凹部的埋入方法与流程

文档序号:20913525发布日期:2020-05-29 13:14阅读:157来源:国知局
凹部的埋入方法与流程

本公开涉及一种凹部的埋入方法。



背景技术:

已知有如下方法:在形成于半导体基板上的绝缘膜的开口部中埋入al合金层时,形成第一al合金层,通过激光照射使第一al合金层流动后,在第一al合金层上形成第二al合金层(例如参照专利文献1)。

现有技术文献

专利文献

专利文献1:日本特开平5-275369号公报



技术实现要素:

发明要解决的问题

本公开提供一种能去除由非晶半导体膜埋入凹部时产生的接缝的技术。

用于解决问题的方案

本公开的一方案的凹部的埋入方法具备如下加热工序:对埋入凹部内的非晶半导体膜照射激光,从而在不使前述非晶半导体膜结晶的情况下进行加热。

发明的效果

根据本公开,能去除由非晶半导体膜埋入凹部时产生的接缝。

附图说明

图1为示出凹部的埋入方法的一例的工序剖视图

图2为示出立式热处理装置的构成例的纵剖视图

图3为用于说明图2的立式热处理装置的反应管的图

图4为示出激光退火装置的构成例的概略图

图5为示出激光退火处理前后的结果的一例的图

图6为激光退火处理中使温度和扫描速度变化时的接缝的改善效果的说明图

附图标记说明

1立式热处理装置

34反应管

40气体供给单元

41排气单元

42加热单元

95控制单元

100激光退火装置

具体实施方式

以下,边参照所附的附图,边对本公开的非限定性的示例的实施方式进行说明。所附的全部附图中,对同一或对应的构件或部件,标注同一或对应的附图标记,省略重复的说明。

(凹部的埋入方法)

对一实施方式的凹部的埋入方法进行说明。一实施方式的凹部的埋入方法为如下方法:交替地重复成膜和蚀刻,而将非晶硅膜埋入孔、沟槽等凹部后,进行激光退火处理。非晶硅膜例如可以为无掺杂膜,也可以为掺杂膜。作为掺杂膜的掺杂剂,例如可以举出磷(p)、硼(b)、砷(as)、氧(o)、碳(c)。

图1为示出凹部的埋入方法的一例的工序剖视图。图1的(a)~图1的(e)分别示出凹部的埋入方法的各工序的剖面。

首先,准备具有在表面形成有凹部501a的绝缘膜501的基板(未作图示)(参照图1的(a))。基板例如可以为硅基板等半导体基板。绝缘膜501例如可以为硅氧化膜(sio2膜)、硅氮化膜(sin膜)。凹部501a例如可以为沟槽、孔。

接着,进行向基板供给硅原料气体,在凹部501a中成膜为非晶硅膜502的成膜工序(参照图1的(b))。一实施方式中,例如通过化学气相沉积(cvd:chemicalvapordeposition)法,在加热了基板的状态下,供给硅原料气体,在凹部501a中成膜为非晶硅膜502。非晶硅膜502的膜厚例如可以为在凹部501a的底面501b和侧壁501s成膜为非晶硅膜502、且凹部501a的上部的开口不被非晶硅膜502堵塞的程度。从能形成高度差覆盖性优异、表面粗糙度小的膜的观点出发,硅原料气体优选含卤素的硅气体与氢化硅烷气体的混合气体。氢化硅烷气体的流量优选大于含卤素的硅气体的流量。由此,可以减小源自含卤素的硅气体的卤素所产生的硅膜的蚀刻性,可以以高速成膜为非晶硅膜502。含卤素的硅气体例如可以为sif4、sihf3、sih2f2、sih3f等含氟的硅气体、sicl4、sihcl3、sih2cl2(dcs)、sih3cl等含氯的硅气体、sibr4、sihbr3、sih2br2、sih3br等含溴的气体。氢化硅烷气体例如可以为sih4、si2h6、si3h8。另外,在供给含卤素的硅气体与氢化硅烷气体的混合气体前,可以供给高级硅烷系气体、氨基硅烷系气体形成晶种层。通过在凹部501a形成晶种层,从而可以降低形成于晶种层上的非晶硅膜502的粗糙度。作为高级硅烷系气体,例如可以举出si2h6、si3h8、si4h10。作为氨基硅烷系气体,例如可以举出dipas(二异丙基氨基硅烷)、3dmas(三(二甲基氨基)硅烷)、btbas(双叔丁基氨基硅烷)。

