半导体侧发射式激光器的引线框架封装及其制造方法与流程

文档序号:27685594发布日期:2021-12-01 01:11阅读:100来源:国知局
半导体侧发射式激光器的引线框架封装及其制造方法与流程

1.本发明涉及电子电路,并且更具体地,涉及用于半导体发射器的表面贴装封装。


背景技术:

2.图1a到图1c示出了用于侧发射式激光器阵列140的示例性的现有表面贴装设计(smd)封装100。例如,如图1b所示,当前的smd封装100具有贴装在例如印制电路板(pcb)或陶瓷的衬底120上的四个侧发射式半导体激光器140的阵列管芯。相对于封装100的整体高度,pcb或陶瓷衬底120可能相对较厚,例如,大约为整体封装高度的30%到50%。
3.多个引线键合焊盘146被附接到衬底120,并且多个键合引线144将激光器阵列管芯140电连接到引线键合焊盘146。引线键合焊盘可以连接到封装100底部的表面贴装焊盘170,其中通孔(未示出)提供引线键合焊盘146和表面贴装焊盘170之间的电连接。电子元件用例如环氧树脂的透明树脂150密封。当前的smd封装100对于一些应用来说可能会具有过高的电感和电阻,例如对于激光器必须快速放电和再充电的激光雷达(lidar)应用。因此,在工业中需要克服该领域中的不足。


技术实现要素:

4.本发明的实施例提供了一种半导体侧发射式激光器的引线框架封装及其制造方法。简要地说,本发明涉及一种用于侧视半导体激光器的表面贴装激光器的封装。该封装具有基本上平坦的引线框架,该引线框架具有元件侧和板附接侧。元件侧具有导电管芯附接焊盘和多个引线键合焊盘。激光器管芯具有阳极表面和阴极表面,其中阴极表面被贴装到导电管芯附接焊盘。多个键合引线横跨在激光器管芯的阳极表面和引线键合焊盘之间。模制件包围激光器管芯和在引线框架的元件侧上的多个键合引线,并且还位于导电管芯附接焊盘和在引线框架的平面内的每个引线键合焊盘之间。导电管芯附接焊盘具有在引线框架上的金属化层,并且每个键合焊盘都具有在引线框架上的金属化层。
5.通过以下附图和详细的描述,本发明的其他系统、方法和特征对于本领域的普通技术人员来说将是显而易见的或将变得显而易见。旨在将所有这样的附加系统、方法和特征包括在本说明书中、包括在本发明的范围内并且由所附权利要求保护。
附图说明
6.所包括的附图提供对本发明的进一步理解,并且附图包含在本说明书中并且构成本说明书的一部分。附图示出了本发明的实施例,并且与描述一起用于解释本发明的原理。
7.图1a以立体图示出了用于侧发射式激光器阵列的示例性的现有表面贴装设计(smd)封装的示意图。
8.图1b以俯视图示出了图1a的smd封装的示意图。
9.图1c以主视图示出了图1a的smd封装的示意图。
10.图2以立体图示出了半导体侧发射式激光器的引线框架封装的示例性第一实施例
的示意图。
11.图3a示出了图2的第一实施例的封装的自上而下的视图。
12.图3b以侧视图示出了图2的封装。
13.图3c以自上而下的视图示出了图2的引线框架的独立视图。
14.图4示出了图2的激光器阵列管芯的侧发射式激光二极管,该侧发射式激光二极管通过模制化合物发射激光束。
15.图5a示出了第一实施例下的引线框架的矩阵。
16.图5b示出了附接到图5a的一个引线框架的激光器管芯和键合引线。
17.图5c示出了附接有激光器管芯和引线键合的图5a的引线框架的矩阵。
18.图6是用于形成半导体侧发射式激光器的引线框架封装的方法的示例性实施例的流程图。
19.图7是附接有激光器管芯和引线键合的图5a的引线框架的3
×
10的阵列的示意图。
具体实施方式
20.以下定义对于用于解释应用于本公开的实施例的特征的术语是有用的,并且仅意味着定义本公开内的元素。
21.如在本公开内使用的,“基本上”是指“非常接近”或在正常制造的公差范围内。例如,基本上平行的表面可以在可接受的公差范围内平行,或者基本上平坦的表面是指在规定的平坦度范围内平坦。类似地,基本上未受干扰的激光束是指没有显著或明显地改变(扭曲或转向)超过可接受的操作公差范围的激光束。
22.如在本公开中使用的,表面贴装技术(surface

mount technology,smt)是指将电气元件直接贴装到印制电路板(printed circuit board,pcb)的表面上。以这种方式贴装的电气元件被称为表面贴装器件(surface

