用于将靶材料溅射沉积到基底的方法和设备与流程

文档序号:31051898发布日期:2022-08-06 07:46阅读:88来源:国知局
用于将靶材料溅射沉积到基底的方法和设备与流程

1.本发明涉及沉积,更具体地说,涉及将靶材料溅射沉积到基底的方法和设备。


背景技术:

2.沉积是将靶材料沉积在基底上的过程。沉积的示例是薄膜沉积,其中薄层(通常从约一纳米或甚至几分之一纳米到几微米或甚至几十微米)沉积在基底上,例如硅晶片或卷材。薄膜沉积的示例技术是物理气相沉积(pvd),其中处于凝聚相的靶材料蒸发以产生蒸汽,该蒸汽然后凝聚到基底表面上。pvd的示例是溅射沉积,在溅射沉积中,由于高能粒子(比如离子)的轰击,粒子从靶中喷射出来。在溅射沉积的示例中,溅射气体比如惰性气体比如氩气在低压下被引入真空室,并且溅射气体使用高能电子被电离以产生等离子体。等离子体的离子对靶的轰击喷射出靶材料,然后该靶材料可以沉积在基底表面上。溅射沉积优于其他薄膜沉积方法,例如蒸发,因为可以沉积靶材料而不需要加热靶材料,这又可以减少或防止对基底的热损伤。
3.一种已知的溅射沉积技术采用磁控管,其中辉光放电与磁场结合,该磁场导致靠近靶的圆形区域中的等离子体密度增加。等离子体密度的增加会导致沉积速率的增加。然而,磁控管的使用导致靶的圆形“跑道”形腐蚀轮廓,这限制了靶的利用,并且会对所得沉积的均匀性产生负面影响。
4.希望提供均匀和/或有效的溅射沉积,以提高工业应用中的实用性。


技术实现要素:

5.根据本发明的第一方面,提供了一种用于将靶材料溅射沉积到基底的设备,该设备包括:
6.基底部分,其中在使用中提供基底;
7.靶部分,其与基底部分隔开并且其中在使用中提供靶材料,靶部分和基底部分在它们之间限定沉积区;
8.天线装置,其包括至少一个天线,用于在使用中驱动交流电通过天线时产生等离子体;
9.限制装置,包括:
10.至少一个第一元件,其设置在天线装置和沉积区之间,并且布置成在使用中将来自天线装置的等离子体限制成朝向沉积区,从而在使用中提供靶材料到基底的溅射沉积;以及
11.至少一个第二元件,其设置成使得天线装置位于至少一个第二元件和沉积区之间,并且布置成在使用中将等离子体限制成远离第二元件,朝向天线装置,并且由此经由至少一个第一元件朝向沉积区。
12.通过使用限制装置,等离子体可以至少部分地被限制在沉积区内。因此,沉积区内的等离子体密度可以增加,这可以增加靶材料溅射沉积在基底上的效率。也可以或替代地
在沉积区内提供更均匀密度的等离子体。这又可以允许靶材料更均匀地沉积在基底上。
13.在示例中,至少一个所述第一元件是第一磁性元件,其布置成提供第一限制磁场,以将等离子体从天线装置限制成朝向沉积区。第一限制磁场可用于有效地将等离子体至少部分地限制在沉积区内。例如,第一限制磁场的特征可以是在配置中的磁场线,以在沉积区内提供更均匀密度的等离子体。
14.在这些示例中,第一磁性元件可以是电磁体,其可控制为提供第一限制磁场。通过控制电磁体,可以进而控制所提供的第一限制磁场的强度。这可以允许调节沉积区中的等离子体密度,这可以用于调节基底上的靶材料的沉积。因此,可以改善对溅射沉积的控制,提高设备的灵活性。在这些示例中,该设备可以包括控制器,其布置成控制由第一磁性元件提供的第一限制磁场。
15.在至少一个所述第一元件是第一磁性元件的示例中,第一磁性元件可以是具有开口的螺线管,在使用中通过该开口限制等离子体。通过螺线管的开口限制等离子体可以增加沉积区内的等离子体密度。例如,一定量的等离子体可被压缩或以其他方式收缩以通过螺线管的开口。在这样的示例中,至少一个天线可以是细长的,并且螺线管的开口可以在与至少一个天线是细长的方向基本平行的方向上是细长的。利用这种布置,等离子体可以沿着至少一个细长天线的长度产生,并且可以由片状螺线管的细长开口限制。该片可以比其他等离子体布置更均匀,并且可以允许基底和/或靶材料暴露于等离子体的面积增加。这可以提高溅射沉积的效率,并且可以替代地或另外提供靶材料在基底上更均匀的沉积。在这些示例中,天线装置可以包括两个天线,并且螺线管可布置成使得螺线管的开口通向两个天线之间限定的区域。这可以允许将等离子体至少部分地精确限制在沉积区内。例如,两个天线之间的区域可以对应于具有较高等离子体密度的区域,其可以在比其他情况更大的区域上具有更均匀的等离子体密度。因此,基底和/或靶材料的更大区域可以暴露于等离子体,提高了溅射沉积工艺的效率。
