一种天线模组和终端设备的制作方法

文档序号:22566658发布日期:2020-10-20 12:09阅读:113来源:国知局
一种天线模组和终端设备的制作方法

本公开涉及通信技术领域,尤其涉及一种天线模组和终端设备。



背景技术:

随着通讯技术的快速发展和科技需求,终端设备进入了第五代移动通信技术(the5thgenerationmobilecommunicationtechnology,5g)的时代。在同样的终端设备外观尺寸上,终端设备需要增加收发5g信号的天线模组的布局空间,这与终端设备朝着小净空、高屏占比等需求越来越冲突,存在天线模组占用终端设备空间大的问题。



技术实现要素:

本公开提供一种天线模组和终端设备。

根据本公开实施例的第一方面,提供一种天线模组,所述天线模组包括:

辐射结构;

第一馈电点,与所述辐射结构连接,且与所述辐射结构组合以传输第一频率的无线信号;

第二馈电点,与所述辐射结构连接,且与所述第一馈电点分离设置;其中,所述第二馈电点与所述辐射结构组合以传输第二频率的无线信号;所述第二频率不等于所述第一频率。

在一些实施例中,所述辐射结构包括:

第一辐射体,分别与所述第一馈电点和所述第二馈电点连接;

第二辐射体,与所述第一辐射体分离且相对设置,并与所述第一辐射体耦合;

其中,所述第一辐射体、所述第二辐射体及所述第一馈电点组合以传输所述第一频率的无线信号;所述第一辐射体与所述第二馈电点组合以传输所述第二频率的无线信号。

在一些实施例中,所述天线模组还包括:

第一滤波网络,与所述第一馈电点连接,用于在所述辐射结构接收所述无线信号时,供所述无线信号中的第一频率无线信号通过;

第二滤波网络,与所述第二馈电点连接,用于在所述辐射结构接收所述无线信号时,供所述无线信号中的第二频率无线信号通过。

在一些实施例中,所述天线模组还包括:

第一射频前端组件;

第一阻抗匹配网络,连接在所述第一滤波网络和所述第一射频前端组件之间,并与所述第一馈电点和所述第一射频前端组件共同具有位于预设范围内的阻抗。

在一些实施例中,所述天线模组还包括:

第二射频前端组件;

第二阻抗匹配网络,连接在所述第二滤波网络和所述第二射频前端组件之间,并与所述第二馈电点和所述第二射频前端组件共同具有位于所述预设范围内的阻抗。

在一些实施例中,所述第一辐射体包括:第一接地端和第一悬空端;

所述第二辐射体包括:第二接地端和第二悬空端;

其中,所述第二悬空端与所述第一悬空端分离且相对设置。

在一些实施例中,所述第一悬空端和所述第二悬空端之间的距离在0.5毫米至1.5毫米范围内。

在一些实施例中,所述第一馈电点到所述第一悬空端之间的距离在5毫米至16毫米范围内;

所述第二馈电点到所述第二悬空端之间的距离在20毫米至21毫米范围内。

在一些实施例中,所述辐射结构的净空宽度在0.2毫米到1毫米范围内。

在一些实施例中,所述第一馈电点到所述第二馈电点之间的距离在3毫米至5毫米范围内。

根据本公开实施例的第二方面,提供一种终端设备,所述终端设备包括:

印制电路板;

如上述第一方面所述的天线模组,用于收发不同频率的无线信号;

其中,所述天线模组的第一馈电点和所述第二馈电点均位于所述印制电路板上。

在一些实施例中,所述终端设备还包括:边框;

所述天线模组的第一辐射体和所述第二辐射体为所述边框的同一个侧边的不同部分。

在一些实施例中,所述印制电路板包括:

接地层,围绕在所述印制电路板的边缘;

所述边框与所述接地层之间的距离为所述辐射结构的净空宽度。

在一些实施例中,所述终端设备还包括:

隔磁模组,位于所述边框与所述接地层之间,用于阻隔所述印制电路板中电流回流到所述接地层产生的电磁信号。

本公开的实施例提供的技术方案可以包括以下有益效果:

第一馈电点能够与辐射结构组合以传输第一频率的无线信号,第二馈电点能够与辐射结构组合以传输第二频率的无线信号。如此,一方面本公开实施例通过两个馈电点共用辐射结构,能够实现天线模组同时收发不同频率无线信号的需求。另一方面,本公开实施例并不需要分别设置第一频率对应的辐射结构和第二频率对应的辐射结构,实现了辐射结构的共用,能够减少设置辐射结构的个数,进而降低天线模组占用终端设备的空间,提高终端设备的空间利用率。

