自支撑氮化镓衬底的制作方法与流程

文档序号:28377260发布日期:2022-01-07 22:15阅读:717来源:国知局
自支撑氮化镓衬底的制作方法与流程

1.本发明属于半导体制造领域,特别是涉及一种自支撑氮化镓衬底的制作方法。


背景技术:

2.以氮化镓(gan)及其合金为代表的第三代半导体材料是近十几年来国际上倍受重视的新型半导体材料,它具有禁带宽度大、电子饱和漂移速度高、介电常数小、导热性能好、结构稳定等诸多优异性能,在光电子和微电子技术领域都具有巨大的应用前景。光电子领域中,由于iii族氮化物的禁带宽度在0.7-6.2ev范围内连续可调,覆盖了从红光到紫外的波段,可制作绿色、蓝色乃至紫外波段发光器件以及白光照明。此外,最近兴起的紫外光led在丝网印刷、聚合物固化、环境保护也显示了特殊的用途,极大的激发了研究人员的研究兴趣。gan激光器在信息存储领域也大有作为,还可应用在医疗诊断、海底探潜和通讯等各个方面。
3.gan体单晶的制备比较困难,难以得到大尺寸和质量比较好的体单晶gan衬底,所以gan的外延生长通常是以异质外延的方式进行的。但理论和实验都表明,采用gan作衬底同质外延器件时,器件性能得到大幅度提高。因此制造自支撑gan衬底成为人们关注的焦点。
4.目前大面积的gan自支撑衬底通常都是通过在异质衬底上气相生长gan厚膜,然后将原异质衬底分离后得到的。其中蓝宝石衬底是最常用的衬底。为了得到自支撑衬底,必须将蓝宝石衬底去除。蓝宝石质地坚硬,化学性质稳定,因此很难通过化学腐蚀或机械打磨的方法去除。目前常使用激光剥离的方法将gan和蓝宝石衬底分离。但是激光剥离技术成本昂贵;并且在激光剥离的过程中,界面处gan高温分解后产生的高压气体容易对制备的gan自支撑衬底造成损伤,轻则在gan自支撑衬底上产生大量的位错和微裂纹从而影响以后器件的质量,重则使gan自支撑衬底完全碎裂从而大大降低成品率。
5.总的来说,异质材料外延进行外延生长时,由于晶格失配和热失配,会造成异质外延氮化镓厚度受限,同时解离氮化镓单晶的工艺难度较大,在大尺寸蓝宝石/氮化镓厚膜复合衬底(hvpe一次外延片)上表现尤其明显。


技术实现要素:

6.鉴于以上所述现有技术的缺点,本发明的目的在于提供一种自支撑氮化镓衬底的制作方法,用于解决现有技术中厚度较大的氮化镓外延层与蓝宝石衬底存在较大的晶格失配和热失配而导致异质外延氮化镓厚度受限的问题。
7.为实现上述目的及其他相关目的,本发明提供一种自支撑氮化镓衬底的制作方法,所述制作方法包括:1)提供一复合衬底,所述复合衬底包括蓝宝石衬底以及形成于所述蓝宝石衬底上的氮化镓薄膜;2)于所述氮化镓薄膜上形成临时粘结层;3)提供一转移衬底,将所述转移衬底通过所述临时粘结层键合于所述复合衬底上;4)通过激光剥离工艺剥离所述蓝宝石衬底,显露出所述氮化镓薄膜;5)提供一承接衬底,将所述承接衬底与所述氮化镓
薄膜进行弱键合,并使所述临时粘结层失效以将所述转移衬底从所述氮化镓薄膜上剥离;6)在所述氮化镓薄膜上外延生长氮化镓外延层,所述氮化镓外延层生长至一定厚度后,通过所述氮化镓薄膜及所述氮化镓外延层与所述承接衬底之间晶格失配应力和热失配应力,使所述氮化镓薄膜与所述承接衬底之间的弱键合状态失效,以实现所述氮化镓薄膜与所述承接衬底之间的分离,获得自支撑氮化镓衬底。
8.可选地,步骤5)包括:于所述承接衬底表面形成第一金属栅格,于所述氮化镓薄膜表面形成第二金属栅格,将所述第一金属栅格与所述第二金属栅格层叠后,通过键合工艺使所述第一金属栅格与所述第二金属栅格相互扩散以使所述承接衬底与所述氮化镓薄膜弱键合,同时所述键合工艺使所述临时粘结层失效而将所述转移衬底从所述氮化镓薄膜上剥离。
9.可选地,所述键合工艺的温度低于所述第一金属栅格与所述第二金属栅格的熔化温度。
10.可选地,所述第一金属栅格的材料包括ti、cr及mo中的一种,所述第二金属栅格的材料包括ti、cr及mo中的一种。