16.在一些示例中,其中至少一个所述第一元件是第一磁性元件,至少一个所述第二元件是第二磁性元件,其布置成提供第二限制磁场,以至少在第一元件和第二元件中间的体积中与第一限制磁场相对,从而将等离子体限制成远离第二磁性元件,朝向天线装置,并由此经由第一元件朝向沉积区。通过提供合适的第二限制磁场,第二磁性元件可以至少部分地改善等离子体在沉积区内的限制。例如,在没有至少一个所述第二元件的情况下,等离子体可能不会被限制在沉积区内,而是可能从沉积区“溢出”。这会降低沉积效率。这也可以或替代地减少等离子体和经由天线装置提供的rf功率之间的功率耦合,这可能需要增加rf功率。通过提供至少一个所述第二元件,例如作为第二磁性元件,可以减少等离子体的“溢出”。沉积内的等离子体密度又会增加。由天线装置提供的rf功率和等离子体之间的功率耦合也可以或替代地增加。
17.在这些示例中,第二限制磁场可布置成在第一元件和第二元件中间的体积中沿着第一元件和第二元件之间的方向减小第一限制磁场的磁通量。以这种方式减小磁通量可以使等离子体以更高的密度被限制在沉积区中。这可以提高沉积效率。
18.在这些示例中,第二磁性元件可以是电磁体,其可控制为提供第二限制磁场。在第二磁性元件是电磁体的示例中,该设备可以包括控制器,该控制器布置成控制由第二磁性元件提供的第二限制磁场。如参考第一磁性元件解释,这允许适当地控制第二限制磁场。这
可以允许调节沉积区中的等离子体密度,这可以用于调节基底上的靶材料的沉积。
19.在示例中,至少一个所述第二元件是静电元件,该静电元件可控制为提供电场,以至少在第一元件和第二元件中间的体积中将至少一部分等离子体从静电元件朝向天线装置排斥,并由此经由第一元件朝向沉积区排斥。这可以进一步改善等离子体至少部分地限制在沉积区内。在这些示例中,静电元件可布置成在使用中带正电,从而排斥等离子体的带正电的离子。通过减少或限制带正电离子远离沉积区的运动,这可以减少等离子体的带正电离子在沉积区内的限制。在这些示例中,该设备可以包括控制器,该控制器布置成控制由静电元件提供的电场。该控制器可用于控制等离子体被静电元件排斥的程度,从而控制沉积区内的等离子体密度。以这种方式,可以在沉积区内获得期望的等离子体密度,从而提高设备的灵活性。
20.在示例中,限制装置包括至少两个所述第一元件,其设置成使得沉积区位于第一元件中的第一个和第一元件中的第二个之间,从而将等离子体限制成穿过沉积区。通过提供彼此相距适当距离的至少两个第一元件,可以获得期望的等离子体密度。
21.在示例中,限制装置包括第三元件,该第三元件设置成使得沉积区位于第二元件和第三元件之间,第三元件布置成将等离子体限制成远离第三元件并朝向沉积区。第三元件可进一步改善等离子体至少部分在沉积区内的限制。反过来,沉积区中的等离子体密度可以增加,这可以增加设备的沉积效率。
22.在这些示例中,第三元件可以设置成使得第一元件中的第一个和第一元件中的第二个以及沉积区位于第三元件和第二元件之间,使得第三元件将等离子体限制成远离第三元件,并且经由第一元件中的第一个和第一元件中的第二个中的一个朝向沉积区。通过第一、第二和第三元件的适当布置,可以进一步增加沉积区中的等离子体密度。
23.在示例中,靶部分可控制为在使用中向靶材料提供负电荷,从而吸引等离子体的带正电的离子。这可导致等离子体密度朝向靶材料增加,这可增加溅射沉积的效率。
24.在示例中,该设备包括卷材供给组件,其布置成在使用中在基底部分中提供基底卷材。在这些示例中,该设备可以形成“卷对卷”沉积系统的一部分,该沉积系统例如比批处理更有效。
25.根据本发明的第二方面,提供了一种将靶材料溅射沉积到基底的方法,其中沉积区限定在基底和靶材料之间,该方法包括:
26.使用包括至少一个天线的天线装置产生等离子体;
27.使用设置在天线装置和沉积区之间的至少一个第一元件,将来自天线装置的等离子体限制成朝向沉积区,从而使靶材料溅射沉积到基底;以及
28.使用至少一个第二元件将等离子体限制成远离第二元件,朝向天线装置,并由此经由第一元件朝向沉积区,所述至少一个第二元件设置成使得天线装置位于至少一个第二元件和沉积区之间。
29.该方法可以增加沉积区内的等离子体密度,这可以提高溅射沉积的效率。该方法还可以或替代地增加沉积区内等离子体的均匀性,这可以提高沉积在基底上的靶材料的均匀性。
30.根据本发明的第三方面,提供了一种用于将靶材料溅射沉积到基底的设备,该设备包括:
31.沉积区;
32.天线装置,其包括至少一个天线,用于在使用中驱动交流电通过天线时产生等离子体;
33.限制装置,包括:
34.至少一个第一元件,其设置在天线装置和沉积区之间,并且布置成在使用中将来自天线装置的等离子体限制成朝向沉积区,从而在使用中向沉积区提供等离子体;以及
35.至少一个第二元件,其设置成使得天线装置位于至少一个第二元件和沉积区之间,并且布置成在使用中将等离子体限制成远离第二元件,朝向天线装置,并且由此经由至少一个第一元件朝向沉积区。