应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。

附图说明

此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本实用新型的实施例,并与说明书一起用于解释本实用新型的原理。

图1是根据一示例性实施例示出的一种天线模组的示意图一。

图2是根据一示例性实施例示出的一种天线模组的示意图二。

图3是根据一示例性实施例示出的一种天线模组的示意图三。

图4是根据一示例性实施例示出的一种天线模组的示意图四。

图5是根据一示例性实施例示出的一种天线模组的回波损耗示意图。

图6是根据一示例性实施例示出的一种天线模组收发第二频率无线信号的效率示意图。

图7是根据一示例性实施例示出的一种天线模组收发第一频率无线信号的效率示意图。

图8是根据一示例性实施例示出的一种天线模组的示意图五。

图9是根据一示例性实施例示出的一种终端设备的示意图一。

图10是根据一示例性实施例示出的一种终端设备的示意图二。

图11是根据一示例性实施例示出的一种终端设备的框图。

具体实施方式

这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本实用新型相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本实用新型的一些方面相一致的装置和方法的例子。

图1是根据一示例性实施例示出的一种天线模组的结构示意图一。如图1所示,天线模组包括:

辐射结构101;

第一馈电点102,与辐射结构连接,且与辐射结构组合以传输第一频率的无线信号;

第二馈电点103,与辐射结构连接,且与第一馈电点分离设置;其中,第二馈电点与辐射结构组合以传输第二频率的无线信号;第二频率不等于第一频率。

本公开实施例中,天线模组能够实现设备间的通信,广泛应用在终端设备如智能手机、智能手表中。

上述辐射结构用于发射或者接收无线信号。该辐射结构可为由柔性电路板(flexibleprintedcircuit,fpc)形成的结构,还可由激光直接成型技术(laserdirectstructuring,lds)形成的结构。当然,本公开实施例还可以直接将终端设备的导电边框作为辐射结构,如此能够减少辐射结构占用终端设备的空间。

需要说明的是,当辐射结构为fpc形成的结构,且天线模组设置在智能手机上时,辐射结构可位于终端设备的印制电路板和后盖之间;当辐射结构为lds形成的结构,且天线模组设置在终端设备上时,辐射结构可通过lds镀在智能手机的中框或后壳上。

上述第一馈电点和第二馈电点均可设置在电路板上,该电路板包括但不限于终端设备的印制电路板(printedcircuitboard,pcb)。

需要说明的是,第一馈电点和第二馈电点均能够将天线模组的射频前端组件产生的第一电信号传输至辐射结构,使得辐射结构在第一电信号的激励下辐射无线信号;或者还能够在辐射结构把接收到的无线信号转化为第二电信号后,将第二电信号传输给天线模组的射频前端组件,实现无线信号的接收和信号解码等后续处理。

本公开实施例中,第一馈电点与第二馈电点分离设置,该两个馈电点为传输不同频率信号的馈电点。例如,第一馈电点为传输gpsl5频段中频率的馈电点,第二馈电点为传输sub-6ghz频段中频率的馈电点;或者,第一馈电点为传输sub-6ghz频段中频率的馈电点,第二馈电点为传输gpsl5频段中频率的馈电点,本公开实施例不作限制。

本公开实施例中,第一馈电点与辐射结构组合以传输第一频率的无线信号。

示例性地,第一频率可为n41频段对应的2515mhz-2675mhz范围内的频率,还可为n78频段对应的3400mhz-3600mhz范围内的频率,还可为n79频段对应的4800mhz-4900mhz范围内的频率。

本公开实施例中,第二馈电点与辐射结构组合以传输第二频率的无线信号。

示例性地,第二频率可为gpsl5频段对应的1176.45mhz±1.023mhz范围内的频率。

通过本公开实施例,一方面能够通过两个馈电点共用辐射结构,实现天线模组同时收发不同频段内频率的无线信号需求。另一方面,本公开实施例并不需要分别设置第一频率对应的辐射结构和第二频率对应的辐射结构,能够减少设置辐射结构的个数,进而降低天线模组占用终端设备的空间,提高终端设备的空间利用率。

在一些实施例中,如图2所示,辐射结构包括:

第一辐射体101b,分别与第一馈电点和第二馈电点连接;

第二辐射体101a,与第一辐射体分离且相对设置,并与第一辐射体耦合;

其中,第一辐射体、第二辐射体及第一馈电点组合以传输第一频率的无线信号;第一辐射体与第二馈电点组合以传输第二频率的无线信号。

本公开实施例中,第一辐射体为辐射结构中被第一馈电点和第二馈电点共用的部分。辐射结构在使用第一辐射体或者第一辐射体和第二辐射体的组合进行信号传输的过程中,第一辐射体和第二辐射体的组合长度大于第一辐射体的长度。也就是说,采用不同组合能够使得辐射体的长度发生了变化。而辐射体的长度与辐射的波长是相关的。因此,可以通过第二辐射体是否参与辐射,实现对不同频率的无线信号的收发。