接着,进行如下蚀刻工序:向基板供给含卤素的蚀刻气体,对在凹部501a成膜的非晶硅膜502的一部分进行蚀刻(参照图1的(c))。由此,凹部501a的上部的开口扩大。含卤素的蚀刻气体例如可以为cl2、hcl、f2、br2、hbr,也可以为它们的混合气体。

接着,进行如下埋入工序:向基板供给硅原料气体,在凹部501a埋入非晶硅膜502(参照图1的(d))。一实施方式中,例如通过cvd法,在加热了基板的状态下,供给硅原料气体,以凹部501a的开口堵塞的方式,成膜为非晶硅膜502。此时,在埋入了非晶硅膜502的凹部501a内,有时产生气孔(空隙)、接缝(seam)。图1的(d)中,示出在凹部501a内产生接缝503的情况。作为硅原料气体,优选使用氢化硅烷气体而不使用含卤素的硅气体。由此,非晶硅膜502不被源自含卤素的硅气体的卤素所蚀刻,因此,可以在短时间内在凹部501a内埋入非晶硅膜502。

接着,进行如下激光退火工序:对埋入凹部501a内的非晶硅膜502照射激光,从而在不使非晶硅膜502结晶的情况下进行加热(参照图1的(e))。一实施方式中,例如边使激光对凹部501a的照射位置移动,边照射激光。此时,通过激光的照射,调整基板温度、扫描速度(scanspeed)等使得非晶硅膜502不结晶。基板温度可以通过变更激光波长、激光功率等而调整。另外,例如也可以边固定激光的照射位置并使凹部501a的位置移动,边照射激光。激光退火工序中,能去除凹部501a内的接缝而不使埋入凹部501a内的非晶硅膜502结晶。需要说明的是,对于能去除凹部501a内的接缝的理由如后述。

如以上中所说明那样,根据一实施方式的凹部的埋入方法,通过对埋入凹部501a内的非晶硅膜502照射激光,从而在不使非晶硅膜502结晶的情况下进行加热。由此,能去除凹部501a内的接缝503而不使埋入凹部501a内的非晶硅膜502结晶。其结果,例如后续工序中对埋入凹部501a内的膜的一部分或全部进行蚀刻的情况下,非晶硅膜502未结晶,因此,容易蚀刻。另一方面,埋入凹部501a内的非晶硅膜502结晶的情况下,蚀刻有时变困难。

需要说明的是,上述例子中,对进行1次成膜工序和蚀刻工序的循环的情况进行了说明,但不限定于此,可以重复多次上述循环。上述循环的次数例如可以根据凹部501a的形状而确定。例如,如凹部501a的开口窄、凹部501a具有樽型的剖面形状、凹部501a为高长宽比等那样,膜对凹部501a内的埋入困难的情况下,优选重复多次上述循环。由此,可以抑制在凹部501a内形成气孔。

另外,上述例子中,对形成非晶硅膜的情况进行了说明,但不限定于此。凹部的埋入方法例如可以为形成非晶锗膜、非晶硅锗膜的情况。非晶锗膜和非晶硅锗膜例如可以为无掺杂膜,也可以为掺杂膜。

形成非晶锗膜的情况下,例如可以使用锗原料气体代替硅原料气体。另外,例如可以使用含卤素的锗气体代替含卤素的硅气体。另外,例如可以使用氢化锗烷气体代替氢化硅烷气体。另外,例如可以使用氨基锗烷系气体代替氨基硅烷系气体。