36.这可以增加沉积区内的等离子体密度,这可以提高溅射沉积的效率。该方法还可以或替代地增加沉积区内等离子体的均匀性,这可以提高沉积在基底上的靶材料的均匀性。
37.从下面参考附图仅通过示例给出的描述中,进一步的特征将变得显而易见。
附图说明
38.图1是示出根据一示例的设备的横截面的示意图;
39.图2是示出根据一示例的图1的设备的一部分的横截面的示意图;
40.图3是示出根据又一示例的设备的横截面的示意图;
41.图4是示出根据又一示例的设备的横截面的示意图;
42.图5是示出图4的设备的平面图的示意图;
43.图6是示出根据一示例的第一磁性元件的横截面的示意图;
44.图7是示出根据又一示例的设备的横截面的示意图;以及
45.图8是示出根据一示例的方法的示意流程图。
具体实施方式
46.参照附图,根据示例的设备和方法的细节将从以下描述中变得明显。在本说明书中,出于解释的目的,阐述了某些示例的许多具体细节。说明书中对“示例”或类似语言的引用意味着结合示例描述的特定特征、结构或特性包括在至少一个示例中,但不一定包括在其他示例中。还应注意,为了便于解释和理解示例背后的概念,示意性地描述了某些示例,省略和/或必要地简化了某些特征。
47.参考图1,示意性示出了用于将靶材料108溅射沉积到基底116的示例设备100。
48.设备100可用于大量工业应用的基于等离子体的溅射沉积,例如用于薄膜沉积的应用,例如用于生产光学涂层、磁记录介质、电子半导体器件、led、诸如薄膜太阳能电池的能量产生器件和诸如薄膜电池的能量储存器件。因此,虽然本公开的上下文在一些情况下可能涉及能量存储装置或其部分的生产,但将理解,本文描述的设备100和方法不限于其生产。
49.尽管为了清楚起见未在图中示出,但应当理解,设备100可以设置在外壳(未示出)内,该外壳在使用中可被抽空到适于溅射沉积的低压,例如3
×
10-3
托。例如,可以通过泵送系统(未示出)将外壳(未示出)抽空至合适的压力(例如小于1
×
10-5
托),并且在使用中,可
以使用气体供给系统(未示出)将诸如氩气或氮气的处理气体或溅射气体引入外壳(未示出)中至从而实现适于溅射沉积的压力(例如3
×
10-3
托)的程度。
50.回到图1所示的示例,概括地说,设备100包括基底部分118、靶部分106、天线装置102和限制装置104。
51.基底部分118是设备100的一部分,其中在使用中提供基底116。在一些示例中,基底部分118可以包括基底引导件(图1中未示出),以引导基底116通过设备100。例如,基底引导件(图1中未示出)可以在传送方向(图1中箭头a所示)上引导基底116。
52.在一些示例中,基底116可以是基底116的卷材的形式。在一些示例中,基底116的卷材可以是或包括硅或聚合物。在一些示例中,例如对于能量存储装置的生产,基底116的卷材可以是或包括镍箔,但应当理解,可以使用任何合适的金属来代替镍,例如铝、铜或钢,或者包括金属化塑料的金属化材料,例如聚对苯二甲酸乙二醇酯(pet)上的铝。
53.靶部分106是设备100的一部分,其中在使用中提供靶材料108。靶部分106可以包括布置成支撑靶材料108的靶支撑件107。例如,靶支撑件107可包括在溅射沉积期间支撑或保持靶材料108就位的板或其他支撑结构。靶材料108可以是基于其在基底116上进行溅射沉积的材料。例如,靶材料108可以是或包括通过溅射沉积沉积到基底116上的材料。
54.在一些示例中,例如对于能量存储装置的生产,靶材料108可以是或包括能量存储装置的阴极层,或者可以是或包括用于其的前体材料,比如适于存储锂离子的材料,例如锂钴氧化物、锂铁磷酸盐或碱金属多硫化物盐。另外或可替代地,靶材料108可以是或包括能量存储装置的阳极层,或者可以是或包括用于其的前体材料,例如锂金属、石墨、硅或铟锡氧化物。另外或可替代地,靶材料108可以是或包括能量存储装置的电解质层,或者可以是或包括用于其的前体材料,比如离子导电但也是电绝缘体的材料,例如锂磷氮氧化物(lipon)。例如,靶材料108可以是或包括lipo作为用于将lipon沉积到基底116上的前体材料,例如通过在靶材料108的区域中与氮气反应。
55.靶部分106和基底部分118彼此隔开,并在它们之间限定沉积区114。沉积区114可视为基底部分118和靶部分106之间的区域或体积,其中在使用中发生从靶材料108到基底116的卷材上的溅射沉积。例如,沉积区114可视为使用中在设备100中接收的基底116和使用中在设备100中接收的靶材料108之间的区域或体积,其中在使用中发生从靶材料108到基底116的卷材上的溅射沉积。