需要说明的是,第一频率大于第二频率。通过第一辐射体和第二辐射体耦合,能够额外的增加高频模态以扩展天线模组收发无线信号的频率,使得天线模组能够收发更高频率的无线信号。

在一些实施例中,如图3所示,天线模组还包括:

第一滤波网络104,与第一馈电点102连接,用于在辐射结构接收无线信号时,供无线信号中的第一频率无线信号通过;

第二滤波网络105,与第二馈电点103连接,用于在辐射结构接收无线信号时,供无线信号中的第二频率无线信号通过。

需要说明的是,在两个馈电点共用一个辐射结构实现收发无线信号的过程中,通过第一馈电点和第二馈电点将辐射结构转化后的电信号传输至天线模组的射频前端组件会存在相互影响,进而存在信号间隔离度低的问题。基于此,本公开实施例设置第一滤波网络和第二滤波网络,使得第一滤波网络通过第一频率无线信号,滤除第二频率无线信号;第二滤波网络通过第二频率无线信号,滤除第一频率无线信号。如此,能够降低两个馈电点共用一个辐射结构能够同时收发无线信号时信号之间相互影响的情况,有效增大了信号间的隔离度,使得天线模组能够更好的实现同时收发无线信号。

本公开实施例中,可以依据收发无线信号频率不同的特点来设置第一滤波网络和第二滤波网络。当第一频率大于第二频率时,可设置第一滤波网络为滤除低于第一频率无线信号的高通滤波网络,设置第二滤波网络为滤除高于第二频率无线信号的低通滤波网络。如此,基于第一滤波网络和第二滤波网络能够将产生干扰的频率的无线信号滤除,大大降低了信号之间的干扰。

需要说明的是,第一滤波网络和第二滤波网络可为由电感和/或电容构成。例如,可采用并联电容或串联电感的形成构成第一滤波网络和第二滤波网络。第一滤波网络和第二滤波网络还可为由陷波器构成的,该陷波器用于消除电路中不需要频率的信号。

本公开实施例中,两个滤波网络是针对滤除不同频率的信号设计的。当两个滤波网络均为lc电路,且第一频率大于第二频率时,第一滤波网络中电感和电容可为串联且电感接地;第二滤波网络中电感和电容可为串联且电容接地,同时第一滤波网络中电感值和/或电容值不同。例如,第一滤波网络中电容值大于第二滤波网络中电容值。当两个滤波网络均为陷波器构成的,且第一频率大于第二频率时,可设置第一滤波网络的阻带截止频率小于第二滤波网络的阻带截止频率。

在一些实施例中,如图4所示,天线模组还包括:

第一射频前端组件107;

第一阻抗匹配网络106,连接在第一滤波网络104和第一射频前端组件107之间,并与第一馈电点和第一射频前端组件共同具有位于预设范围内的阻抗;

如此,本公开实施例使用第一阻抗匹配网络,能够使得第一射频前端组件产生的能量能够最大程度的通过辐射结构辐射出去,进而能够减少传输损坏,提高第一频率的收发效率。

本公开实施例中,当第一射频前端组件的输出阻抗为50欧姆,第一阻抗匹配网络可采用史密斯圆图(smithchart)匹配元件将第一频率的阻抗匹配到史密斯圆图中的50欧姆区域附近。如此,能够实现第一射频前端组件产生的能量能够最大程度的通过辐射结构辐射出去。需要说明的是,第一阻抗匹配网络的网络结构不固定,只要能够满足将第一频率的阻抗匹配到史密斯圆图中的50欧姆区域附近即可。

示例性地,预设范围可依据实际需要进行设置,例如,可设置预设范围为90欧姆至110欧姆范围内。

需要说明的是,图4仅为本公开实施例示例性的,本公开实施例的阻抗匹配网络和滤波网络并不限于图4中的连接器件和连接关系,只要能够实现本申请的阻抗匹配网络和滤波网络的需求即可。示例性地,图4中c1可为2.5f,c2可为5.2f,c3可为0.5f,c4可为0.5f;l1可为25h,l2可为35h,l3可为5.1h,l4可为3.5h。

在一些实施例中,天线模组还包括:

第二射频前端组件;