含卤素的锗气体例如可以为gef4、gehf3、geh2f2、geh3f等含氟的锗气体、gecl4、gehcl3、geh2cl2、geh3cl等含氯的锗气体、gebr4、gehbr3、geh2br2、geh3br等含溴的气体。氢化锗烷气体例如可以为geh4、ge2h6、ge3h8。氨基锗烷系气体例如可以为dmag(二甲基氨基锗烷)、deag(二乙基氨基锗烷)、bdmag(双(二甲基氨基)锗烷)、bdeag(双(二乙基氨基)锗烷)、3dmag(三(二甲基氨基)锗烷)。

形成非晶硅锗膜的情况下,例如可以使用硅原料气体和锗原料气体代替硅原料气体。另外,例如可以使用含卤素的硅气体和含卤素的锗气体代替含卤素的硅。另外,例如可以使用氢化硅烷气体和氢化锗烷气体代替氢化硅烷气体。另外,例如可以使用氨基硅烷系气体和氨基锗烷系气体代替氨基硅烷系气体。

(成膜装置)

对上述凹部的埋入方法中的能实施成膜工序、蚀刻工序和埋入工序的成膜装置,列举对多张基板同时进行热处理的间歇式的立式热处理装置为例进行说明。但成膜装置不限定于间歇式的装置,例如可以为对每1张基板进行处理的单片式的装置。

图2为示出立式热处理装置的构成例的纵剖视图。图3为用于说明图2的立式热处理装置的反应管的图。

如图2所示那样,立式热处理装置1具有:反应管34、盖体36、晶舟38、气体供给单元40、排气单元41和加热单元42。气体供给单元40、排气单元41和加热单元42分别为供给部、排气部和加热部的一例。

反应管34为用于收纳晶舟38的处理容器。晶舟38为以规定间隔保持多张半导体晶圆(以下称为“晶圆w”)的基板保持具。反应管34具有:下端开放的有顶部的圆筒形状的内管44、和下端开放且覆盖内管44的外侧的有顶部的圆筒形状的外管46。内管44和外管46由石英等耐热性材料形成,以同轴状配置,成为双重管结构。

内管44的顶部44a例如成为平坦。在内管44的一侧,沿其长度方向(上下方向),形成有用于收纳气体供给管的喷嘴收纳部48。例如如图3所示那样,使内管44的侧壁的一部分向外侧突出,形成凸部50,在凸部50内以喷嘴收纳部48的形式形成。与喷嘴收纳部48对置地在内管44的相反侧的侧壁上,沿其长度方向(上下方向),形成有宽l1的矩形状的开口52。

开口52为以能使内管44内的气体排气的方式形成的气体排气口。开口52的长度与晶舟38的长度相同、或以比晶舟38的长度还长且沿上下方向分别延伸的方式形成。即,开口52的上端位于延伸至与晶舟38的上端对应的位置以上的高度的位置,开口52的下端位于延伸至与晶舟38的下端对应的位置以下的高度的位置。具体而言,如图2所示那样,晶舟38的上端与开口52的上端之间的高度方向的距离l2为0mm~5mm左右的范围内。另外,晶舟38的下端与开口52的下端之间的高度方向的距离l3为0mm~350mm左右的范围内。

反应管34的下端例如被由不锈钢形成的圆筒形状的歧管54所支撑。在歧管54的上端形成有凸缘部56,在凸缘部56上设置外管46的下端并支撑。使o型环等密封构件58夹设在凸缘部56与外管46的下端之间,使外管46内为气密状态。

在歧管54的上部的内壁设有圆环状的支撑部60,在支撑部60上设置内管44的下端,并将其支撑。在歧管54的下端的开口借助o型环等密封构件62气密地安装有盖体36,使反应管34的下端的开口、即、歧管54的开口气密地堵塞。盖体36例如由不锈钢形成。