56.天线装置102包括至少一个天线102a、102b,用于在使用中驱动交流电通过天线102a、102b时产生等离子体。在所示的示例中,天线装置102包括两个天线102a、102b。适当的射频功率可以由射频电源系统(未示出)驱动通过天线102a、102b中的一个或两个,以便从外壳(未示出)中的处理或溅射气体产生电感耦合等离子体112。在一些示例中,可以通过驱动射频电流通过一个或多个天线102a、102b来产生等离子体112,例如在1mhz和1ghz之间的频率;1mhz和100mhz之间的频率;10mhz和40mhz之间的频率;或者在约13.56mhz或其倍数的频率。在任何情况下,射频功率引起工艺或溅射气体的电离以产生等离子体112。
57.在图示的示例中,天线装置102远离沉积区114设置。这样,等离子体112可以远离沉积区114产生。天线102a、102b可以基本彼此平行地延伸,并且可以彼此横向设置。这可允许在两个天线102a、102b之间精确产生等离子体112的细长区域,这又可有助于将所产生的等离子体112精确限制到沉积区114,如下面更详细描述。在一些示例中,天线120a、120b的
长度可以类似于基底部分118中承载的基底116的宽度。细长天线102a、102b可在长度对应于基底116宽度的区域上产生等离子体112,因此可允许等离子体112在基底116的宽度上均匀或一致地可用。如下文更详细描述,这又可以有助于提供均匀或一致的溅射沉积。
58.限制装置104包括至少一个第一元件105a和至少一个第二元件103。
59.至少一个第一元件105a设置在天线装置102和沉积区114之间。第一元件105a布置成将来自天线装置104的等离子体112限制成朝向沉积区114,从而提供靶材料108到基底116的溅射沉积。
60.在一些示例中,受限等离子体112至少在沉积区114中可以是高密度等离子体。例如,受限等离子体112至少在沉积区114中可以具有例如10
11
cm-3
或更高的密度。沉积区114中的高密度等离子体112可以允许有效和/或高速率的溅射沉积。
61.在一些示例中,至少一个第一元件105a可以是第一磁性元件105a,其布置成提供第一限制磁场以将来自天线装置102的等离子体限制成朝向沉积区114。限制磁场的特征可以是磁场线(图1中未示出),其布置成沿着从天线装置102朝向沉积区114的路径。产生的等离子体112倾向于跟随磁场线,因此被至少一个第一元件限制成从天线装置102朝向沉积区114。例如,在限制磁场内并具有一定初始速度的等离子体离子将受到洛伦兹力,其导致离子围绕磁场线进行周期性运动。如果初始运动不严格垂直于磁场,离子会沿着以磁场线为中心的螺旋路径。因此,包含这种离子的等离子体倾向于跟随磁场线,并因此被限制在由此限定的路径或平面上。因此,第一磁性元件105a可被适当地布置成使得等离子体112通过限制磁场被限制成朝向沉积区114。
62.在一些示例中,至少一个磁性元件105a可布置成提供由磁场线表征的限制磁场,该磁场线至少在沉积区114中沿着基本平行于基底116和/或靶材料108的路径。这可以允许等离子体112在沉积区114上的更均匀分布,这又可以允许靶材料112的更均匀沉积。
63.在一些示例中,如图所示,限制装置可以包括两个第一元件105a、105b。第一元件105a、105b可设置成使得沉积区114位于第一元件105a、105b中的第一个105a和第一元件105a、105b中的第二个105b之间,从而将等离子体112限制穿过沉积区114。例如,第一元件105a、105b可以是磁性元件105a、105b。磁性元件105a、105b可布置成一起提供限制磁场,其将来自天线装置102的等离子体112限制成穿过沉积区114(即基本从沉积区114的一侧到另一侧)。例如,至少两个磁性元件105a、105b可布置成使得在磁性元件105a、105b之间提供相对高磁场强度的区域。相对高磁场强度的区域可以延伸穿过沉积区114。由磁性元件105a、105b产生的限制磁场可以由磁场线表征,该磁场线至少在沉积区114中沿着基本平行于基底116和/或靶材料108的路径。这可以允许在基本整个沉积区114上提供更均匀的等离子体密度,这又可以允许在基本整个沉积区114上更均匀地沉积靶材料116。
64.在一些示例中,第一磁性元件105a、105b中的至少一个可以是电磁体,其可控制为提供第一限制磁场。例如,第一磁性元件105a、105b中的一个或两个可以是电磁体104a、104b。设备100可以包括控制器(未示出),其布置成控制由一个或多个电磁体105a、105b提供的磁场强度。这可以允许控制限制磁场,例如表征限制磁场的磁场线的布置。这可以允许调节基底116和/或靶材料108处的等离子体密度,并因此允许改善对溅射沉积的控制。这可以提高设备100操作的灵活性。
