一种MWT异质结太阳能电池及其制备方法与流程

文档序号:25865095发布日期:2021-07-13 16:24阅读:168来源:国知局
一种MWT异质结太阳能电池及其制备方法与流程

本发明涉及一种适合量产的mwt异质结太阳能电池及其制备方法,属于硅基太阳能电池制造领域。



背景技术:

mwt为金属穿孔卷绕技术,应用在太阳能电池中,通过激光或者其他方法在原硅片上实现穿孔的工艺,达到将正负电极引到同一面上的目的,特有无主栅设计减少遮光面积增加电池的电流密度,提升转化效率;异质结硅基电池是一种高效的光伏电池,一般采用高少子寿命的n型硅片,结合本征非晶硅钝化层和p型非晶硅掺杂层发射极得到异质的pn结结构,整个工序工艺温度较低(~200℃),可使用超薄硅片。但非晶硅膜层影响异质结电池对光的吸收,造成电流密度较低,mwt技术与异质结电池的结合可以相互补充,有利于获得更优的电性能结果。cn109473492a提到mwt技术要进行激光开孔,当结合异质结工艺后,在背面孔洞金属电极周边用激光刻蚀绝缘划线的方式使该孔洞金属电极区域和p型非晶硅薄膜及上面的透明导电膜(tco)电学隔离,阻止了和背面正电极区域的短路,从而实现这种mwt异质结硅太阳电池的生产制造。但激光隔离不可避免存在热量损伤,对电池钝化具有不利影响,导致电池效率降低,而且若要实现绝缘隔离需要较宽的刻线宽度,导致pn结失效面积较大,导致pn结有效面积降低。



技术实现要素:

解决上述技术问题,本发明提供一种mwt异质结电池的制备工艺方法,此方法可以提高正负电极tco的绝缘效果,降低漏电失效比例,提升良率,可以避免激光隔离背面正负电极时对硅基造成的损伤,提高mwt异质结电池的开压与转化效率。

本发明为一种mwt异质结电池结构,所述电池结构依次包括正面导电tco层、正面n型掺杂的非晶硅层、正面本征非晶硅层、单晶硅基底、背面本征非晶硅层、背面p型掺杂非晶硅层、背面tco导电层,正面为绒面结构,背面为抛光面。

进一步的,所述单晶硅基底为n型或者p型硅片。

进一步的,所述电池结构上开设孔,所述孔位置为电极点,包含正面电极和负面电极;所述正面电极为丝印低温银浆层,通过制绒前在硅片上制备的孔洞,汇聚贯穿到背面,背面电极为丝印银电极。

进一步的,所述背面电极包含正电极、负电极,背面的正负电极之间设有绝缘隔离。

作为本申请的一种优选实施方案,所述孔为直径0.2mm的圆形孔洞。

本申请还提供上述mwt异质结电池的制备方法,所述制备方法步骤如下:

步骤一,使用单晶或多晶或铸锭单晶硅片作为衬底;

步骤二,按照n×n孔洞点阵图形,在硅片上打孔,形成直径为0.1~0.3mm的圆形孔洞;

步骤三,将打孔后硅片进行双面抛光,硅片正面使用链式臭氧氧化或管式热氧氧化,在正面形成2-10nm氧化层;

步骤四,采用碱与制绒添加剂进行单面织构化;

步骤五,在硅片正背面使用pecvd沉积3-10nm本征非晶硅薄膜;

步骤六,在正面使用pecvd沉积n型掺杂非晶硅薄膜,膜厚为2-10nm;

步骤七,在背面使用pecvd沉积p型掺杂非晶硅薄膜,膜厚为2-10nm;

步骤八,使用pvd在正背面沉积导电薄膜tco,膜层厚度为50-100nm;

步骤九,在n×n个孔洞周围印刷tco蚀刻浆料,印刷浆料宽度0.05-0.3mm,在100-180℃条件下烘干刻蚀,将孔洞附近tco实现绝缘隔离,再用纯水冲洗并烘干;

步骤十,丝网印刷低温浆料,依次印刷堵孔电极,背面电极及正面栅线;经低于200℃温度烘干与固化。

进一步的,所述硅片为n型或者p型硅片。

与传统mwt电池相比,本发明提出的mwt异质结电池以及其制备工艺方法,具备如下有益效果:

此方法中背面采用抛光结构,提高非晶硅膜的钝化效果,提高电池开压;使用tco专用蚀刻浆料进行背面正负极间导电tco的绝缘代替激光绝缘,绝缘效果更优,降低漏电失效比例,提升良率,还可以避免激光绝缘隔离对硅基造成的损伤,提高mwt异质结电池的开压与转化效率。此方法中蚀刻浆料印刷宽度很小即可实现绝缘,减小了失效pn结的面积,有利于提高mwt异质结电池的电流密度,进而提升mwt异质结电池的效率与功率。

