一种高性能单光子像素spad结构的制作方法

文档序号:26588113发布日期:2021-09-10 19:58阅读:424来源:国知局
一种高性能单光子像素spad结构的制作方法

1.本发明属于集成电路技术领域,特别是涉及一种高性能单光子像素spad结构。


背景技术:

2.spad物理结构是一个反向的pn结,工作状态下,其在阴极n和阳极p两端加很高的反向偏压,让二极管工作在盖革模式。当光子在其耗尽区被吸收时,由于高的电场强度发生载流子倍增效应,使pn结反向电阻瞬间降低,产生很高的反向电流。而常用的spad结构中,反向偏压在15v以上,这导致spad不容易兼容标准cmos电路,同时高的电压需要强的隔离手段,这导致单个像素尺寸巨大,不能提高探测的空间分辨率,严重限制了其在手机等微小型设备中的应用。


技术实现要素:

3.本发明提供了一种高性能单光子像素spad结构,解决了以上问题。
4.为解决上述技术问题,本发明是通过以下技术方案实现的:
5.本发明的一种高性能单光子像素spad结构,包括硅表面、阴极、阳极,所述阴极上加高压,所述阳极上接地;
6.在所述硅表面进行多次掺杂不同性质的杂质,并调制为:将n型杂质和p型杂质的离子注入能量,形成多个pn结背靠背,最后通过并联的方式,将多个反偏的pn结并联;
7.任意两相互接触的pn结形成空间耗尽区,同时在垂直方向上,所述p型杂质采用深p阱注入引出并接入至接地电压上,所述n型杂质采用深n阱注入引出并接于高压上;所述深p阱注入和深n阱注入采用多次掺杂,使信号从深处能够有效引出,并且使任意两pn结均为并联,从而在纵向上有效增加空间耗尽区深度;
8.所述阴极和深n阱注入与p型杂质之间使用外延层低浓度掺杂做隔离;所述阳极和深p阱注入与n型杂质之间使用外延层低浓度掺杂做隔离。
9.进一步地,所述n型杂质采用的种类为磷或者砷;所述p型杂质采用的种类为硼或者铟。
10.进一步地,所述硅表面下部通过改变离子注入能量,在硅表面下部形成n

p

n

p

n形式的掺杂组分重复的结构。
11.本发明相对于现有技术包括有以下有益效果:
12.1、当添加反偏压时,只要其中任何一个pn结发生雪崩,便可产生一个有效事件;多个并联的耗尽区在不增加击穿电压情况下,有效的扩展了耗尽区的深度,提高了探测效率。
13.2、由于在深处增加耗尽区,因此在p

rich和n

rich中产生的光电荷可以迅速扩散进入相邻耗尽区,减少光电子的扩散时间,从而降低时间抖动。
14.3.由于采用多次调制,每个pn结不需要做的很宽,可有效降低spad雪崩电压。
15.当然,实施本发明的任一产品并不一定需要同时达到以上所述的所有优点。
附图说明
16.为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
17.图1为本发明一种高性能单光子像素spad结构具体实施例1的结构截面示意图;
18.图2为本发明一种高性能单光子像素spad结构具体实施例2的结构截面示意图;
19.图3为现有传统的psad像素图形结构截面示意图;
20.图4为现有传统的psad像素图形结构顶视图;
21.附图中,各标号所代表的部件列表如下:
22.n+

阴极,p+

阳极,bv

高压,gnd

接地,dnw

深n阱注入,dpw

深p阱注入,epi

外延层。
具体实施方式
23.下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
24.工业中常用的spad结构如图3

4所示,在硅表面下注入比较浅的n型替位式杂质,在其更深处掺入p型替位式杂质,在两种掺杂界面的附近形成了空间耗尽区。其在纵向尺寸xd:
[0025][0026]
其中,q为单位电荷量,na为n型杂质的浓度,nd为p型杂质的浓度,ε0为真空介电常数,ε
r
为硅的相对介电常数,vbias为加载pn结两端电压,vdep为耗尽区内部空间电场的电压降。
[0027]
工作模式下,在n+加高压bv,一般高于15v,在gnd接到地。当光子在耗尽区被收集而导致耗尽区雪崩击穿,瞬间产生很大电流,产生电流脉冲。此区域吸收时才代表一次有效的单光子事件,同时耗尽区比较薄,导致像素对光子探测效率很低,这严重制约着spad的感光性能。通常为了提高探测效率,降低富掺杂p型区域p

rich区的n型杂质掺杂浓度,从而增加耗尽区宽度,但这又需要高的击穿电压使pn结维持在盖革模式,这种结构导致探测效率和工作电压产生了不可调和的矛盾。同时在p型外延层p

epi中吸收的光子后扩散到到耗尽区,然后迅速发生雪崩击穿,由于扩散时间的增加导致测量时产生时间抖动或事件延迟,严重影响传感器探测的时间精度;
[0028]
如图1