65.在一些示例中,第一磁性元件105a、105b中的至少一个可以由螺线管105a、105b提
供。每个螺线管105a、105b可以限定开口(图5中未示出,但参见图6的开口650),在使用中等离子体112通过或经由该开口被限制(可以通过)。
66.在一些示例中,螺线管105a、105b可以是细长的。例如,如图6所示,由螺线管105a、105b限定的开口650可以是细长的。或许从图5中可以最好地理解,螺线管105a、105b的开口505可以在与天线102a、102b是细长的方向基本平行的方向上是细长的。如上所述,可以沿着细长天线102a、102b的长度产生等离子体112,并且细长螺线管105a可以将等离子体112限制在远离细长天线102a、102b的方向上,并且通过细长螺线管105a。等离子体112可以由片状的细长螺线管105a从细长天线102a、102b限制。也就是说,以等离子体112的深度(或厚度)显著小于其长度和/或宽度的形式。等离子体112片的厚度可以沿着片的长度和宽度基本恒定。等离子体112片的密度在其宽度和长度方向中的一个或两个上可以是基本均匀的。呈片状的等离子体112可被螺线管105a、105b提供的磁场限制成朝向和/或穿过沉积区114。等离子体112由此可被限制成片状。将等离子体112限制为片状可以允许基底116和/或靶材料108暴露于等离子体112的区域增加,因此可以实现溅射沉积的区域增加。这可以允许例如基底的每单位面积的沉积速率增加,并因此反过来允许更有效的沉积。这可以替代地或另外允许在沉积区114上的基底116和/或靶材料108处的等离子体密度的更均匀分布。这又可以允许在基底116上更均匀的溅射沉积。因此,溅射沉积可以更一致地进行。这可以例如提高被处理基底的一致性,并且可以例如减少对质量控制的需求。
67.回到图1,如上所述,天线装置102可以包括两个天线102a、102b。天线102a、102b可以彼此分开,并在它们之间限定区域101。区域101可以是在使用中由天线105a、105b优先产生等离子体112的区域101。天线102a、102b可以在与每个天线102a、102b是细长的方向基本垂直的方向上彼此隔开。天线102a、102b可以在基本垂直于由限制装置104限制等离子体112所沿方向的方向上彼此隔开。螺线管105a可布置成使得螺线管105a的开口505通向两个天线102a、102b之间限定的区域101。这可以允许通过第一螺线管105a远离天线装置102朝向沉积区114精确地限制等离子体112。
68.如图所示,可以有两个螺线管105a、105b,沉积区114位于它们之间。如图所示,产生的等离子体112可以从天线装置102通过第一螺线管105a,进入沉积区114,并朝向和通过第二螺线管105b。第二螺线管105b可以具有上述第一螺线管105a的任何特征或特征组合。
69.尽管在图1中仅示出了两个第一磁性元件105a、105b,但应当理解,可以沿着等离子体112的路径放置另外第一磁性元件(未示出),例如诸如螺线管105a、105b的另外螺线管(未示出)。这可以允许限制磁场的加强,并因此允许精确的限制,和/或可以允许限制磁场的控制有更多的自由度。
70.至少一个第一元件105a、105b本身可能无法将等离子体112完全限制在沉积区114中。作为说明性的示例,在图1中,等离子体112延伸出第一元件105b,即朝向第一元件105b的与沉积区114沉积所朝向的一侧相反的一侧。该等离子体可以例如到达落到外壳(未示出)的室壁上。这种等离子体112从沉积区114的“溢出”会导致沉积区114中等离子体112密度的降低。这又会导致沉积效率降低,即可能导致沉积变慢。可替代地或另外,这可以减少等离子体和经由天线102a、102b提供的rf功率之间的功率耦合,这可能需要增加提供给天线的rf功率来补偿。为了减轻由第一元件105a的区域中的这种“溢出”引起的等离子体密度和/或功率耦合的这种潜在降低,限制装置104包括至少一个第二元件103。
71.至少一个第二元件103设置成使得天线装置102位于至少一个第二元件103和沉积区114之间。也就是说,第二元件103可以设置成使得天线102a、102b位于第二元件103和沉积区114之间。第二元件103布置成将等离子体112限制成远离第二元件103,朝向天线装置102(即天线102a、102b),并且由此经由至少一个第一元件105a朝向沉积区115。至少一个第二元件103因此可以导致沉积区114中的等离子体(离子)密度增加,例如与没有提供第二元件103的情况相比。这又可以允许靶材料108到基底116的沉积效率提高。可替代地或另外,这可以允许天线102a、102b和沉积区114中的等离子体112之间的功率耦合的改善,并且因此可以允许向天线提供相对较少的功率。如下文更详细描述,可以可选地提供类似的布置,以防止或减少第二第一元件105b的区域中的这种“溢出”,并相应地进一步增加沉积区114中的等离子体密度,这可以允许沉积效率和/或功率耦合的进一步相应改善。
