf信号。

在一些实施例中,每个偶极子臂的第一和第二导电段的远端可以彼此电连接,使得每个偶极子臂每个具有封闭的环结构。第一导电段和第二导电段中的每个导电段可以包括多个加宽区段和连接这些加宽区段当中的相邻区段的缩窄的曲折导电迹线区段。缩窄的曲折导电迹线部分可以为例如在双极化辐射元件的工作频率范围中的最高频率的大约两倍的频率处的电流创建高阻抗。

在一些实施例中,偶极子可以是不平衡的,使得形成第一偶极子臂的第一和第二导电段的组合表面积大于形成第二偶极子臂的第一和第二导电段的组合表面积。具有较少导电材料的偶极子臂可以是偶极子的更靠近天线中间的内部偶极子臂。

偶极子臂可以例如在印刷电路板或其他大致平面的基板上实现。根据本发明的实施例的交叉偶极子双极化辐射元件还可以包括可以在例如印刷电路板上实现的馈电杆。在一些实施例中,馈电杆可以将偶极子臂支撑在底板(诸如反射器)上方。

在一些实施例中,双极化辐射元件可以被包括在基站天线中并且被用来形成第一和第二线性阵列。每个双极化辐射元件包括导电板,该导电板可以位于偶极子的工作波长的0.15倍的距离内并且可以大致平行于偶极子。在其他实施例中,导电板可以位于偶极子的工作波长的0.1倍的距离内或偶极子的工作波长的0.05倍的距离内。导电板可以被配置为对当第一线性阵列发送信号时在第二线性阵列上生成的并且在第一和第二线性阵列的工作频带内的共模谐振的频率进行偏移。共模谐振的频率可以被偏移为落在工作频带之外。

根据本发明的还有的另外的实施例,提供了调谐基站天线的方法。基站天线可以具有在工作频带内发送和接收信号的第一辐射元件线性阵列和在工作频带内发送和接收信号的第二辐射元件线性阵列。每个辐射元件可以包括第一至第四偶极子臂,并且工作频带可以至少具有在第一频率范围内的第一子频带和在第二频率范围内的第二子频带,并且第一和第二子频带频带可以被不是工作频带的一部分的第三频带分开。根据本发明的实施例的方法,可以选择在相应的辐射元件上的第一至第四偶极子臂中的相邻的偶极子臂之间的相应间隙的宽度,以将当第一线性阵列发送信号时在第二线性阵列上生成的共模谐振调谐在第三频带内。在一些实施例中,第一和第二子频带都在694-960mhz频带内,并且第三频带是799-823mhz频带。

现在将参考附图进一步具体地描述本发明的实施例。

图1-6示出了根据本发明的某些实施例的基站天线100。具体地,图1是天线100的前透视图,图2-4分别是移除了其天线罩的天线100的透视图、前视图和侧视图,以示出天线的内部部件。图5和图6是基站天线100的局部放大透视图。图7-9分别是包括在基站天线100中的低频带辐射元件组件之一的透视图、前视图和侧视图。图10是示出了包括在图7-9的低频带辐射元件组件中的低频带辐射元件之一的偶极子的顶视图。最后,图12是示出了包括在基站天线100中的高频带辐射元件组件之一的偶极子的顶视图。图11是示出了低频带辐射元件的偶极子的替代设计的顶视图。

如图1至图6所示,基站天线100是沿着纵轴l延伸的细长结构。基站天线100可以具有横截面为大致矩形的管状形状。天线100包括天线罩110和顶端盖120。在一些实施例中,天线罩110和顶端盖120可以包括单个整体单元,这可以有助于天线100防水。在天线罩110的后侧上提供一个或多个安装支架150,安装支架150可以用于将天线100安装到例如天线塔上的天线安装座(未示出)上。天线100还包括底端盖130,该底端盖130包括被安装在其中的多个连接器140。天线100通常以垂直配置被安装(即,当安装天线100以进行正常操作时,纵轴l可以大致垂直于由地平线限定的平面)。

图2-4分别是移除了天线罩110的基站天线100的透视图、前视图和侧视图。

如图2-4所示,基站天线100包括天线组件200,该天线组件200可以在顶盖120或底盖130被附接到天线罩110之前从顶部或底部可滑动地被插入到天线罩110中。