借助磁性流体密封部64使旋转轴66贯通在盖体36的中央部而设置。旋转轴66的下部被由晶舟升降机构成的升降单元68的臂68a自由旋转地支撑。

在旋转轴66的上端设有旋转板70,借助石英制的保温台72,在旋转板70上载置用于保持晶圆w的晶舟38。因此,通过使升降单元68升降,使盖体36与晶舟38成为一体而上下移动,能使晶舟38对反应管34内插拔。

气体供给单元40设置于歧管54,向内管44内导入成膜气体、蚀刻气体、吹扫气体等气体。气体供给单元40具有多根(例如3根)石英制的气体供给管76、78、80。各气体供给管76、78、80以在内管44内沿其长度方向设置,且其基端弯曲成l字状并贯通歧管54的方式被支撑。

气体供给管76、78、80如图3所示那样,以在内管44的喷嘴收纳部48内沿圆周方向成为一列的方式进行设置。在各气体供给管76、78、80上,沿其长度方向以规定间隔形成有多个气体孔76a、78a、80a,从各气体孔76a、78a、80a朝水平方向能释放各气体。规定间隔例如以与被晶舟38所支撑的晶圆w的间隔成为相同的方式设定。另外,高度方向的位置以各气体孔76a、78a、80a在上下方向上位于相邻的晶圆w间的中间的方式设定,能有效地向晶圆w间的空间部供给各气体。作为气体的种类,可以使用成膜气体、蚀刻气体、和吹扫气体,可以边对各气体进行流量控制,边根据需要借助各气体供给管76、78、80进行供给。

在歧管54的上部的侧壁、且支撑部60的上方形成有气体出口82,借助内管44与外管46之间的空间部84,能使从开口52排出的内管44内的气体排气。在气体出口82上设有排气单元41。排气单元41具有与气体出口82连接的排气通路86,在排气通路86上依次夹设有压力调整阀88和真空泵90,能对反应管34内抽真空。

在外管46的外周侧,以覆盖外管46的方式设有圆筒形状的加热单元42。加热单元42对收纳于反应管34内的晶圆w进行加热。

立式热处理装置1的整体的动作由作为控制部的控制单元95所控制。控制单元95例如可以为计算机等。另外,进行立式热处理装置1的整体的动作的计算机的程序存储于存储介质96。存储介质96例如可以为软盘、光盘、硬盘、闪存、dvd等。

通过具有上述构成的立式热处理装置1,对将非晶半导体膜埋入形成于晶圆w的表面的凹部的方法的一例进行说明。首先,通过升降单元68,将保持有多张晶圆w的晶舟38搬入反应管34的内部,通过盖体36,使反应管34的下端的开口部气密地堵塞并密闭。接着,通过控制单元95,控制气体供给单元40、排气单元41、加热单元42等的动作使得执行前述埋入工序。由此,可以在凹部内埋入非晶硅膜。

(激光退火装置)

对上述凹部的埋入方法中的能实施激光退火工序的激光退火装置的一例进行说明。图4为示出激光退火装置的构成例的概略图。

如图4所示那样,激光退火装置100具有:激光光源101、激光光学体系102、台103和控制单元104。激光退火装置100中,从激光光源101出射的激光射束l经由激光光学体系102入射至载置于台103的退火对象的晶圆w。以下,对激光退火装置100的各构成具体地进行说明。

激光光源101使激光射束l向激光光学体系102出射。作为激光光源101,例如可以利用纤维激光、固体激光、气体激光。作为激光射束l的波长,例如可以利用0.2μm~10μm的范围。

激光光学体系102使激光光源101出射了的激光射束l照射至载置于台103的晶圆w。激光光学体系102具有:射束扩展器、射束整形器、狭缝、聚光镜、电扫描仪、射束轮廓仪等。射束扩展器扩展入射了的激光射束l的射束直径。射束整形器、狭缝和聚光镜将晶圆w的表面处的射束剖面整形为规定的形状,且使射束剖面的光强度分布均匀化。电扫描仪使入射了的激光射束l扫描(scan)而入射至载置于台103的晶圆w(参照图4中的箭头α)。作为激光射束l的扫描速度,例如可以利用0.1mm/秒~5000mm/秒的范围。射束轮廓仪测定入射至晶圆w的激光射束l的射束直径、射束形状、射束位置、功率、强度曲线等。