72.类似于第一元件105a,第二元件103可以是细长的,并且在与天线102a、102b和/或第一元件105a是细长的方向平行的方向上延伸(可能在图6中看得最清楚)。这可以使得沉积区中的等离子体112的密度通过第二元件103在基底118的宽度上以均匀的方式增加。
73.在一些示例中,至少一个第二元件103可以是或包括静电元件103。静电元件103可控制成提供电场,从而至少在第一元件105a和第二元件103中间的体积中,将至少一部分等离子体112从静电元件103朝向天线装置102排斥,并由此经由第一元件105a朝向沉积区114排斥。例如,静电元件103可布置成在使用中带正电,从而将等离子体112的带正电的离子朝向沉积区排斥。通过提供合适的电场将等离子体112从第二元件103排斥又可以阻止等离子体112被限制成从天线102a、102b远离沉积区114,而是导致等离子体112优先被第一元件105a限制成朝向沉积区114。因此,第二元件103可以使等离子体112被限制成远离第二磁性元件103,朝向天线装置102,从而经由第一元件105a朝向沉积区114。
74.在一些示例中,该设备可以包括控制器(未示出),其布置成控制由静电元件103提供的电场。例如,可以通过合适的电压源(未示出)向静电元件103施加正电压,以便将等离子体112的带正电的离子朝向沉积区排斥。控制器(未示出)可布置成控制提供给静电元件103的电压,从而控制等离子体112被从静电元件103排斥的程度,并因此控制沉积区114中等离子体密度增加的程度。
75.在一些示例中,设备100可布置成在使用中用负电荷偏压靶材料108。这可以由合适的电压源(未示出)提供,该电压源可以由控制器(未示出)控制。靶材料108上的负偏压与第二元件103上的正偏压耦合可以促使等离子体被限制成朝向沉积区104。
76.在一些示例中,第二元件103可以是或包括第二磁性元件103。第二磁性元件103可布置成提供第二限制磁场。第二磁场可以至少在第一元件105a和第二元件103中间的体积230中与由第一元件105a提供的第一限制磁场相反。这可以导致等离子体112被限制成远离第二磁性元件103,朝向天线装置102,从而经由第一元件105a朝向沉积区114。
77.例如,参考图2,示意性地示出了图1的设备100的一部分,示意性地示出了根据一示例的磁场线(按照惯例由箭头线表示),其表征由第一磁性元件105a(螺线管105a)提供的第一限制磁场和由第二磁性元件103提供的第二限制磁场的相互作用。第二磁性元件103布置成具有与第一磁性元件105a相反的极性。因此,至少在第一元件105a和第二元件103中间的体积230中,由第二磁性元件103提供的磁场与由第一元件105a提供的第一限制磁场相反。由第二元件103a提供的第二限制磁场相应地减少由第一磁性元件105a提供的第一限制
磁场在相对于沉积区114位于第一元件105a后面的体积230中的通量。例如,在体积230中由第二元件103a提供的第二限制磁场可以沿着第一元件105a和第二元件103之间的方向减少由第一磁性元件105a提供的第一限制磁场的磁通量。相对于沉积区114在第一元件105a后面的体积230中,减少由第一磁性元件105a提供的第一限制磁场的通量又可以阻止等离子体112被限制成从天线102a、102b远离沉积区114,而是导致等离子体112被优先限制成朝向沉积区114。因此,第二元件103可以使等离子体112被限制成远离第二磁性元件103,朝向天线装置102,从而经由第一元件105a朝向沉积区114。
78.在一些示例中,第二元件103可以包括永磁体,该永磁体具有面向第一元件105a的合适极,以对抗由此产生的磁场。在一些示例中,第二元件103可以包括多个永磁体,例如布置成阵列,例如每个永磁体具有面向第一元件105a的合适极,以对抗由此产生的磁场。
79.在一些示例中,第二元件103可以是或包括一个或多个电磁体,其可控制为提供第二限制磁场。例如,第二元件103可以包括螺线管阵列(未示出),该阵列可控制为呈现面向第一元件105a的合适极,以对抗由此产生的磁场。设备100可以包括控制器(未示出),其布置成控制由第二磁性元件103提供的第二限制磁场。这可以允许控制第二限制磁场与第一限制磁场的相互作用,并因此控制等离子体112被限制成远离第二元件103朝向沉积区114的程度。