天线组件200包括具有侧壁212和反射器表面214的接地平面结构210。天线的各种机械和电子部件可以被安装在被限定在侧壁212和反射器表面214的背面之间的腔室内,诸如例如移相器、远程电子倾斜(“ret”)单元、机械联动装置、控制器、双工器等。接地平面结构210可以不包括后壁以暴露这些电气和机械部件。接地平面结构210的反射器表面214可以包含或包括金属表面,该金属表面用作天线100的辐射元件的反射器和接地平面。这里,反射器表面214也可以被称为反射器214。

多个辐射元件300、400被安装在接地平面结构210的反射器表面214上。辐射元件包括低频带辐射元件300和高频带辐射元件400。如图3中最好地示出的,低频带辐射元件300被安装在两个垂直列中,以形成辐射元件300的两个垂直布置的线性阵列220-1、220-2。在一些实施例中,每个线性阵列220可以基本上沿着天线100的整个长度延伸。高频带辐射元件400可以类似地被安装在两个垂直列中,以形成高频带辐射元件400的两个垂直布置的线性阵列230-1、230-2。在其他实施例中,高频带辐射元件400可以被安装在多个行和列中以形成两个以上的线性阵列230。高频带辐射元件400的线性阵列230可以位于低频带辐射元件300的线性阵列220之间。高频带辐射元件400的线性阵列230可以或可以不延伸天线100的整个长度。低频带辐射元件300可以被配置为在第一频带中发送和接收信号。在一些实施例中,第一频带可以包括694-960mhz的频率范围或其一部分。高频带辐射元件400可以被配置为在第二频带中发送和接收信号。在一些实施例中,第二频带可以包括1695-2690mhz的频率范围或其一部分。

图5-6是移除了天线罩110的基站天线100的一部分的放大透视图,其更具体地示出了若干个低频带辐射元件300和若干个高频带辐射元件400。如在图5至图6中可以看到的,低频带辐射元件300当中的许多低频带辐射元件紧密接近高频带辐射元件400当中的若干个高频带辐射元件。与高频带辐射元件400相比,低频带辐射元件300更高(在反射器214上方),并且可以在至少一个高频带辐射元件400之上延伸。

注意,使用如下术语来描述天线100和天线组件200,这些术语假设天线100被安装在塔上以供使用并且天线100的纵轴沿垂直轴延伸并且天线100的与塔相对地安装的前表面指向天线100的覆盖区域。作为对照,可以使用假设天线组件200安装在水平表面上并且辐射元件300、400向上延伸的术语来描述天线100的各个部件(诸如辐射元件300、400和各个其他部件)。因此,尽管例如将低频带辐射元件300的偶极子臂330描述为辐射元件300的顶部部分并且在反射器214上方,但是将理解,当天线100被安装以供使用时,偶极子臂330将从接地平面结构210指向前方而不是指向上方。

低频带辐射元件300和高频带辐射元件400被安装在接地平面结构210上。接地平面结构210的反射器表面214可以包括金属片,如上所述,该金属片用作反射器并且用作辐射元件300、400的接地平面。

如上所述,低频带和高频带辐射元件300、400被布置为辐射元件的两个低频带阵列220和两个高频带阵列230。每个阵列220、230可被用于形成单独的天线波束。第一低频带阵列220-1中的每个辐射元件300可以与第二低频带阵列220-2中的相应辐射元件300水平对齐。类似地,第一高频带阵列230-1中的每个辐射元件400可以与第二高频带阵列230-2中的相应辐射元件400水平对齐。每个低频带线性阵列220可以包括多个低频带辐射元件馈电组件250,每个低频带辐射元件馈电组件250包括两个低频带辐射元件300。每个高频带线性阵列230可以包括多个高频带辐射元件馈电组件260,每个高频带辐射元件馈电组件260包括一个到三个高频带辐射元件400。

现在参考图7-9,将更具体地描述低频带辐射元件馈电组件250中的一个。低频带辐射元件馈电组件250包括印刷电路板252,印刷电路板252具有从其任一端向上延伸的第一和第二低频带辐射元件300-1、300-2。印刷电路板252包括rf传输线馈电254,该rf传输线馈电254向相应的低频带辐射元件300-1、300-2提供rf信号并从其接收rf信号。每个低频带辐射元件300包括一对馈电杆310以及第一和第二偶极子320-1、320-2。第一偶极子320-1包括第一和第二偶极子臂330-1、330-2,并且第二偶极子320-2包括第三和第四偶极子臂330-3、330-4。