2所示,针对传统spad像素结构,探测效率和雪崩电压相矛盾问题,本发明提出一种高性能单光子像素spad结构,其结构包括硅表面、阴极n+、阳极p+,阴极n+上加高压bv,阳极p+上接地gnd;
[0029]
在硅表面进行多次掺杂不同性质的杂质,并调制为:将n型杂质和p型杂质的离子
注入能量,形成多个pn结背靠背,最后通过并联的方式,将多个反偏的pn结并联;
[0030]
任意两相互接触的pn结形成空间耗尽区,同时在垂直方向上,p型杂质采用深p阱注入dpw引出并接入至接地gnd电压上,n型杂质采用深n阱注入dnw引出并接于高压bv上;深p阱注入dpw和深n阱注入dnw采用多次掺杂,使信号从深处能够有效引出,并且使任意两pn结均为并联,从而在纵向上有效增加空间耗尽区深度;同时多重掺杂,使有效耗尽区厚度增加,在体硅中产生的光电子可以向上或向下经过短距离扩散,很快进入耗尽区,有效降低时间抖动。同时为了尽可能让发生击穿的位置发生在耗尽区,阴极n+和深n阱注入dnw与p型杂质注入层p

rich之间用epi低浓度掺杂做隔离,阳极p+和深p阱注入dpw与n型杂质注入层n

rich之间用epi低浓度掺杂做隔离;
[0031]
阴极n+和深n阱注入dnw与p型杂质之间使用外延层epi低浓度掺杂做隔离;阳极p+和深p阱注入dpw与n型杂质之间使用外延层epi低浓度掺杂做隔离。
[0032]
其中,n型杂质采用的种类为磷或者砷;p型杂质采用的种类为硼或者铟。
[0033]
其中,硅表面下部通过改变离子注入能量,在硅表面下部形成n

p

n

p

n形式的掺杂组分重复的结构。
[0034]
具体实施例1:
[0035]
如图1所示,在实际工艺中,硅表面直接和二氧化硅接触,这导致表面硅原子的共价键失配,从而产生了大量的暗电流,导致spad在没有光照条件下,也容易发生击穿,即暗计数率很高,本实例采用表面p型掺杂结构;本该结构形成了p

n

p

n型的空间掺杂结构,由于硅表面被p型掺杂填充,硅断了的悬挂键被p型杂质捕获,从而降低了暗电流。
[0036]
具体实施例2:
[0037]
如图2所示,上述应用中采用p

epi做隔离,低浓度掺杂pn结构隔离使得耗尽区宽度比较宽,不利于缩小spad的尺寸,本例采用n型杂质和p型杂质掺杂做隔离。其中n型杂质的掺杂浓度要低于n

rich,而p型杂质的掺杂要低于p

rich,n型杂质和p型杂质的浓度都高于p型外延层p

epid的浓度;同时硅表面通过挖槽做sti隔离;其中,本具体实施例中,n型采用磷,p型采用硼注入,第一层n型杂质注入层n

rich1,第二层n型杂质注入层n

rich2以及第三层n型杂质注入层n

rich3的能量分别为:40kev1700kev和3000kev;p

rich1 p

rich2能量分别为:300kev和800kev。
[0038]
具体实施例1与具体实施例2的区别在于:
[0039]
具体实施例1和具体实施例2采用不同的隔离方式,耗尽区都是两对三个;结果就是耗尽区宽度具体实施例2比具体实施例1多两倍,具体实施例1相对于现有技术的宽度也增加了;产生的效果就是提高探测效率,因为具体实施例2的纵向的耗尽区宽度增加了;所以能吸收光的空间区域增加了,即提高探测效率;降低时间抖动,不在耗尽区的都是扩散而来在耗尽区可以瞬间击穿,所以这种的时间抖动更小。
[0040]
有益效果:
[0041]
采用本发明的结构具有以下优势:
[0042]
1、当添加反偏压时,只要其中任何一个pn结发生雪崩,便可产生一个有效事件;多个并联的耗尽区在不增加击穿电压情况下,有效的扩展了耗尽区的深度,提高了探测效率。
[0043]
2、由于在深处增加耗尽区,因此在p

rich和n

rich中产生的光电荷可以迅速扩散进入相邻耗尽区,减少光电子的扩散时间,从而降低时间抖动。
[0044]
3.由于采用多次调制,每个pn结不需要做的很宽,可有效降低spad雪崩电压。
[0045]
以上公开的本发明优选实施例只是用于帮助阐述本发明。优选实施例并没有详尽叙述所有的细节,也不限制该发明仅为所述的具体实施方式。显然,根据本说明书的内容,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本发明的原理和实际应用,从而使所属技术领域技术人员能很好地理解和利用本发明。本发明仅受权利要求书及其全部范围和等效物的限制。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1