80.参考图3,示出了根据一示例的设备300。设备300可以与上面参考图1和/或图2描述的设备100基本相同,并且相同的特征由相同的附图标记表示。然而,图3所示的示例装置300的限制装置304还包括第三元件303。
81.类似于第二元件103,第三元件303将等离子体限制成远离第三元件303朝向沉积区114。第三元件303可以与参照图1和图2描述的第二元件103相同,或者可以具有第二元件103的任何一个特征或特征组合。如图3所示,第三元件303设置成使得沉积区114位于第二元件102和第三元件303之间。第三元件203布置成将等离子体112限制成远离第三元件303并朝向沉积区114。在该示例中,第三元件303设置成使得第一元件105a、105b中的第一元件105a和第一元件105a、105b中的第二元件105b以及沉积区114位于第三元件303和第二元件103之间,使得第三元件303将等离子体112限制成远离第三元件303,并且经由第一元件105a、105b中的第二元件105b朝向沉积区114。
82.因此,提供第三元件303可导致沉积区114中的等离子体密度(进一步)增加,例如与不提供第三元件303的情况相比(即根据图1)。这又可以允许靶材料108到基底116的提高的沉积效率和/或允许从天线102a、102b到沉积区114中的等离子体112的提高的功率耦合。
83.参考图4和图5,以截面图(图4)和平面图(图5)示出了根据一示例的示例设备400。设备300可以与上面参考图3描述的设备300基本相同,并且相同的特征由相同的附图标记表示。然而,图4和5所示的示例设备400包括另外天线装置402,其包括第三天线102c和第四天线102d。
84.如图所示,第三元件203设置成使得另外天线装置402位于第三元件203和沉积区114之间,并且第三元件203将等离子体限制成远离第三元件203(朝向另外天线装置402),并且由此经由第一元件105b朝向沉积区114。另外天线装置402的第三和第四天线102c、102d可以与上述天线装置102的第一和第二天线102a、102b基本相同。应当理解,第三元件203、另外天线装置402和第一元件105b的布置和功能可以与上述第二元件103、天线装置
102和第一元件105a的布置和功能基本相同,但与后者相比,前者设置在沉积区114的另一侧。以这种方式提供第三和第四天线102a、102d可以允许在沉积区114上的更均匀的等离子体密度和/或分布,并且因此可以反过来提供改进的沉积。
85.参考图6,示出了第一磁性元件105a、105b的示例的横截面。如图所示,第一磁性元件105a、105b是螺线管,并包括开口650,在使用中通过该开口限制等离子体。第一磁性元件105a、105b以及由此限定的开口650是细长的。如上所述,第一元件105a、105b可以在平行于天线装置102、402是细长的方向上是细长的,从而提供被限制在沉积区114中的等离子体112片。
86.在参考图1-6描述的示例中,等离子体112、基底116和靶108是基本平面的,但这不是必须的,在其他示例中,等离子体112、基底116和/或靶部分108可以是基本弯曲的。
87.参考图7,示意性地示出了根据一示例的设备700。设备700类似于上面参考图4和5描述的示例设备400,并且相同的特征用相同的附图标记表示。然而,在图7的设备700中,基底部分718布置成沿着弯曲路径(图7中的箭头c)引导基底116,并且限制装置704布置成限制等离子体以沿着弯曲路径c的曲线。
88.基底部分718可包括基底引导件719,其可以是或包括弯曲构件。按照图7所示的示例,弯曲构件可以是整个卷材供给组件721的滚筒719的形式。滚筒719可布置成围绕轴线720旋转。卷材供给组件721可布置成将基底116的卷材供给到滚筒719上和从滚筒719供给,使得基底116的卷材由滚筒719的弯曲表面的至少一部分承载。在一些示例中,卷材供给组件721包括第一辊710a和第二辊710b,第一辊710a布置成将基底116的卷材供给到滚筒719上,第二辊710b布置成在基底116的卷材已经沿着弯曲路径c之后从滚筒719供给基底116的卷材。卷材供给组件721可以是“卷对卷”处理装置(未示出)的一部分,其中基底116的卷材从基底卷材116的第一卷筒或线轴(未示出)供给,穿过设备700,然后供给到第二卷筒或线轴(未示出)上,以形成已处理基底卷材的装载卷筒(未示出)。