本申请电池结构背面印刷银栅线,通过银栅线进行背面电流的汇流导出,会比导电胶的导出效果好,银栅线电阻率低,传输损失小。

附图说明

为了更清楚地说明本发明中的技术方案,下面将对本发明中所需要使用的附图进行简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,可以根据这些附图获得其它附图。

图1:本发明提供的mwt异质结电池结构示意图。

具体实施方式

为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域的技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

实施例一:

实施例1:实验组

1.硅片:使用n型单晶硅片作为衬底

2.激光打孔:按照6×6孔洞点阵图形,在硅片上打孔,形成直径为0.2mm的圆形孔洞。

3.抛光与氧化:将打孔后硅片进行双面抛光,硅片正面使用管式热氧氧化,氧化温度180℃,氧气流量2000sccm,在正面形成5nm氧化层

4.制绒与清洗:采用碱与单面制绒添加剂(ts03)进行单面织构化,去除硅片表面的损伤层,降低光生载流子的复合速率;同时在硅片正面形成均匀绒面,可以起到陷光作用,提高对光的吸收;rca清洗提高硅片表面的洁净度。

5.本征非晶硅层沉积:在硅片正背面使用pecvd沉积5nm本征非晶硅薄膜

6.正面n型非晶硅沉积:在正面使用pecvd沉积n型掺杂非晶硅薄膜,膜厚为8nm

7.背面p型非晶硅沉积:在背面使用pecvd沉积p型掺杂非晶硅薄膜,膜厚为8nm

8.双面进行tco导电膜沉积:使用pvd在正背面沉积导电薄膜tco,膜层厚度为90nm

9.绝缘:在背面6×6个孔洞周围印刷tco(透明导电氧化)蚀刻浆料,印刷浆料宽度0.1mm,在150℃条件下烘干刻蚀,将孔洞附近tco实现绝缘隔离,纯水冲洗并烘干。

10.金属化:丝网印刷低温浆料,依次印刷堵孔电极,背面电极及正面栅线;经低于200℃温度烘干与固化,形成良好的欧姆接触。

实施例2:对比组

1.硅片:使用n型单晶硅片作为衬底

2.激光打孔:按照6×6孔洞点阵图形,在硅片上打孔,形成直径为0.2mm的圆形孔洞。

3.制绒与清洗:采用碱与常规制绒添加剂(ts01)进行双面织构化,去除硅片表面的损伤层,降低光生载流子的复合速率;同时在硅片正面形成均匀绒面,可以起到陷光作用,提高对光的吸收;rca清洗提高硅片表面的洁净度。

4.本征非晶硅层沉积:在硅片正背面使用pecvd沉积3nm本征非晶硅薄膜

5.正面n型非晶硅沉积:在正面使用pecvd沉积n型掺杂非晶硅薄膜,膜厚为6nm。

6.背面p型非晶硅沉积:在背面使用pecvd沉积p型掺杂非晶硅薄膜,膜厚为6nm。

7.双面进行tco导电膜沉积:使用pvd在正背面沉积导电薄膜tco,膜层厚度为85nm。

8.绝缘:在背面6×6个孔洞周围使用紫外激光对tco进行绝缘,绝缘宽度为1mm。

9.金属化:丝网印刷低温浆料,依次印刷堵孔电极,背面电极及正面栅线;经低于200℃温度烘干与固化,形成良好的欧姆接触。

将以上实验组与对比组电池进行测试对比,实验组电池漏电不良比例为0.2%,电池效率为24.8%,对比组漏电不良比例为0.8%,电池效率为24.3%,电池转换效率与良率有明显提升。实验组的产品漏电不良比例远小于对比组,其产品质量更好,因为采用本申请制备方法生产的实验组电池背面的使用tco专用蚀刻浆料进行背面正负极间导电tco的绝缘代替激光绝缘,避免了因激光的能量对硅基会造成的损伤,因激光会有瞬间高温,影响本征非晶层的钝化效果,不使用激光绝缘有利于硅基的性能,保证了良好的欧姆接触。

本申请中涉及到的英文释义为:

tco-透明导电氧化物

pecvd--等离子体增强化学的气相沉积

pvd--物理气相沉积。

本申请中所采用的tco专用蚀刻浆料为市场外采产品,并非申请人自行研发。

需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。另外,本申请实施例提供的上述技术方案中与现有技术中对应技术方案实现原理一致的部分并未详细说明,以免过多赘述。

对所公开的实施例的上述说明,使本领域技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1