mount device,smd)。smd可以与通过在电路板的孔中插入元件管脚以将元件贴装到pcb的通孔技术结构形成对比,这在很大程度上是因为smt使得能够增加制造自动化。
23.如在本公开中使用的,“模制件”是指具有高压力的经转移模制的密封化合物,并且用于包围smt电子封装的电子元件。与此相比,封装是指覆盖化合物,例如电子元件上的自流平环氧灌封。
24.现在将详细参考本发明的实施例,实施例的示例在附图中示出。在可能的情况下,在附图和说明书中使用相同的附图标记来表示相同或类似的部件。
25.本发明的示例性实施例包括用于制造用于一个或多个侧发射式激光器的smd封装的器件和方法。如图2所示,本发明的示例性第一实施例200包括半导体侧发射式激光器管芯240,该半导体侧发射式激光器管芯与以前的封装相比,具有非常低的电感和非常低的热阻、具有非常低的材料和制造成本。第一示例性实施例包括四通道激光器管芯240、金或铝引线和模制包围件250,该四通道激光器管芯被附接在非常薄的引线框架220上、该金或铝引线将管芯电连接到薄的金属引线框架的引线键合焊盘246。
26.如图4所示,在第一实施例下,引线框架220由镍制成,并在引线框架的顶面221上镀有银,用于金引线键合和激光器管芯附接。引线框架的底面222具有镀金,用于将封装200贴装在例如pcb(未示出)上。通常,封装200的底面254与引线框架的底面222基本上是共面
的。在第一实施例下,引线框架的厚度大约为65微米,以实现非常低的电感和非常低的热阻。在替代实施例中,引线框架的厚度可以大约介于50微米到250微米之间。激光器管芯通过导热和导电材料241(例如焊料或环氧树脂)被附接到在金属引线框架220上的导电管芯焊盘248(图3c)。
27.封装200的替代实施例可以具有单侧发射式激光二极管,而不是激光二极管阵列管芯240,或者可以具有拥有不同数量(例如,两个、八个、或十六个或更多个激光二极管)的激光二极管的阵列管芯240。
28.图2示出了smd封装200的示例性第一实施例,该smd封装具有激光器阵列管芯240,该激光器阵列管芯240具有四个侧发射式激光二极管,每个激光二极管具有侧孔242,该侧孔用于沿着基本上平行于引线框架220的贴装表面的方向发射激光束。引线框架220用作激光器管芯240和相关电路的载体。
29.封装200包括模制包围件250,例如为围绕激光器管芯240和引线框架220并对由激光器管芯阵列240发射的光是透明的模制材料。优选地,模制材料良好地粘附到激光器管芯以及引线键合焊盘和引线框架焊盘上,其具有的刚性足以抵抗例如温度循环测试、进行分割处理(稍后描述)和表面抛光。例如,理想的模制包围材料在室温(23℃)下具有大于邵氏d70的硬度,并且对于波长为905nm的光具有大于90%的透光率。特别地,模制件从封装200的顶部252延伸到封装200的底面254,使得模制件围绕引线框架220的除了底面222之外的所有的暴露表面。
30.与激光器管芯240相关联的附加电路也可以位于由模制件250包围的引线框架220上,例如,在引线框架220上作为金属化层形成的多个引线键合焊盘246,以及将激光器阵列管芯240电连接到引线键合焊盘246的多个键合引线244。在替代实施例中,其他电路元件可以被包围在模制件250内,例如电容器、驱动器电路等。
31.图3a示出了第一实施例的封装200的俯视图。图3a以俯视图示出了封装200。图3b以侧视图示出了封装200。图3c示出了引线框架220的独立视图,该视图指示出了贴装表面246、248。
32.如图4所示,激光器阵列管芯240的侧发射式激光二极管被定向为发射穿过模制件250的激光束440,使得激光束通过模制件250的出口表面260离开封装200。
33.图6是用于形成半导体侧发射式激光器的引线框架封装的方法600的示例性实施例的流程图。应当注意,流程图中的任何过程描述或方框都应当被理解为表示包括用于在过程中实施特定地逻辑功能的一个或多个指令的模块、部段、代码部分或步骤,并且在本发明的范围内包括替代实施方式,即,根据所涉及的功能,功能可以按照与所示或所讨论的不同的顺序(包括基本上同时或按相反的顺序)来执行,如本发明领域的技术人员所理解的那样。相对于图2的第一实施例,描述了图6的方法。
34.如方框610所示,具有多个引线键合焊盘246和管芯附接焊盘248的引线框架220被布置在临时载体上(未示出)。例如,引线框架220可以经由可移除的粘合剂可移除地被附接到临时载体。替代地,临时载体本身可以是可移除的粘合材料的条带。在另一替代实施例中,220的底面可以涂覆有掩模材料,该掩模材料在制造过程期间被移除,以暴露在引线框架220的底部处的引线框架220的材料,和/或,热和/或导电金属化层。如方框620所示,激光器阵列管芯240的阴极(底部)部分被贴装到管芯附接焊盘248。例如,通过使用导电和导热
材料,激光器阵列管芯240的阴极可以被贴装到管芯附接焊盘248。如方框630所示,横跨侧发射式激光器阵列管芯240的阳极(顶部)部分的多个键合引线244被附接到多个引线键合焊盘246。如方框640所示,在预定温度和预定压力下,通过使用透明的模制化合物250,激光器管芯240被模制到引线框架上和引线框架周围。如方框650所示,模制化合物250被固化为硬质固体。如方框660所示,临时载体被移除,因此封装200的底面处的引线框架220基本上与模制件250的底面共面。
35.对于制造业,如图5a所示,引线框架220可以是引线框架的矩阵或阵列500的一个部分,便于一次共同制造多个封装200。为了清楚起见,图5a示出了3
×
5的矩阵,但是实际上,矩阵500可以大得多,例如,矩阵500可以是20
×
63矩阵的金属引线框架条带矩阵,其中,每条带产出1260个单元。
36.回到图6,如方框670所示,单个引线框架封装可以被从多个引线框架封装中分割。如方框680所示,单个引线框架封装的边缘表面被抛光。
37.如图5b所示,激光器管芯240被附接到每个引线框架部分220。这里,通过使用导电和导热材料,激光器管芯240(图2)的底部(阴极)被附接到引线框架220上。金键合引线244(图2)被附接到激光器管芯240的阳极(顶部),以连接引线框架220(图2)上的引线键合焊盘246(图2)。为了清楚起见,图5b示出了单个激光器管芯的附接,但是一般来说,如图5c所示,在同一制造步骤期间,激光器管芯和引线键合被附接到所有的引线框架部分。例如使用转移模制机,使用透明的模制化合物,在预定温度和预定压力下,激光器管芯240被模制到引线框架220上。在预定温度和时间周期下,模制化合物被固化为硬质固体。图7示出了示例性的3
×
10的矩阵700。
38.在模制化合物被固化之后,封装200可以被分割为单独的单元。在分割之后,模制件的至少一个表面260(例如,模制件的与激光器阵列管芯240的发射器相邻的出口表面260)可以被抛光,以允许来自激光器阵列管芯240的激光束出射。
39.与以前的半导体激光器封装100(图1a