89.在该示例中,限制装置704布置成使得由第一元件105a、105b提供的限制磁场可以由布置成沿着弯曲路径c的曲线的磁场线来表征。例如,磁场线(图7中未示出)可以沿着弯曲路径,其与弯曲路径c具有共同的曲率中心,但具有与弯曲路径c不同的曲率半径(在所示示例中更大)。例如,磁场线可以沿着基本平行于基底116的弯曲路径c但从其径向偏移的弯曲路径。表征限制磁场的磁场线可布置成围绕弯曲路径c的大部分或显著部分沿着弯曲路径c的曲线,例如在引导基底116的弯曲路径c的假想部分的全部或大部分上,例如围绕假想圆的圆周的至少约1/16或至少约1/8或至少约1/4或至少约1/2。在第一元件105a、105b由螺线管提供的示例中,类似于参考图1至6所述,限制装置704可以将等离子体112限制为弯曲片的形式。
90.对于给定的设备占地面积,将等离子体112限制为沿着基底116的弯曲路径c的曲线可以允许基底116暴露于等离子体112的区域增加,因此可以实现溅射沉积的区域增加。例如,对于给定程度的沉积,这可以允许基底116的卷材以更快的速度通过卷对卷型设备供给,从而实现更有效的溅射沉积。
91.在一些示例中(未示出),靶部分706可以是弯曲的,并且可以基本沿着弯曲路径c的曲线。这可以允许最大化由靶材料108沉积到其上的滚筒118承载的基底116的卷材的表面积。
92.在图7的示例中,第一元件105a设置在天线装置102和沉积区114之间,并布置成将等离子体112从天线装置102限制成朝向沉积区114,从而提供靶材料108到基底116的溅射沉积。第二元件103设置成使得天线装置102位于第二元件103和沉积区114之间,并且布置成将等离子体112限制成远离第二元件103,朝向天线装置201,并且由此经由第一元件105a朝向沉积区114。第三元件303设置成使得沉积区位于第三元件303和第二元件103之间。第三元件303设置成使得另外天线装置402位于第三元件303和沉积区114之间。第三元件303布置成将等离子体112限制成远离第三元件303,朝向另外天线装置402,并由此经由第二第一元件105b朝向沉积区114。因此,与没有提供第二和/或第三元件103、303的情况相比,第二元件103和/或第三元件303用于增加沉积区114中的等离子体密度。这又可以允许提高靶材料108到基底116的沉积效率和/或提高天线装置102或另外天线装置402和沉积区114中的等离子体112之间的功率耦合,因此可以允许向天线提供相对较少的功率,从而提供更有效的设备。
93.参考图8,示意性示出了将靶材料108溅射沉积到基底116的示例方法。在该方法中,沉积区114限定在基底116和靶材料108之间。靶材料108、基底116和沉积区114可以是例如参考图1至7描述的任何示例中的那些。在一些示例中,该方法可以由上面参考图1至7描述的设备100、300、400、700中的任何一个来执行。
94.在步骤802中,该方法包括使用包括至少一个天线102a、102b的天线装置102产生等离子体112。例如,天线装置102可以是上面参考图1至7描述的天线装置102。
95.在步骤804中,该方法包括使用设置在天线装置201和沉积区114之间的至少一个第一元件105a将来自天线装置201的等离子体112限制成朝向沉积区114,从而导致靶材料108溅射沉积到基底116。例如,第一元件105a可以是上面参照图1至7描述的第一元件105a。
96.在步骤806中,该方法包括使用至少一个第二元件103将等离子体112限制成远离第二元件103朝向天线装置102,从而经由第一元件105a朝向沉积区114,第二元件103设置成使得天线装置102位于至少一个第二元件103和沉积区114之间。例如,第二元件103可以是上面参考图1至7描述的第二元件103。
97.如上所述,将等离子体112限制成远离第二元件103,朝向天线装置102,从而经由第一元件105a朝向沉积区114,可以导致沉积区114中的等离子体(离子)密度增加,例如与不执行使用第二元件103的限制相比。这又可以允许靶材料108到基底116的沉积效率提高。可替代地或另外,这可以允许天线102a、102b和沉积区114中的等离子体112之间的功率耦合的改善,并且因此可以允许向天线提供相对较少的功率。因此可以提供更有效的溅射沉积。
98.上述示例应被理解为本发明的说明性示例。应当理解,关于任何一个示例描述的任何特征可以单独使用,或者与所描述的其他特征结合使用,并且还可以与任何其他示例的一个或多个特征结合使用,或者与任何其他示例的任何组合结合使用。此外,在不脱离由所附权利要求限定的本发明的范围的情况下,也可以采用上面没有描述的等同物和修改。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1