一种4H-SiC像素肖特基辐射探测器及其制备方法与流程

文档序号:18733048发布日期:2019-09-21 00:48阅读:698来源:国知局
一种4H-SiC像素肖特基辐射探测器及其制备方法与流程

本发明涉及半导体光电器件技术领域,特别涉及辐射探测器领域中4H-SiC像素肖特基辐射探测器结构设计及其制备方法。



背景技术:

以SiC为代表的第三代宽带隙半导体材料与器件,是发展大功率、高频高温、抗强辐射和紫外探测器等技术的核心。由于其具有独特的物理性质并在器件方面具有广泛的应用潜力,备受人们的关注。SiC具有高热导率、高电子饱和速度和大的临界击穿电场,是电力电子(或功率半导体)领域Si材料的首选“继承者”,正被广泛应用于空间探测、核电站、核反应堆等高辐射、高温的极端环境。目前大量的工作已经证明SiC材料在高温、高辐射的极端环境下可以长时间稳定的工作。为实现在耐高温、抗辐照的基础上对辐射源具有位置分辨功能的目的,这需要提供一种新型的SiC辐射探测器结构。像素探测器由于其结构的独特性,可以使我们对辐射源得到更进一步的观察,从而实现位置分辨的功能。

为了验证SiC材料可应用于空间探测、核电站、核反应堆等高辐射、高温的极端环境,对SiC辐射探测器在耐高温、抗辐照方面、对不同能量粒子探测方面都进行了大量细致的工作。研究表明SiC探测器在α粒子、γ射线、中子、X射线都具有体积小、时间响应快、温度稳定性好和抗辐照能力强等优点。目前,虽然SiC辐射探测器的研究工作取得了很大的进展,但依然需要进一步的完善。像素探测器由于其高空间分辨率、低噪声和完善的制造技术,是辐射成像和光谱学极高性能的设备。相较于传统单元探测器,它还具有对局部缺陷的良好耐受性或损坏(受损像素不会强烈影响整个探测器工作)。



技术实现要素:

针对目前SiC辐射探测器受损后无法继续使用以及无法对辐射源有一定的位置分辨能力的问题,本发明的目的在于提供一种4H-SiC像素肖特基辐射探测器结构设计及其制备方法。

本发明所设计SiC像素辐射探测器的整体结构为2×2的像素阵列,其中每个像素单元的自下而上的结构为欧姆接触、SiC衬底、SiC外延层以及肖特基接触。首先2×2的像素阵列在实际的应用场景下,每个像素单元会同时测量粒子的能量、到达每一个像素单元的时间以及单位时间内所探测到的粒子数等信息,根据这些数据之间的差异,所设计的结构可以实现一定的位置分辨能力。同时,相较于传统单元SiC辐射探测器,所设计的像素辐射探测器,当其中某个像素单元出现损坏时并不影响整个探测器继续工作。

本发明的制备方法中,SiC材料的生长方法有液相外延(LPE)、分子束外延(MBE)、化学气相沉积(CVD)。LPE存在熔融Si中C的溶解度低,以及LPE需要在温度略微高于Si熔点(1400℃)条件下进行的条件限制。由于这些原因,LPE只用于特殊情况,比如减少微管缺陷、在衬底上生长缓冲层和用于生长p型掺杂接触层。MBE一般应用于生长超薄外延层。因为其生长速率的数量级为每小时几纳米而且生长温度相当低。因此,这项技术主要用于SiC材料表面科学研究。目前,CVD生长技术被认为是最有可能用于获得厚、低且均匀净掺杂并且具备好的表面形貌的SiC生长方法。简单地说,CVD就是通过对单晶SiC衬底晶片在含Si和含C的气体束流的反应室内进行加热,这些气体在晶片上分解并沉积Si和C,这个过程能够使外延层以有序单晶的形式,在良好的控制条件下生长。典型的SiC-CVD外延生长过程,生长时,衬底温度在1500-1650℃范围内,气压为1-960mbar,生长速率在每小时几μm到每小时50μm之间。更高的生长温度(2000℃)SiC-CVD生长过程,已经通过水平热壁反应室实现。采用这种加热技术,可以实现对衬底更有效地加热,优点是对前驱气体有更高的裂解效率,因此生长速率可以达到100μm每小时。因此本发明在衬底上采用化学气相沉积(CVD)方式外延生长N型4H-SiC外延层。