图1c)相比,本实施例具有很多优点。例如,本实施例的封装200可以远小于以前的封装100。通常,以前的用于pcb衬底上的4通道激光器的封装100具有大约为3.5mm
×
2.0mm的覆盖区域(footprint area)和1.65mm的高度。与此相比,在本实施例下,在引线框架封装200上的4通道激光器封装可以具有2.6mm
×
1.7mm,即4.4mm2的覆盖面积,与以前封装的7.0mm2的覆盖面积相比,即为以前封装的覆盖面积的63%。封装200具有大约为0.60mm的高度,与以前封装100的1.65mm的高度相比,即为以前封装100的高度的36%。
40.由于本实施例封装200的引线框架220远薄于以前的封装100的pcb或陶瓷衬底120,在本实施例下,较薄的引线框架220必然导致激光器管芯240与主pcb(未示出)之间的电连接的距离短于以前的封装中的激光器管芯140与主pcb之间的电连接的距离。与本实施例的封装200相比,以前的封装100的较长的电连接距离导致较大的电感和热阻。以前的封装100的热阻大约至少为20℃/w,而本实施例下的封装200的热阻可以大约小于5℃/w,与以前的封装100相比,即小于以前的封装的热阻的25%。实际上,对于本实施例的封装200,这些可以导致更高的可靠性和更长的激光器寿命。
41.此外,由于在当前的实施例下的封装200的电连接距离较短,因此电感可以减小,例如,从大约大于1.3nh减小到小于0.3nh,即小于以前的封装100的电感的25%。这可以促
进现有的封装的激光器性能的改进,例如,更短的激光脉冲宽度。
42.此外,与以前的封装100相比,例如,通过省去pcb衬底120的制造、使用较便宜的元件以及由于尺寸较小而总体上使用的材料较少,可以显著地节省用于制造本实施例的封装的成本。引线框架的设计使得能够在很短的周期内制作成百上千个小封装。
43.总之,对于本领域技术人员来说,显而易见的是,在不脱离本发明的范围或精神的情况下,能够对本发明的结构进行不同的修改和变化。鉴于前述内容,本发明旨在覆盖本发明的修改和变型,只要这些修改和变型落在所附权利要求及其等同物的范围内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1