11.可选地,于所述承接衬底表面形成第一金属栅格包括:于所述承接衬底表面形成光刻胶层,通过曝光工艺和显影工艺后于所述承接衬底上形成栅格槽状的光刻图形;通过蒸镀工艺及金属剥离工艺于所述承接衬底表面形成第一金属栅格;于所述氮化镓薄膜表面形成第二金属栅格包括:于所述氮化镓薄膜表面形成光刻胶层,通过曝光工艺和显影工艺后于所述氮化镓薄膜上形成栅格槽状的光刻图形;通过蒸镀工艺和金属剥离工艺于所述氮化镓薄膜表面形成第二金属栅格。
12.可选地,所述第一金属栅格与所述第二金属栅格的形状和大小相同,且在所述承接衬底与所述氮化镓薄膜进行键合时,所述第一金属栅格与所述第二金属栅格对准重合。
13.可选地,步骤2)通过旋涂工艺于所述氮化镓薄膜上形成临时粘结层,所述临时粘结层包括环氧树脂及高温蜡中的一种。
14.可选地,所述转移衬底、承接衬底的材料包括蓝宝石、硅及石英中的一种。
15.可选地,步骤4)还包括对显露的所述氮化镓薄膜表面进行酸洗的步骤,以去除所述氮化镓薄膜表面残余的金属镓。
16.可选地,步骤6)通过氢化物气相外延工艺在所述氮化镓薄膜上外延生长氮化镓外延层。
17.如上所述,本发明的自支撑氮化镓衬底的制作方法,具有以下有益效果:
18.本发明通过承接衬底和金属栅格,将原本的蓝宝石衬底与氮化镓外延层之间由化学键强结合状态改变为由金属栅格实现的弱键合状态,使得氮化镓薄膜与承接衬底之间处于弱连接状态,从而在氢化物气相外延工艺生长氮化镓外延层时减弱承接衬底的晶格束缚,可以使氮化镓外延层生长至较厚状态,并在一并厚度时,利用晶格失配应力和热失配应力,突破氮化镓薄膜与承接衬底之间的弱连接状态,实现氮化镓外延层与承接衬底的分离,仅需通过一次性外延生长便可获得厚度较大的氮化镓外延层。本发明可有效克服晶格失配和热失配而导致异质氮化镓外延层厚度受限的缺陷,提高自支撑氮化镓衬底的质量,降低自支撑氮化镓衬底的制作成本。
附图说明
19.图1~图9显示为本发明的自支撑氮化镓衬底的制作方法各步骤所呈现的结构示意图。
20.元件标号说明
21.101
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
蓝宝石衬底
22.102
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
氮化镓薄膜
23.103
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
转移衬底
24.104
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
临时粘结层
25.105
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
承接衬底
26.106
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
第一金属栅格
27.107
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
第二金属栅格
28.108
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
氮化镓外延层
具体实施方式
29.以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
30.如在详述本发明实施例时,为便于说明,表示器件结构的剖面图会不依一般比例作局部放大,而且所述示意图只是示例,其在此不应限制本发明保护的范围。此外,在实际制作中应包含长度、宽度及深度的三维空间尺寸。