第二阻抗匹配网络,连接在第二滤波网络和第二射频前端组件之间,并与第二馈电点和第二射频前端组件共同具有位于预设范围内的阻抗。

如此,本公开实施例使用第二阻抗匹配网络,能够使得第二射频前端组件产生的能量能够最大程度的通过辐射结构辐射出去,进而能够减少传输损坏,提高第二频率的收发效率。

本公开实施例中,当第二射频前端组件的输出阻抗为50欧姆,第二阻抗匹配网络可采用史密斯圆图(smithchart)匹配元件将第二频率的阻抗匹配到史密斯圆图中的50欧姆区域附近。如此,能够实现第二射频前端组件产生的能量能够最大程度的通过辐射结构辐射出去。需要说明的是,第二阻抗匹配网络的网络结构不固定,只要能够满足将第二频率的阻抗匹配到史密斯圆图中的50欧姆区域附近即可。

如图5所示,横坐标为频率,单位为ghz;纵坐标为回波损耗,单位为db。实线s11为在天线模组上设置第二阻抗匹配网络和第二滤波网络后收发第二频率无线信号的回波损耗曲线;s12为在天线模组上设置第一阻抗匹配网络和第一滤波网络后收发第一频率无线信号的回波损耗曲线;s22为天线模组设置对应的阻抗匹配网络和滤波网络后同时收发无线信号时信号之间的隔离度曲线。从图5可以看出,天线模组收发第一频率和第二频率无线信号均能够达到较好的阻抗匹配,使得收发第一频率和第二频率的无线信号的回波损耗均接近于0;且隔离度曲线中信号之间的隔离度能够低于17.8db,使得极大的降低辐射结构同时收发两个频率的无线信号时产生的影响。

图6为天线模组收发第二频率的无线信号的天线效率图;图7为天线模组收发第一频率的无线信号的天线效率图。实线表示天线模组的辐射效率,虚线表示天线模组的总效率。从图6可以看出,天线模组收发第二频率的无线信号的总效率能够达到-5.45db,满足天线模组收发第二频率的性能要求。从图7可以看出,在n41频段、n78频段和n79频段中的第一频率的总效率均能够在-3db以上,也满足了天线模组收发第一频率的性能要求。

在一些实施例中,如图8所示,第一辐射体包括:第一接地端和第一悬空端101b1;

第二辐射体包括:第二接地端和第二悬空端101a1;

其中,第二悬空端101a1与第一悬空端101b1分离且相对设置。

本公开实施例中,第一悬空端和第二悬空端分离设置。在一些实施例中,如图8所示,第一悬空端101b1和第二悬空端101a1之间的距离在0.5毫米至1.5毫米范围内。

需要说明的是,可在第一悬空端和第二悬空端之间设置隔离件。该隔离件可为由塑料或者纤维等非导电材料构成。

本公开实施例中,上述第一接地端和第二接地端位于电路板上,均与电路板上的接地层相连。第一接地端与电路板上的接地层连接的方式包括但不限于天线弹片、天线顶针或者焊接,本公开实施例不作限制。

在一些实施例中,如图8所示,第一馈电点102到第一悬空端101b1之间的距离在5毫米至16毫米范围内;第二馈电点103到第二悬空端101a1之间的距离在20毫米至21毫米范围内。

在一些实施例中,如图8所示,辐射结构的净空宽度h在0.2毫米到1毫米范围内。

在一些实施例中,如图8所示,第一馈电点102到第二馈电点103之间的距离在3毫米至5毫米范围内。

本公开实施例还提出一种终端设备。如图9所示,终端设备包括:

印制电路板12;

如上述一种或多种实施例中的天线模组11,用于收发不同频率的无线信号;

其中,天线模组的第一馈电点和第二馈电点均位于印制电路板上。

本公开实施例中,终端设备可以为可穿戴式电子设备和移动终端,该移动终端包括手机、笔记本以及平板电脑,该穿戴式电子设备包括智能手表,本公开实施例不作限制。

需要说明的是,上述一种或多种实施例中天线模组中辐射结构的净空宽度、第二馈电点到第二悬空端之间的距离、第一馈电点到第一悬空端之间的距离、第一悬空端和第二悬空端之间的距离以及第一馈电点到第二馈电点之间的距离,均是以终端设备的外观尺寸长为155毫米、宽为77毫米、高为7毫米为基础上的一种优选的设计距离。当然,在不同的终端设备的外观尺寸上,上述设计距离可进行适应性调整,本公开实施例不作限制。

通过本公开实施例中,终端设备通过两个馈电点共用辐射结构,能够实现终端设备同时收发不同频率无线信号的需求。另一方面,本公开实施例并不需要分别设置第一频率对应的辐射结构和第二频率对应的辐射结构,能够减少设置辐射结构的个数,进而降低天线模组占用终端设备的空间,提高终端设备的空间利用率。