本发明制备方法中,4H-SiC材料外延层的生长厚度为21μm。主要是考虑到能量分别为5.156MeV和5.486MeV的α粒子垂直入射到4H-SiC材料中,α粒子能量完全沉积时的最大射程分别为17.25μm和19.30μm,入射距离随粒子能量的增大而增加。为了提高探测器的性能,确保α粒子能量完全沉积,4H-SiC肖特基探测器的外延层厚度为大于或等于21μm。外延层的厚度可随入射粒子能量的变化而增加或减小。

欧姆接触是为了在没有寄生电阻下理想的传输电流。研究发现,SiC材料的欧姆接触电阻与窄带隙材料的结果相一致。并且对欧姆接触进行热退火可以有效的获取小的欧姆接触电阻。因此本发明在SiC样品的C面,采用高真空热蒸发台,反应室真空度为2×10-3Pa,在SiC样品C面依次均匀沉积Al、Ti和Au三层金属薄膜;样品在温度为600~1600℃的N2氛围条件下进行热退火处理,形成欧姆接触电极。考虑到Ti基接触系统通常遭受到严重的氧污染,在Ti/Al接触的顶部有意的沉积一层薄的Au以防止在热退火期间可能的氧化。同时热退火后在金属/SiC界面处形成TiSi2、Ti3SiC2和TiSi可以使该欧姆接触具有较低的比接触电阻,而且实验结果还表明Au/Al/Ti/N-SiC欧姆接触在Ar气中温度范围在100℃-500℃内老化20个小时期间是热稳定的。

优化SiC肖特基势垒接触对于提高辐射探测器质量是至关重要的。研究表明,优化制备过程对于肖特基势垒接触及反向电流值具有很好的积极作用。我们的目的是反向偏置电流一定是越小越好,理想情况是只有热生载流子能越过结区势垒。因此本发明在SiC样品的Si面,采用同样的方式在SiC样品Si面依次均匀沉积Ni和Au两层金属薄膜;样品在温度为400℃的N2氛围条件下进行热退火处理,实验结果表明,退火温度在400℃以下时,热退火效应对探测的结构和电学性能影响较小。

本发明提出一种4H-SiC像素肖特基辐射探测器的制备方法,该方法的具体工艺步骤包括:衬底材料为N型重掺杂的4H-SiC,电阻率为0.0195Ω·cm,厚度约为370μm;在衬底上采用化学气相沉积(CVD)方式外延生长厚度约为21μm的N型4H-SiC外延层,掺杂浓度为1×1014/cm3;采用真空热蒸发镀膜方式在4H-SiC衬底面的C面依次沉积Al/Ti/Au制备欧姆接触电极,总电极厚度约为360nm;采用同样方法在4H-SiC外延层面的C面依次沉积Ni/Au制备肖特基电极,总电极厚度为120nm。

1、欧姆接触电极制备:将电极掩膜板(电极尺寸为8×8mm2)覆盖在SiC样品的C面,采用高真空热蒸发台,反应室真空度为2×10-3Pa,在SiC样品C面依次均匀沉积Al、Ti和Au三层金属薄膜;样品在温度为850℃的N2氛围条件下进行热退火处理,形成欧姆接触电极。

2、在制备肖特基金属之前,在外延层表面刻蚀肖特基金属电极的隔离槽,以保证四个像素的独立性。

3、肖特基接触电极制备:将电极掩膜板(像素探测器的四个电极尺寸均为3×3mm2)覆盖在SiC样品的Si面,采用同样的方式在SiC样品Si面依次均匀沉积Ni和Au两层金属薄膜;样品在温度为400℃的N2氛围条件下进行热退火处理。

4、样品的封装:将SiC样品的欧姆接触用银浆均匀涂覆并粘接在PCB板上;用导线引出肖特基电极与PCB板相连接。

与现有技术相比,本发明的积极效果为:

相较于传统单元探测器,它具有对局部缺陷的良好耐受性或损坏(受损像素不会强烈影响整个探测器工作)。

附图说明

图1为本发明实现Au/Ni/4H-SiC像素肖特基辐射探测器的器件结构图。

图2为本发明实现Au/Ni/4H-SiC像素肖特基辐射探测器的正面俯视图。

图3为本发明实现Au/Ni/4H-SiC像素肖特基辐射探测器的背面俯视图。

具体实施方式

为了更好的理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明的内容不仅仅局限于下面的实施例。

图1所示为本发明的一个实例的结构示意图。器件的构成部分包括:欧姆接触电极;位于欧姆接触电极之上的SiC外延结构,SiC外延结构从下到上包括N型重掺杂4H-SiC衬底和掺杂浓度为1×1014/cm3的N型4H-SiC有源区(外延层);位于SiC外延结构之上的肖特基接触,肖特基接触与4H-SiC有源区接触,形成具有整流特性的肖特基结。

图2所示为本发明实现Au/Ni/4H-SiC像素肖特基辐射探测器的正面俯视图。Au/Ni/4H-SiC像素肖特基辐射探测器的面积为10×10mm2;四个肖特基接触电极的大小均为3×3mm2,每个电极间的间隔均为1.4mm,与探测器边缘的距离均为1.3mm。

图3所示为本发明实现Au/Ni/4H-SiC像素肖特基辐射探测器的背面俯视图。Au/Ni/4H-SiC像素肖特基辐射探测器的欧姆接触电极的大小为8×8mm2,距离探测器的边缘均为1mm。

实现本实施例中Au/Ni/4H-SiC像素肖特基辐射探测器制备的具体实施步骤如下:

步骤一:4H-SiC样品清洗:SiC衬底清洗主要为了去除材料表面的杂质残留,比如有机污染物,部分金属杂质等,具体清洗流程如下:

①样品(10mm×10mm)放入丙酮溶液中超声清洗,作用是去除SiC表面上的有机污染物;

②无水乙醇溶液中超声清洗,然后用去离子水冲洗,由于丙酮只溶于有机溶剂,无水乙醇溶液的作用是去除样品表面残留的丙酮溶液;最后用去离子水冲洗去除无水乙醇溶液;

③去离子水、氨水和双氧水按照2:1:1的比例配置成1号清洗液,将样品放入1号清洗液中超声清洗,取出后用大量去离子水反复冲洗,1号清洗液的作用是碱性氧化,去除材料表面颗粒;

④去离子水、盐酸和双氧水按照2:1:1的比例配置成2号清洗液,将样品放入2号清洗液中超声清洗,取出后用大量去离子水反复冲洗,2号清洗液的作用是酸性氧化,去除材料表面上的活泼金属;

⑤将HF溶液倒入聚四氟乙烯容器中,将样品完全没入HF溶液中浸泡,作用是去除SiC表面的自然氧化层;取出后用大量去离子水反复冲洗,然后N2吹干备用;

步骤二:欧姆接触电极制备:将电极掩膜板(电极尺寸为8×8mm2)覆盖在SiC样品的C面,采用高真空热蒸发台,反应室真空度为2×10-3Pa,在SiC样品C面依次均匀沉积Al、Ti和Au三层金属薄膜;样品在温度为850℃的N2氛围条件下进行热退火处理,形成欧姆接触电极。

步骤三:在制备肖特基金属之前,在外延层表面刻蚀肖特基金属电极的隔离槽,以保证四个像素的独立性。

步骤四:肖特基接触电极制备:将电极掩膜板(像素探测器的四个电极尺寸均为3×3mm2)覆盖在SiC样品的Si面,采用同样的方式在SiC样品Si面依次均匀沉积Ni和Au两层金属薄膜;样品在温度为400℃的N2氛围条件下进行热退火处理。

步骤五:样品封装:将SiC样品的欧姆接触用银浆均匀涂覆并粘接在PCB板上;用导线引出肖特基电极与PCB板相连接。

测试结果表明,使用本发明所述的Au/Ni/4H-SiC像素肖特基辐射探测器,四个像素的反向I-V具有很好的一致性,漏电流在纳安量级,满足我们的使用要求,实现了Au/Ni/4H-SiC像素肖特基辐射探测器的制备。

以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1