31.为了方便描述,此处可能使用诸如“之下”、“下方”、“低于”、“下面”、“上方”、“上”等的空间关系词语来描述附图中所示的一个元件或特征与其他元件或特征的关系。将理解到,这些空间关系词语意图包含使用中或操作中的器件的、除了附图中描绘的方向之外的其他方向。此外,当一层被称为在两层“之间”时,它可以是所述两层之间仅有的层,或者也可以存在一个或多个介于其间的层。
32.在本技术的上下文中,所描述的第一特征在第二特征“之上”的结构可以包括第一和第二特征形成为直接接触的实施例,也可以包括另外的特征形成在第一和第二特征之间的实施例,这样第一和第二特征可能不是直接接触。
33.需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图示中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。
34.如图1~图9所示,本实施例提供一种自支撑氮化镓衬底的制作方法,所述制作方法包括:
35.如图1所示,首先进行步骤1),提供一复合衬底,所述复合衬底包括蓝宝石衬底101以及形成于所述蓝宝石衬底101上的氮化镓薄膜102,在一实施例中,所述氮化镓薄膜102的厚度为4.5μm。
36.如图2所示,然后进行步骤2),于所述氮化镓薄膜102上形成临时粘结层104和步骤
3),提供一转移衬底103,将所述转移衬底103通过所述临时粘结层104键合于所述复合衬底上。
37.在一个实施例中,步骤2)通过旋涂工艺于所述氮化镓薄膜102上形成临时粘结层104,所述临时粘结层104包括环氧树脂及高温蜡中的一种。例如,所述高温蜡的熔化温度可以为大于100℃,其在100℃以下为具有粘性的固态状态,在高于熔化温度时,其会部分熔化或全部熔化或分解碳化而失去粘性。
38.在一个实施例中,所述转移衬底103的材料包括蓝宝石、硅及石英中的一种。例如,在本实施例中,所述转移衬底103的材料可以为蓝宝石。所述转移衬底103的形状和尺寸与所述蓝宝石衬底101完全相同。
39.如图3所示,然后进行步骤4),通过激光剥离工艺剥离所述蓝宝石衬底101,显露出所述氮化镓薄膜102,所述氮化镓薄膜102外露的面为n面。
40.在一个实施例中,通过激光从所述蓝宝石衬底101一面照射,从而将所述蓝宝石衬底101与所述氮化镓薄膜102剥离。
41.在一个实施例中,步骤4)还包括对显露的所述氮化镓薄膜102表面进行酸洗的步骤,以去除所述氮化镓薄膜102表面残余的金属镓。
42.如图4~图6所示,然后进行步骤5),提供一承接衬底105,将所述承接衬底105与所述氮化镓薄膜102进行弱键合,并使所述临时粘结层104失效以将所述转移衬底103从所述氮化镓薄膜102上剥离。
43.在一个实施例中,步骤5)包括:
44.如图4所示,首先进行步骤5-1),于所述承接衬底105表面形成第一金属栅格106。
45.具体地,于所述承接衬底105表面形成第一金属栅格106包括:首先,通过旋涂工艺于所述承接衬底105表面形成光刻胶层,然后通过曝光工艺和显影工艺后于所述承接衬底105上形成栅格槽状的光刻图形;接着,通过蒸镀工艺于所述承接衬底105和光刻图形表面形成第一金属覆层,通过金属剥离工艺,即同时去除所述光刻图形和其上的金属覆层,形成凸起状的第一金属栅格106。
46.在一个实施例中,所述键合工艺的温度低于所述第一金属栅格106的熔化温度。例如,所述第一金属栅格106的材料包括ti、cr及mo中的一种。
47.如图5所示,然后进行步骤5-2),于所述氮化镓薄膜102表面形成第二金属栅格107。
48.具体地,于所述氮化镓薄膜102表面形成第二金属栅格107包括:通过旋涂工艺于所述氮化镓薄膜102表面形成光刻胶层,通过曝光工艺和显影工艺后于所述氮化镓薄膜102上形成栅格槽状的光刻图形;通过蒸镀工艺于所述氮化镓薄膜102和光刻图形表面形成第二金属覆层,通过金属剥离工艺,即同时去除所述光刻图形和其上的金属覆层,形成凸起状的第二金属栅格107。
49.在一个实施例中,所述键合工艺的温度低于所述第二金属栅格107的熔化温度。例如,所述第二金属栅格107的材料包括ti、cr及mo中的一种。