台103用于载置晶圆w。台103接受来自控制单元104的控制,使晶圆w沿水平方向移动(参照图4中的箭头β)。作为台103的移动速度,例如可以利用0.1mm/秒~5000mm/秒的范围。

控制单元104用于控制激光光源101、激光光学体系102和台103的动作。控制单元104例如可以为计算机等。另外,进行激光退火装置100的整体的动作的计算机的程序存储于存储介质。存储介质例如可以为软盘、光盘、硬盘、闪存、dvd等。

通过上述激光退火装置100,对在不使形成于晶圆w的表面的凹部的非晶半导体膜结晶的情况下进行加热的方法的一例进行说明。首先,将非晶半导体膜埋入凹部的晶圆w载置于台103。接着,通过控制单元104,控制激光光源101、激光光学体系102和台103的动作使其执行前述加热工序。由此,可以去除凹部内的接缝而不使埋入凹部内的非晶硅膜结晶。

(实施例)

对为了确认基于一实施方式的凹部的埋入方法的效果而进行的实施例进行说明。实施例中,通过上述立式热处理装置1,在凹部内埋入非晶硅膜后,通过上述激光退火装置100,对凹部内的非晶硅膜进行激光退火处理。

图5为示出激光退火处理前后的结果的一例的图。图5的(a)示出进行激光退火处理前的结果,图5的(b)示出进行了激光退火处理后的结果。激光退火处理的条件为以下。

<激光退火处理的条件>

激光波长:1070nm

激光功率:43w

扫描速度:5mm/秒

基板的温度:800℃

如图5的(a)所示那样,在进行激光退火处理前,在埋入了非晶硅膜的凹部内产生气孔、接缝。另一方面,如图5的(b)所示那样,在进行了激光退火处理后,在凹部内观察到的接缝消失。推测其是由于,照射了激光的部分的非晶硅膜成为高温而稍膨胀,凹部内的接缝缩小的同时,悬挂键键合而接缝消失。另外,如图5的(b)所示那样,在进行了激光退火处理后,在凹部内观察到的气孔变小。

由以上的结果认为,通过进行激光退火处理,从而能去除接缝、小的气孔(例如间隙低于2nm)而不使非晶硅膜结晶。另外认为,通过进行激光退火处理,从而可以缩小大的气孔(例如间隙为2nm以上)而不使非晶硅膜结晶。

接着,对一实施方式的凹部的埋入方法的激光退火处理中使温度和扫描速度变化时的接缝的改善效果进行了评价。

图6为激光退火处理中使温度和扫描速度变化时的接缝的改善效果的说明图。图6中,横轴上表示退火温度(基板温度)[℃],纵轴上表示扫描速度[mm/秒]。图6中,虚线的圆符号表示未见接缝的消失时的结果,黑色的圆符号表示可见接缝的消失时的结果,白色的圆符号表示虽然可见接缝的消失但非晶硅膜结晶了时的结果。

如图6所示那样,例如对非晶硅膜进行激光退火处理使得基板温度成为700℃的情况下,通过使扫描速度为0.02~100mm/秒,从而能去除接缝而不使非晶硅膜结晶。另外,例如对非晶硅膜进行激光退火处理使得基板温度成为800℃的情况下,通过使扫描速度为0.7~3000mm/秒,从而能去除凹部内的接缝而不使非晶硅膜结晶。

由以上推定:激光退火处理中,通过根据非晶半导体膜的膜种类而调整基板温度和扫描速度,从而能去除凹部内的接缝而不使非晶半导体膜结晶。

在此公开的实施方式在所有方面为示例,应认为没有限制。上述实施方式可以在不脱离所附的权利要求书和其主旨的情况下,以各种形态省略、置换、变更。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1