馈电杆310可以各自包括印刷电路板,该印刷电路板具有形成在该印刷电路板上的rf传输线314。这些rf传输线314在印刷电路板252与偶极子320之间承载rf信号。每个馈电杆310还可以包括钩式平衡-不平衡转换器(hookbalun)。馈电杆中的第一馈电杆310-1可以包括下竖直缝,并且馈电杆中的第二馈电杆310-2可以包括上竖直缝。这些竖直缝允许两个馈电杆310被组装在一起以形成具有大致x形的水平横截面的垂直延伸的柱。每个印刷电路板的下部可以包括镀覆突起部316。这些镀覆突起部316被插入而穿过印刷电路板252中的缝。镀覆突起部316可以被焊接到印刷电路板252上的与印刷电路板上的缝相邻的镀覆部分以将馈电杆310电连接到印刷电路板252。相应的馈电杆310上的rf传输线314可以经由传输线314和偶极子臂330之间的直接欧姆连接来对偶极子320-1、320-2馈电进行中心馈电。

还可以提供偶极子支撑件318,以将第一和第二偶极子320-1、320-2保持在它们的适当位置,并减小施加到将偶极子320电连接到其馈电杆310的焊接联接部上的力。

每个低频带辐射元件300的方位半功率波束宽度可以在55度至85度的范围内。在一些实施例中,每个低频带辐射元件300的方位半功率波束宽度可以是大约65度。

每个偶极子320可以包括例如两个偶极子臂330,偶极子臂330的长度在工作波长的大约0.2倍至0.35倍之间,其中“工作波长”是指与辐射元件300的工作频带的中心频率对应的波长。例如,如果低频带辐射元件300被设计为被用于跨整个694-960mhz频带发送和接收信号的宽带辐射元件,则工作频带的中心频率将为827mhz并且对应的工作波长将是36.25cm。

如图8所示,第一偶极子320-1沿着第一轴322-1延伸,并且第二偶极子320-2沿着第二轴322-2延伸,第二轴322-2大致垂直于第一轴322-1。因此,第一和第二偶极子320-1、320-2以十字的大致形状被布置。第一偶极子320-1的偶极子臂330-1和330-2由公共rf传输线314进行中心馈电,并且以第一极化一起进行辐射。在所描绘的实施例中,第一偶极子320-1被设计为发送具有+45度极化的信号。第二偶极子320-2的偶极子臂330-3和330-4类似地由公共rf传输线314进行中心馈电,并且以正交于第一极化的第二极化一起进行辐射。第二偶极子320-2被设计为发送具有-45度极化的信号。偶极子臂330可以通过馈电杆310被安装在反射器214上方大约工作波长的3/16倍至1/4倍处。反射器214可以紧靠在馈电板印刷电路板252下方。

如图8和图10可以最佳地看出,每个偶极子臂330包括间隔开的第一和第二导电段334-1、334-2,第一和第二导电段334-1、334-2一起形成一个大致椭圆形形状。在图10中,粗虚线椭圆被叠加在偶极子臂330-3上,以示出导电段334-1和334-2的组合的大致椭圆性质。在图10中,第一和第二虚线椭圆也被叠加在偶极子臂330-2上,这些虚线椭圆大致圈出相应的第一和第二导电段334-1、334-2。在一些实施例中,间隔开的导电段334-1、334-2可以例如在印刷电路板332中实现,并且可以位于第一平面中,该第一平面大致平行于由底层反射器214限定的平面。所有四个偶极子臂330可以位于该第一平面中。每个馈电杆310可以在大致垂直于第一平面的方向上延伸。

每个导电段334-1、334-2可以包括金属图案,该金属图案具有多个加宽段336和至少一个缩窄迹线区段338。第一导电段334-1可以形成大致椭圆形的一半并且第二导电段334-2可以形成该大致椭圆形的另一半。在图7-10中描绘的特定实施例中,在每个偶极子臂330的最靠近每个偶极子320的中心的端部处的导电段334-1、334-2的部分可以具有与真正的椭圆形的曲线配置相对的直的外边缘。类似地,在每个偶极子臂330的远端处的导电段334-1、334-2的部分也可以具有直的或接近直的外边缘。将理解的是,出于本公开的目的,对椭圆形的这种近似被认为具有大致椭圆形形状(例如,细长的六边形具有大致椭圆形形状)。

