一种智能功率芯片结构及其制造方法与流程

文档序号:25286669发布日期:2021-06-01 17:36阅读:168来源:国知局
一种智能功率芯片结构及其制造方法与流程

本发明涉及半导体封装测试技术领域,具体涉及一种智能功率芯片结构及其制造方法。



背景技术:

cob结构或引线框结构是半导体封装领域所常用的结构,其通过将芯片固定于电路板或引线框上并进行电连接,实现芯片的电路板或引线框上集成,该种结构是不利于薄型化和轻量化的。对于智能功率芯片结构而言,由于芯片尤其是功率芯片在其工作时,会产生大量的热辐射,其热阻系数较高,不利于散热。现有技术中,有利用金属镀层作为外部连接端而将芯片直接塑封,此时可以实现薄型化,但是金属镀层与塑封层的粘合力不够,且会造成污染。



技术实现要素:

基于解决上述问题,本发明提供了一种智能功率芯片结构的制造方法,其包括以下步骤:

(1)提供一临时载板,在所述临时载板上沉积可激光活化有机物并进行半固化,形成一半固化有机物层;

(2)在所述半固化有机物层上固定一功率芯片,并形成多个键合线,所述键合线的一端键合至所述功率芯片上,所述键合线的另一端键合至所述半固化有机物层上;

(3)在所述半固化有机物层上注塑并固化形成塑封层,该固化将所述半固化有机物层变为固化的有机物层;

(4)移除所述临时载板,并利用第一激光照射所述键合线的第二端位置处的所述有机物层,使得所述有机物层的可激光活化有机物被活化为一活化金属层,以形成多个电连接至所述键合线的焊盘;

(5)利用所述第一激光继续照射所述有机物层,以在所述有机物层的周边区域形成环绕所述焊盘的活化密封金属环,在所述芯片的正下方形成活化散热金属层。

2.根据权利要求1所述的智能功率芯片结构的制造方法,其特征在于,所述可激光活化有机物包括基体材料和金属络合物材料,所述基体材料与所述塑封层的材料相同。

进一步的,在步骤(2)中,所述另一端键合至所述半固化有机物层上时,通过高温熔融形成一熔球,同时在所述半固化有机物层上烧蚀形成多个凹陷,所述熔球置于所述凹陷中。

进一步的,利用第一激光照射时,活化的金属至少部分嵌入至所述塑封层中。

进一步的,还包括步骤(6),利用第二激光继续照射所述活化散热金属层以在所述活化散热金属层与所述芯片之间形成金属间化合物。

本发明还提供了一种智能功率芯片结构,其通过上述的智能功率芯片结构的制造方法形成,包括:

有机物层,由所述可激光活化有机物形成,所述有机物层中具有经激光活化形成的活化散热金属层、多个焊盘、活化密封金属环,所述活化密封金属环设置于所述有机物层的周边区域且环绕所述焊盘,所述焊盘设置于所述活化散热金属层周围;

功率芯片,固定于所述有机物的所述活化散热金属层上;

塑封层,形成于所述有机物层上,且所述塑封层密封所述功率芯片和键合线。

进一步的,所述可激光活化有机物包括基体材料和金属络合物材料,所述基体材料与所述塑封层的材料相同。

进一步的,所述另一端具有键合至所述焊盘的熔球,同时在所述半固化有机物层上具有多个凹陷,所述熔球置于所述凹陷中。

进一步的,在靠近所述活化散热金属层、多个焊盘和活化密封金属环的位置,所述塑封层中具有活化的金属材料。

进一步的,在所述活化散热金属层与所述芯片之间形成有金属间化合物。

本发明的有益效果如下:

(1)利用可激光活化有机物层和塑封层形成密封结构,摒弃了传统的基板或引线框封装,可以实现薄型化。

(2)激光活化形成的金属焊盘以及散热金属层和密封金属环,相较于现有技术的金属镀层,具有更好的粘附力。

(3)可激光活化有机物层的基体材料与塑封层材料选择为相同的材料,可以保证两者之间的粘合力以提高塑封效果,且可以使得活化的金属进入塑封层内,保证活化金属与塑封层的粘附力。

(4)利用激光活化形成金属焊盘以及散热金属层和密封金属环,方法简单可靠,能够实现轻量化的同时,保证功率芯片的散热。

附图说明

图1为本发明的智能功率芯片结构的剖面图;

图2-6为本发明的智能功率芯片结构的制造方法示意图。

具体实施方式

为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。

除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。

下面将结合附图对根据本发明公开实施例的智能功率芯片结构进行详细的描述。

请参照图1,本申请的智能功率芯片结构,其包括有机物层11,该有机物层11的材料为可激光活化有机物,具体可以包括基体材料和金属络合物材料,其基体材料可以是环氧树脂、聚酰亚胺、聚四氟乙烯、pen、pet等,而该金属络合物材料可以是具有可活化金属材料的改性的聚丙烯(ppmid)或改性的聚对苯二甲酸丁二酯(pbtmid),其可以是铜的络合物。

所述有机物层11一方面作为密封材料,另一方面作为形成金属材质的各个功能部件。具体的,所述有机物层11中具有经激光活化形成的活化散热金属层22、多个焊盘17、活化密封金属环24,所述活化密封金属环24设置于所述有机物层11的周边区域且环绕所述焊盘17,所述焊盘17设置于所述活化散热金属层22周围。