在一些实施例中,如图10所示,终端设备还包括:边框13;

天线模组的第一辐射体和第二辐射体为边框的同一个侧边的不同部分。

如此,本公开实施例直接将边框作为天线模组的辐射结构,能够解决因额外设置辐射结构而导致天线模组占用终端设备空间大的问题,能够进一步减少天线模组占用终端设备的空间,提高了终端设备的空间利用率。

上述边框可为由金属、合金材料或者导电塑料形成的具有导电功能的边框。

上述边框的形状可以根据用户的需求进行设置。例如,可以将终端设备的边框设置为矩形外壳,本公开实施例不作限制。

本公开实施例中,第一辐射体和第二辐射体为边框的同一个侧边的不同部分。当边框的形状为矩形形状时,第一辐射体和第二辐射体可为边框的短侧边的不同部分,还可为边框的长侧边的不同部分,本公开实施例不作限制。

在另一些实施例中,第一辐射体和第二辐射体可分别为边框中相邻侧边的部分。例如,当边框的形状为矩形形状时,第一辐射体可为边框的长侧边部分,第二辐射体可位于边框的短侧边部分;或者,第一辐射体可为边框的短侧边部分,第二辐射体可位于边框的长侧边部分,本公开实施例不作限制。

在一些实施例中,第一辐射体的长度可在18毫米至25毫米范围内;第二辐射体的长度可在4毫米至5毫米范围内。

在一些实施例中,印制电路板包括:

接地层,围绕在印制电路板的边缘;

边框与接地层之间的距离为辐射结构的净空宽度。

在一些实施例中,终端设备还包括:

隔磁模组,位于边框与接地层之间,用于阻隔印制电路板中电流回流到接地层产生的电磁信号。如此,通过本公开实施例隔离模组,能够降低印制电路板中电流回流产生的电磁信号对天线模组的干扰,进而能够提高终端设备收发无线信号的效率。

本公开实施例中,隔磁模组可为由非导电材料形成的模组。该非导电材料包括但不限于泡棉、纤维或者塑料等。

需要说明的是,本公开实施例中的“第一”和“第二”仅为表述和区分方便,并无其他特指含义。

图11是根据一示例性实施例示出的一种终端设备的框图。例如,终端设备可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。

参照图11,终端设备可以包括以下一个或多个组件:处理组件802,存储器804,电力组件806,多媒体组件808,音频组件810,输入/输出(i/o)的接口812,传感器组件814,以及通信组件816。

处理组件802通常控制终端设备的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。

存储器804被配置为存储各种类型的数据以支持在终端设备的操作。这些数据的示例包括用于在终端设备上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(sram),电可擦除可编程只读存储器(eeprom),可擦除可编程只读存储器(eprom),可编程只读存储器(prom),只读存储器(rom),磁存储器,快闪存储器,磁盘或光盘。

电力组件806为终端设备的各种组件提供电力。电力组件806可以包括电源管理系统,一个或多个电源,及其他与为终端设备生成、管理和分配电力相关联的组件。

多媒体组件808包括在终端设备和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(lcd)和触摸面板(tp)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当终端设备处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。

音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(mic),当终端设备处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。

i/o接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。

传感器组件814包括一个或多个传感器,用于为终端设备提供各个方面的状态评估。例如,传感器组件814可以检测到终端设备的打开/关闭状态,组件的相对定位,例如所述组件为终端设备的显示器和小键盘,传感器组件814还可以检测终端设备或终端设备一个组件的位置改变,用户与终端设备接触的存在或不存在,终端设备方位或加速/减速和终端设备的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如cmos或ccd图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。

通信组件816被配置为便于终端设备和其他设备之间有线或无线方式的通信。终端设备可以接入基于通信标准的无线网络,如wifi,2g或3g,或它们的组合。在一个示例性实施例中,通信组件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件816还包括近场通信(nfc)模块,以促进短程通信。例如,在nfc模块可基于射频识别(rfid)技术,红外数据协会(irda)技术,超宽带(uwb)技术,蓝牙(bt)技术和其他技术来实现。

在示例性实施例中,终端设备可以被一个或多个应用专用集成电路(asic)、数字信号处理器(dsp)、数字信号处理设备(dspd)、可编程逻辑器件(pld)、现场可编程门阵列(fpga)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。

本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本实用新型的其它实施方案。本申请旨在涵盖本实用新型的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本实用新型的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本实用新型的真正范围和精神由下面的权利要求指出。

应当理解的是,本实用新型并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本实用新型的范围仅由所附的权利要求来限制。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1