如图10所示,导电段334-1、334-2的每个加宽区段336可以在第一平面中具有相应的宽度w1,其中,宽度w1是在大致垂直于沿着相应的加宽区段336的电流方向的方向上测量的。每个加宽区段336的宽度w1不必是恒定的,并且因此在一些情况下,将参考每个加宽区段336的平均宽度。缩窄迹线区段338可以类似地在第一平面中具有相应的宽度w2,其中宽度w2是在大致垂直于沿着缩窄迹线区段338的瞬时电流方向的方向上测量的。每个缩窄迹线区段338的宽度w2也不必是恒定的,并且因此在一些情况下将参考每个缩窄迹线区段338的平均宽度。

缩窄迹线区段338可以被实现为曲折的导电迹线。这里,曲折的导电迹线是指遵循曲折的路径以增加其路径长度的非线性导电迹线。使用曲折的导电迹线区段338提供了一种延伸缩窄迹线区段338的长度同时仍然提供相对紧凑的导电迹线区段334的方便方法。如下所述,这些缩窄迹线区段338可以被提供以改进双频带天线100的性能。

在一些实施例中,每个加宽区段336的平均宽度可以是例如每个缩窄迹线区段338的平均宽度的至少两倍。在其他实施例中,每个加宽区段336的平均宽度可以是每个缩窄迹线区段338的平均宽度的至少三倍。在又一些其他实施例中,每个加宽区段336的平均宽度可以是每个缩窄迹线区段338的平均宽度的至少四倍。在另外又一些实施例中,每个加宽区段336的平均宽度可以是每个缩窄迹线区段338的平均宽度的至少五倍。

缩窄迹线区段338可以用作高阻抗部分,其被设计为中断否则可能在偶极子臂330上被感应的高频带频率范围中的电流。具体地,当高频带辐射元件400发送和接收信号时,高频带rf信号可能倾向于在低频带辐射元件300的偶极子臂330上感应出电流。当低频带和高频带辐射元件300、400被设计为在具有间隔大约两倍的中心频率的频带中工作时,这尤其正确,因为具有低频带工作频率的四分之一波长的长度的低频带偶极子臂330在这种情况下将具有高频带工作频率的大约半波长的长度。在低频带偶极子臂330上被感应出高频带电流的程度越大,对高频带辐射元件400的线性阵列230的辐射图案的特性的影响就越大。

缩窄迹线区段338可以被设计为用作高阻抗部分,其被设计为中断否则可能在低频带偶极子臂330上被感应的高频带电流。缩窄迹线区段338可以被设计为在不显著影响低频带电流在偶极子臂330上流动的能力的情况下为高频带电流创建该高阻抗。这样,缩窄迹线区段338可以减小在低频带辐射元件300上的感应高频带电流,并因此减少对高频带线性阵列230的天线图案的干扰。在一些实施例中,缩窄迹线区段338可以使低频带辐射元件300对高频带辐射元件400几乎不可见,并且因此低频带辐射元件300可能不会使高频带天线图案失真。

如在图7-10中还可见的,在一些实施例中,导电段334-1、334-2的远端可以彼此电连接,使得导电段334-1、334-2形成封闭的环结构。在所描绘的实施例中,导电段334-1、334-2中的一些导电段通过缩窄迹线区段338彼此电连接,而在其他实施例中,在导电段334-1、334-2的远端处的加宽区段336-2可以合并在一起。在又有的其他的实施例中,可以使用不同的电连接。在另外其他实施例中,导电段334-1、334-2的远端可以不彼此电连接。还可以看出,由导电段334-1、334-2限定的环的内部(其可以是封闭的环或可以不是封闭的环)通常可以不含导电材料。附加地,还可以在环的内部省略其上安装有导电段334的电介质安装基板(例如,印刷电路板的电介质层)的至少一些。在一些实施例中,由每个偶极子臂330的第一和第二导电段334-1、334-2限定的环的内部内的区域的至少一半可以包括开放式区域340。在使用印刷电路板332形成偶极子臂330的实施例中,可以例如通过移除印刷电路板332的电介质基板来形成这些开放式区域340。如图10中最佳所示,印刷电路板332的电介质中的一些可以留在环的内部,以减小印刷电路板332曲折的趋势和/或提供用于将偶极子支撑结构318附接到每个偶极子臂330的位置。在其他实施例中,由每个偶极子臂330的第一和第二导电段334-1、334-2限定的环内部内的区域的至少三分之二可以包括开放式区域340。