50.所述金属栅格106及金属栅格107的材料可以相同或不同。
51.如图6所示,最后进行步骤5-3),将所述第一金属栅格106与所述第二金属栅格107层叠后,通过键合工艺使所述第一金属栅格106与所述第二金属栅格107相互扩散以使所述
承接衬底105与所述氮化镓薄膜102弱键合,同时所述键合工艺使所述临时粘结层104失效而将所述转移衬底103从所述氮化镓薄膜102上剥离。
52.例如,在一个实施例中,所述临时粘结层104可以为高温蜡,其在100℃以下为具有粘性的固态状态,在高于熔化温度时,其会部分熔化或全部熔化或分解碳化而失去粘性。所述键合温度一方面低于所述第一金属栅格106和所述第二金属栅格107的熔化温度,以避免所述第一金属栅格106和所述第二金属栅格107互溶造成过高的键合强度,该键合温度仅使其在固态状态下相互扩散而实现弱连接;另一方面,所述键合温度高于所述高温蜡的熔化温度,以使其自动失效,比如碳化,从而实现所述转移衬底103与所述氮化镓薄膜102之间的剥离。本方案可以节省转移衬底103的额外剥离步骤,大大降低工艺时间和工艺成本。
53.如图7~图9所示,最后进行步骤6),在所述氮化镓薄膜102上外延生长氮化镓外延层108,所述氮化镓外延层108生长至一定厚度后,通过所述氮化镓薄膜102及所述氮化镓外延层108与所述承接衬底105之间晶格失配应力和热失配应力,使所述氮化镓薄膜102与所述承接衬底105之间的弱键合状态失效,以实现所述氮化镓薄膜102与所述承接衬底105之间的分离,获得自支撑氮化镓衬底。
54.在一个实施例中,所述第一金属栅格106与所述第二金属栅格107的形状和大小相同,且在所述承接衬底105与所述氮化镓薄膜102进行键合时,所述第一金属栅格106与所述第二金属栅格107对准重合。在该键合过程中,可以保证仅位于所述光刻图形顶面的金属之间的扩散连接,使承接衬底105与所述氮化镓薄膜102的连接强度较弱,同时,由于金属栅格具有一定的高度,键合后可能会在金属栅格之间形成空腔,从而在氢化物气相外延工艺生长氮化镓外延层108时减弱承接衬底105的晶格束缚,可以使氮化镓外延层108生长至较厚状态,并在一定厚度时,利用晶格失配应力和热失配应力,突破氮化镓薄膜102与承接衬底105之间的弱连接状态,实现氮化镓薄膜102与承接衬底105的分离。本方案可以使所述氮化镓薄膜102与所述承接衬底105自动剥离,大大降低工艺成本。
55.在一个实施例中,步骤6)通过氢化物气相外延工艺在所述氮化镓薄膜102上外延生长氮化镓外延层108。
56.在一个实施例中,还包括对所述氮化镓外延层108进行研磨或/及清洗的步骤,以获得表面质量良好的氮化镓外延层108,以获得高质量的自支撑氮化镓衬底。
57.如上所述,本发明的自支撑氮化镓衬底的制作方法,具有以下有益效果:
58.本发明通过承接衬底105和金属栅格,将原本的蓝宝石衬底101与氮化镓外延层108之间由化学键强结合状态改变为由金属栅格实现的弱键合状态,使得氮化镓薄膜102与承接衬底105之间处于弱连接状态,从而在氢化物气相外延工艺生长氮化镓外延层108时减弱承接衬底105的晶格束缚,可以使氮化镓外延层108生长至较厚状态,并在一定厚度时,利用晶格失配应力和热失配应力,突破氮化镓薄膜102与承接衬底105之间的弱连接状态,实现氮化镓外延层108与承接衬底105的分离,仅需通过一次性外延生长便可获得厚度较大的氮化镓外延层108。
59.所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。
60.上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完
成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1