焊盘17经由第一激光活化所述有机物层11的电连接部分形成,其可以与有机物层11具有较好的粘附力,且可以形成为很薄的层结构。该焊盘17可以是活化的铜材质,且其可以环绕于芯片12周围,并具有外露的表面。

活化散热金属层22的材质与焊盘17的材质相同,其可以先通过第一激光活化形成,并经由第二激光的第二次照射与芯片之间形成金属间化合物层23,例如该芯片的衬底为硅材质,则金属间化合物层23就包括活化金属(例如铜)和硅。该种设置,可以保证芯片12的背面散热,且能够起到密封芯片和保证与芯片之间的粘附性的作用。其中,第二激光的能量密度大于所述第一激光的能量密度,以保证形成金属间化合物层23。

密封环24的材质与活化散热金属层22和焊盘17的材质相同,其同样通过第一激光活化形成,密封环24为环绕所述芯片12的闭环形式,且形成于有机物层11的周边一圈,可以密封有机物层11与塑封层16之间的间隙。

此外,塑封层16的材料可以与有机物层11的基体材料一致,例如均可以是环氧树脂、聚酰亚胺、聚四氟乙烯、pen、pet等,对于塑封层的材料的该种特殊选择,可以保证塑封层16与有机物层11之间的粘合力,且在使用激光活化有机物层时,活化的金属可以部分进入至塑封层16中,进一步保证活化散热金属层22、多个焊盘17、活化密封金属环24的粘附力,防止有机物层11和塑封层16之间的剥离。

在所述有机物层11上固定有芯片12,该芯片12为智能功率芯片,其主要设置于活化散热金属层22之上。所述芯片12通过多个键合线13引出至焊盘17,所述键合线13的一端键合至所述芯片12上,所述键合线13的另一端键合至所述焊盘17上,并且在键合线13的另一端还具有一熔球16,该熔球16直接物理和电连接所述焊盘17。

所述焊盘17还具有一凹陷15,所述熔球14置于所述凹陷15中。该凹陷15是在键合线13的另一端键合至所述有机物层11上经热烧蚀形成,其可以保证电连接的可靠性。

本发明的实施例利用可激光活化有机物层和塑封层形成密封结构,摒弃了传统的基板或引线框封装,可以实现薄型化。激光活化形成的金属焊盘以及散热金属层和密封金属环,相较于现有技术的金属镀层,具有更好的粘附力。可激光活化有机物层的基体材料与塑封层材料选择为相同的材料,可以保证两者之间的粘合力以提高塑封效果,且可以使得活化的金属进入塑封层内,保证活化金属与塑封层的粘附力。

上述智能功率芯片结构的制造方法也是极为简单的,具体可以参见图2-6。

首先,参见图2,在临时载板10上沉积可激光活化有机物并进行半固化,形成一半固化有机物层11,所述临时载板10是具有一定的刚性的。临时衬底包括玻璃衬底、陶瓷衬底、不锈钢衬底或者硅衬底。沉积方式可以是溅射、化学气相沉积、物理气相沉积等方法。

然后,参见图3,在半固化有机物层11上固定一芯片12,该芯片12为智能功率芯片。并且还包括形成多个键合线13,所述键合线13的一端键合至所述芯片12上,另一端键合至所述半固化有机物层11上,其可以通过超声波焊机焊接形成。

所述另一端键合至所述半固化有机物层11上时,通过超声波高温熔融形成一熔球14,同时在所述半固化有机物层11上烧蚀形成多个凹陷15,所述熔球14置于所述凹陷15中。

参见图4,在所述半固化有机物层11上注塑并固化形成塑封层16,该固化将所述半固化有机物层11变为固化的有机物层11。其中,所述可激光活化有机物包括基体材料和金属络合物材料,所述基体材料与所述塑封层16的材料相同,以保证粘合力。

接着,参见图5,移除所述临时载板10以露出有机物层11,并利用激光器20照射有机物层11,激光器20具有第一激光21,第一激光21照射所述键合线13的第二端位置处的所述有机物层11,使得所述有机物层11的可激光活化有机物被活化为一活化金属层,以形成多个电连接至所述键合线13的焊盘17。

最后,参见图6,利用所述第一激光21继续照射所述有机物层11,以在所述有机物层11的周边区域形成环绕所述焊盘17的活化密封金属环24,在所述芯片12的正下方形成活化散热金属层22。利用第一激光21照射时,活化的金属至少部分嵌入至所述塑封层16中。

此外,还包括利用第二激光(未示出)继续照射所述活化散热金属层22以在所述活化散热金属层22与所述芯片12之间形成金属间化合物23。

本发明利用激光活化形成金属焊盘以及散热金属层和密封金属环,方法简单可靠,能够实现轻量化的同时,保证功率芯片的散热。

本发明中使用的表述“示例性实施例”、“示例”等不是指同一实施例,而是被提供来着重描述不同的特定特征。然而,上述示例和示例性实施例不排除他们与其他示例的特征相组合来实现。例如,即使在另一示例中未提供特定示例的描述的情况下,除非另有陈述或与其他示例中的描述相反,否则该描述可被理解为与另一示例相关的解释。

本发明中使用的术语仅用于示出示例,而无意限制本发明。除非上下文中另外清楚地指明,否则单数表述包括复数表述。

虽然以上示出并描述了示例实施例,但对本领域技术人员将明显的是,在不脱离由权利要求限定的本发明的范围的情况下,可做出变型和改变。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1