从图7-10中也可以看出,在一些实施例中,第一和第二导电段334-1、334-2可以包括关于偶极子320的轴处于相对位置的曲折的迹线区段338。在这样的实施例中,这些相对的曲折的迹线区段338可以朝向由第一导电段334-1和第二导电段334-2限定的大致椭圆形的结构的内部延伸,并且因此也可以朝向彼此延伸。在一些实施例中,每个偶极子臂330上的所有曲折的迹线区段338可以朝向偶极子臂330的、在偶极子臂330的第一和第二导电段334-1、334-2之间的内部区段延伸。

在一些实施例中,可以在不同偶极子320的相邻偶极子臂330之间形成电容器。例如,可以在偶极子臂330-1和330-3之间形成第一电容器,并且可以在偶极子臂330-2和330-4之间形成第二电容器。这些电容器可被用于调谐(改进)低频带偶极子320-1、320-2的回损性能和/或天线图案。在一些实施例中,电容器可以被形成在馈电杆310上。

通过将每个偶极子臂330形成为间隔开的第一和第二导电段334-1、334-2,可以强制在偶极子臂330上流动的电流沿着彼此间隔开的两个相对窄的路径。该方法可以提供对辐射图案的更好控制。另外,通过使用环结构,可以有利地减小偶极子臂330的总长度,从而允许在每个偶极子臂330和高频带辐射元件400之间以及在每个偶极子臂330和另一个低频带阵列220中的低频带辐射元件300之间更大的间隔。因此,根据本发明实施例的低频带辐射元件300可以更紧凑并且可以提供对辐射图案的更好控制,同时还对紧密间隔的高频带辐射元件400的辐射性能具有非常有限的影响。

如上所述,第一偶极子320-1被配置为以+45度的倾斜极化发送和接收rf信号,并且第二偶极子320-2被配置为以-45度的倾斜极化发送和接收rf信号。因此,当基站天线100被安装用于正常操作时,第一偶极子320-1的第一轴322-1可以相对于天线100的纵(竖直)轴成大约+45度的角度,并且第二偶极子320-2的第二轴322-2可以相对于天线100的纵轴l成大约-45度的角度。

从图10中可以最佳地看出,第一和第二偶极子臂330中的每个偶极子臂的中心部分344平行于第一轴322-1延伸,并且第三和第四偶极子臂330中的每个偶极子臂的中心部分344平行于第二轴322-2延伸。而且,偶极子臂330作为整体大致沿着第一和第二轴322-1、322-2中的一个或另一个延伸。因此,每个偶极子320将直接以+45°或-45°极化进行辐射。

将理解的是,在其他实施例中,偶极子臂330可以具有除图7-10所示的大致椭圆形以外的形状。例如,在另一个实施例中,每个偶极子臂330可以具有大体上细长的矩形形状(其中细长的矩形是指不是正方形或接近正方形的矩形)。在另一实施例中,椭圆形和矩形形状可以被组合,使得偶极子臂330的内部部分具有大致椭圆形形状,并且偶极子臂330的外部部分具有大致细长的矩形形状。可以认为这样的形状落入术语“大致椭圆形形状”和“大致细长的矩形形状”的定义内。其他实施例是可能的。在每种情况下,偶极子臂330可具有至少两个间隔开的导电段334-1、334-2,使得发生电流分裂,其中电流流过每个偶极子臂330上的至少两个独立电流路径。而且,在每种情况下,偶极子320可以被中心馈电,使得仅需要两个rf馈电线,即,每个偶极子320一个馈电线。

在一些实施例中,可以使用所谓的“不平衡”偶极子臂330形成第一和第二偶极子320-1、320-2。这里,如果两个偶极子臂330具有不同的导电形状或大小,则偶极子320的偶极子臂330是不平衡的。不平衡偶极子臂330的使用可以帮助改进回损性能和/或可以改进低频带辐射元件300的交叉极化隔离性能,这将在下面更具体地讨论。

也许最常见的双频带天线是rvv天线,它通常包括低频带辐射元件线性阵列,该低频带辐射元件线性阵列在其每一侧都具有高频带辐射元件线性阵列,总共三个线性阵列。在这些rvv天线中,低频带辐射元件通常沿天线的中心向下延伸。这样,反射器的在低频带辐射元件之一的左边两个偶极子臂下面的部分通常看起来与反射器的在该低频带辐射元件的右边两个偶极子臂下面的部分相同。然而,如图2-3所示,在基站天线100中,低频带辐射元件300的线性阵列230在天线100的外边缘上。而且,由于rrvv天线必然很大(由于线性阵列的数量以及包含具有大辐射元件的两个低频带线性阵列),通常要尽力减小天线的宽度,这意味着低频带辐射元件300通常被定位成靠近反射器214的侧边缘。当低频带辐射元件300被定位成靠近反射器214的侧边缘时,每个辐射元件300上的内部偶极子臂330可能比外部偶极子臂330“看到”更多的接地平面214。这可能会导致电流流动的不平衡,其可能会对低频带天线波束的图案产生负面影响。

为了校正这种不平衡,可以使偶极子臂330不平衡。例如,这可以通过修改导电段334-1、334-2的加宽区段336当中的一个或多个加宽区段的长度和/或宽度(以及因此表面积)来完成。在图7-10的特定实施例中,可以看出,偶极子臂330-1和330-3的导电段334-1、334-2上的更远端的加宽区段336与偶极子臂330-2和330-4的对应加宽区段相比具有增加的宽度。与偶极子臂330-2和330-4相比,修改这些区段336的长度和/或宽度有效地改变了偶极子臂330-1和330-3的长度。值得注意的是,具有增加的金属表面积量的偶极子臂330-1和330-3是每个低频带辐射元件300上的外部偶极子臂330(即,最接近基站天线100的相应侧边缘的偶极子臂330)。

在一些情况下,低频带辐射元件300还可能在高频带辐射元件400的工作频带内的频率处创建谐振。这样的谐振可能会使高频带线性阵列230的天线图案劣化。如果发生该情况,已经发现窄曲折迹线338当中的一个或多个窄曲折迹线的长度可以被修改以将该谐振移动得更低或更高,直到该谐振到高频带之外。在一些实施例中,在偶极子臂330-2和330-4上连接导电段334-1和334-2的远端窄曲折迹线338的长度可以被改变,因为改变这些窄曲折迹线338的长度可能趋向于对高频带辐射图案具有最大的影响,并且由于通过这些远端窄曲折迹线338的电流幅度相对较小,因此长度的变化趋向于对低频带辐射元件300的辐射图案具有最小的影响。缩窄的曲折迹线338工作为具有增加的电感的感应区段。

因此,根据本发明的一些实施例,提供了偏移低频带辐射元件中的谐振的频率的方法,其中,低频带辐射元件中包括的感应迹线区段的长度被调节以将谐振偏移到在紧密放置的高频带辐射元件的工作频带之外。在一些实施例中,长度被调节的感应迹线区段是距离四个偶极子臂相接的位置(其是第一轴和第二轴322-1、322-2交叉的位置)最远的感应迹线区段。

图12是天线100中包括的高频带馈电板组件260之一的透视图。如图12所示,高频带馈电板组件260包括印刷电路板262,印刷电路板262具有从该印刷电路板262向上延伸的三个高频带辐射元件400-1、400-2、400-3。印刷电路板262包括rf传输线馈电264,该rf传输线馈电264向相应的高频带辐射元件400-1至400-3提供rf信号并从其接收rf信号。每个高频带辐射元件400包括一对馈电杆410以及第一和第二偶极子420-1、420-2。

馈电杆410可以各自包括有在其上形成的rf传输线馈电的印刷电路板。馈电410可以被组装在一起以形成具有大致x形的水平横截面的竖直延伸的柱。每个偶极子辐射元件420包括印刷电路板,该印刷电路板有在其上形成的四个镀覆区段(在图12的视图中只有其中三个是可见的),该四个镀覆区段形成四个偶极子臂430。四个偶极子臂430被以大致十字形形状布置。相对的偶极子臂430中的两个一起形成第一辐射元件420-1,该第一辐射元件420-1被设计为发送具有+45度极化的信号,并且另两个相对的偶极子臂430一起形成第二辐射元件420-2,该第二辐射元件420-2被设计为发送具有-45度极化的信号。第一和第二辐射元件420-1、420-2可以通过馈电杆410安装在反射器214上方大约0.16倍至0.25倍工作波长处。每个高频带辐射元件400可以适于具有大约65度的方位半功率波束宽度。

图12所示的辐射元件400还包括导向器440,该导向器440被安装在偶极子420上方的导向器支撑件450上。导向器440可以包括金属板,该金属板可以被用于改进高频带天线波束的图案。如在各种其他图中所示,在一些实施例中可以省略导向器440。

再次参考图2-6,基站天线100可以包括多个隔离结构和/或调谐寄生元件,这些隔离结构和/或调谐寄生元件可以被用于减少线性阵列220、230之间的耦合和/或使一个或多个天线波束成形。

图11示出了根据本发明的另外的实施例的低频带辐射元件300'的偶极子320-1、320-2。低频带辐射元件300'类似于上述低频带辐射元件300,但是在低频带辐射元件300'中,所有四个偶极子臂330上的导电段334-1、334-2的远端通过曲折的迹线区段338连接在一起,而在低频带辐射元件300中,偶极子臂330中仅两个偶极子臂具有通过相应的曲折迹线段338连接在一起的导电段334-1、334-2,而另两个偶极子臂330上的导电段334-1、334-2通过将每个导电段334-1、334-2上的远端加宽区段336合并在一起而连接在一起。应当注意,图5和图6中的基站天线100的局部视图包括与辐射元件300相对的辐射元件300'。

如上所述,经常做出努力来减小rrvv天线的宽度。通常,无线运营商希望基站天线具有约350mm或更小的宽度,尽管有时认为稍宽的天线(例如400mm)是可以接受的。如果天线宽度进一步增加,则可能在天线上的风荷载方面出现问题,这可能需要增强的塔架结构和/或天线安装座,并且可能会出现本地分区条例和视觉呈现不佳的问题。为了尽可能地减小宽度,将低频带辐射元件300的两个线性阵列220移动到靠近在一起可能是必须的。不幸的是,当这样做时,由于两个线性阵列220紧密接近,当驱动第一低频带阵列220-1时,这可能导致在第二低频带阵列220-2的辐射元件300中生成共模谐振,反之亦然。在某些情况下,这些共模谐振例如可能使例如800mhz附近的窄频率范围中的低频带天线图案失真。之所以会出现这些共模谐振,是因为在窄频率范围内,偶极子臂330上的电流可能会以一个或多个不期望的方向流动。根据本发明的实施例的低频带辐射元件300可以经由若干不同技术中的一种或多种来抑制这些共模谐振。

在第一技术中,可以将共模滤波器内置到每个低频带辐射元件300的偶极子320-1、320-2的馈电杆310中。通过仿真已经示出,在馈电杆310上包括共模滤波器可能足以滤除在馈电杆310中生成的任何共模谐振。共模滤波器可以被实现为例如沿着rf传输线314耦合在一起的一对感应曲折线。

图13a至图13c是示出了在馈电杆310上的这样的共模滤波器360的一个示例实现方式的示意图。具体地,图13a示出了具有集成的共模滤波器的馈电杆印刷电路板310的实施例。图13b示出了馈电杆印刷电路板310的顶层金属布局,并且图13c示出了馈电杆印刷电路板310的底层金属布局。在图13a-13c中省略了馈电杆印刷电路板310的基板材料以更好地示出共模滤波器360的结构。如图13a和13b所示,rf传输线的左下部分经由缩窄的曲折线被连接到rf传输线的右上部分。如图13a和13c所示,rf传输线的右下部分经由另一条缩窄的曲折线和镀覆通孔被连接到rf传输线的左上部分。形成共模滤波器的两条缩窄的曲折线在中心被电磁耦合在一起。由于曲折线之间的互感相互作用,rf传输线的两侧上的不期望的同相电流被抑制,而允许rf传输线的两侧上的异相电流通过滤波器。共模滤波器360可以有效地阻止在馈电杆310中出现的任何共模谐振。

然而,将理解的是,由于与两个低频带低阵列220的馈电杆310相比,两个低频带阵列220的偶极子臂330彼此更靠近,所以与馈电柄310相比,在偶极子臂330中更可能出现共模谐振。图14示出了根据本发明的另外的实施例的共模滤波器370。共模滤波器360和/或370可以在根据本发明的实施例的任何低频带辐射元件300上实现(并且在一些实施例中也可以在高频带辐射元件400上实现)。

如图14所示,共模滤波器370可以被实现为靠近辐射元件300的中心。上面参考图13a至图13c所解释的用于在馈电杆印刷电路板310上实现的共模滤波器的相同概念可以被应用在偶极子臂330上,以阻止同相电流在电容器342的任一侧流动。

在第二方法中,可以通过减小在辐射元件300的中心中相邻偶极子臂330之间的间隙350来减小或潜在地消除共模谐振。具体地,共模谐振出现的频率可以是间隙大小的函数,随着间隙350的宽度增加,共模谐振以更高的频率发生。在某些间隙宽度处,共模谐振可能落在低频带辐射元件300的工作频带内。然而,不幸的是,减小这些间隙350的宽度可能使得将偶极子臂330与馈电杆310上的rf传输线314阻抗匹配变得更加困难。如果偶极子臂330和馈电杆310的阻抗匹配劣化,则低频带辐射元件300的回损增加。

如图15所示,根据本发明的实施例,可以将与偶极子臂330电容耦合的导电板380放置在辐射元件300的中心上。导电板380可以类似于诸如例如,于2016年3月24日提交的美国专利申请序号62/312,701号('701申请)的图5a-5d所示的导向器440,除了导电板380可以比'701申请中公开的导向器更小和/或更接近偶极子320。导电板380可以将共模谐振的频率移动到更低,并且可以被用于将谐振频率移出低频带。间隙350的大小可以在一些程度上被调节以进一步调谐共模谐振所落的位置。导电板380可以充当寄生电容,该寄生电容可以用被于将发生共模谐振的频率移动到期望的位置。

根据又有的另一种技术,可以将共模谐振调谐到低频带内频谱的未使用部分。如上所述,通过调节相邻偶极子臂330之间的间隙350的大小(宽度),有可能调节发生共模谐振的频率。不幸的是,当共模谐振发生在低频带的中间附近时,将共模谐振移出带外所需要的对间隙350的宽度的调节可能足够大,以致难以将偶极子臂330与馈电杆310阻抗匹配,这可能导致回损性能劣化。然而,至少在一些管辖区中,低频带内的频谱的一小部分可能未被使用。具体地,在北美,低频带频谱中有一个24mhz的部分,该部分集中在一些运营商目前未使用的大约811mhz处。根据本发明的实施例,可以调节间隙350的宽度以调谐在低频带中发生的共模谐振,使得其落入频谱的该未使用部分内。虽然共模谐振可能会使频谱的该部分中的天线图案劣化,但低频带辐射元件不会在该频带中发送或接收信号,因此,劣化不是特别令人关注。该方法可能是成功的,因为共模谐振可能非常窄,因此可以被调谐为大部分或完全落入低频带频谱的未使用部分。

上面已经参考在其中示出了本发明的实施例的附图描述了本发明的实施例。然而,本发明可以以许多不同的形式来实施,并且不应被解释为限于在此阐述的实施例。而是,提供这些实施例使得本公开将是透彻和完整的,并将向本领域技术人员充分传达本发明的范围。相似的数字始终指代相似的元素。

将理解的是,尽管这里可以使用术语第一、第二等来描述各种元件,但是这些元件不应受到这些术语的限制。这些术语仅被用于区分一个元件和另一个元件。例如,在不脱离本发明的范围的情况下,第一元件可以被称为第二元件,并且类似地,第二元件可以被称为第一元件。如这里所使用的,术语“和/或”包括一个或多个相关联的所列项目的任何和所有组合。

将理解的是,当元件被称为在另一个元件“上”时,它可以直接在另一个元件上,或者也可以存在中间元件。相反,当元件被称为“直接在”另一个元件“上”时,则不存在中间元件。还将理解,当元件被称为被“连接”或“耦合”到另一个元件时,它可以被直接连接或耦合到另一个元件,或者可以存在中间元件。相反,当元件被称为被“直接连接”或“直接耦合”至另一元件时,则不存在中间元件。应该以类似的方式来解释被用于描述元件之间的关系的其他词语(即,“在...之间”与“直接在...之间”、“相邻”与“直接相邻”等)。

这里可以使用诸如“下面”或“上面”,“上”或“下”或“水平”或“竖直”之类的相对术语来描述一个元件、层或区域与另一元件、层或区域的关系,如图中所示。将理解的是,这些术语除了附图中描绘的取向之外还旨在涵盖装置的不同取向。

这里使用的术语仅出于描述特定实施例的目的,并不旨在限制本发明。如这里所使用的,单数形式“一个”、“一”和“该”也旨在包括复数形式,除非上下文另外明确指出。还将理解,当在这里被使用时,术语“包括”,“正包括”、“包含”和/或“正包含”指定存在所述特征、操作、元件和/或部件,但是不排除存在或附加一个或多个其他特征、操作、元素、部件和/或其集合。

可以以任何方式和/或与其他实施例的方面或元件组合来组合以上公开的所有实施例的方面和元件,以提供多个附加实施例。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1