一种薄膜太阳电池及其制备方法

文档序号:29742706发布日期:2022-04-21 19:50阅读:116来源:国知局
一种薄膜太阳电池及其制备方法

1.本发明属于光伏技术领域,特别涉及一种薄膜太阳电池及其制备方法。


背景技术:

2.太阳能电池利用光生伏特效应可直接将太阳能转化为电能,是太阳能的有效利用技术,可缓解人们日常生产和生活对电能不断增加的需求。太阳能电池的工作原理是:光吸收层在光照下产生电子-空穴对,在两种半导体材料构成的p-n结的内建电场作用下分离,产生载流子,经由载流子传输层移向电极,外接负载后形成回路。太阳能电池中,薄膜太阳电池(cigs)材料吸收系数高,抗辐射能力强,弱光性能好,无光致衰减,稳定,寿命长,是一种理想的光吸收材料。
3.但是cigs由于带隙限制和低的内建电场,难以实现光生载流子的有效分离和电荷的高效传输(shockley,w.and queisser,h.j.(1961)detailed balance limit of efficiency of pn junction solar cells.journal of applied physics,32,510-519.以及m.a.green,and s.p.bremner,“energy conversion approaches and materials for high-efficiency photovoltaics,”nature mater,vol.16,no.1,pp.23

34,2017.)。铁电光伏器件可产生带隙以上的光电压,但是传统铁电材料光学吸收系数小、带隙较大,导致短路电流密度低(yang sy,seidel j,byrnes sj,shafer p,yang ch,rossell md,et al.above-bandgap voltages from ferroelectric photovoltaic devices.nat nanotechnol.2010;5(2):143-7.),仍不能提供cigs光生载流子的有效分离和电荷的高效传输,光电转化效率低。


技术实现要素:

4.有鉴于此,本发明的目的在于提供一种薄膜太阳电池及其制备方法,本发明提供的薄膜太阳电池能够实现光生载流子的有效分离和电荷的高效传输,光电转化效率高。
5.为了实现上述发明的目的,本发明提供以下技术方案:
6.本发明提供了一种薄膜太阳电池,包括依次层叠设置的衬底、第一载流子传输层、p型光学吸收层、n型窗口层、铁电膜层、第二载流子传输层和金属栅电极层;
7.所述铁电膜层的材质包括batio3、knbo3、nanbo3或bifeo3。
8.优选的,所述第一载流子传输层和第二载流子传输层的材质独立地包括钼或透明导电氧化物;所述透明导电氧化物包括铝掺杂氧化锌、氟掺杂锡氧化物或锡掺杂铟氧化物;所述第一载流子传输层的厚度为750~880nm;所述第二载流子传输层的厚度为470~700nm。
9.优选的,所述p型光学吸收层的材质包括cu(in
1-x
ga
x
)(se,s)2、cu2basn(s
x
se
1-x
)4、cu2mnsn(s
x
se
1-x
)4或cu2znsn(s
x
se
1-x
)4,x的取值独立地为0~1;所述p型光学吸收层的厚度为1.5~2.5μm。
10.优选的,所述n型窗口层的材质包括cds、znmgo、zno、zns或cdzns;所述n型窗口层
的厚度为300~400nm。
11.优选的,所述金属栅电极层的材质包括ag、au或ni-al-ni;所述金属栅电极层的厚度为130~200nm。
12.优选的,所述p型光学吸收层和n型窗口层之间还设置有缓冲层。
13.优选的,所述缓冲层的材质包括cds、cdi、zns或znmgo;所述缓冲层的厚度为65~120nm。
14.优选的,所述铁电膜层的厚度≤50nm。
15.本发明还提供了上述技术方案所述薄膜太阳电池的制备方法,包括以下步骤:
16.在衬底上依次制备第一载流子传输层、p型光学吸收层、n型窗口层、磁控溅射铁电膜层、第二载流子传输层和金属栅电极层。
17.优选的,所述p型光学吸收层制备得到后、n型窗口层制备前还包括:在所述p型光学吸收层表面制备缓冲层。
18.本发明提供了一种薄膜太阳电池,包括依次层叠设置的衬底、第一载流子传输层、p型光学吸收层、n型窗口层、铁电膜层、第二载流子传输层和金属栅电极层;所述铁电膜层的材质包括batio3、knbo3、nanbo3或bifeo3。本发明在传统光学吸收层薄膜光伏器件中引入batio3、knbo3、nanbo3或bifeo3材质的铁电膜层,可以引入大剩余极化强度的铁电退极化场,而且铁电膜层材料为n型材料,可以和p型光学吸收层构筑成p-n结场,同时由于铁电材料高带隙和低载流子传导能力,铁电膜层可以承担高阻挡层的作用。在本发明中,第一载流子传输层(底电极)表面电阻低,导电性好;光吸收层可将光能转化为电子-空穴对;窗口层、铁电层同为高阻层,可防止电池内部短路,高透,保证大部分太阳光透过进入吸收层;n型窗口层和铁电膜层同为n型层,与p型吸收层构筑成异质结;且铁电膜层的退极化场可提高载流子的分离;第二载流子传输层(上电极)有低的表面电阻和高的可见光透过率,避免光损失,并收集电流;金属栅与上电极形成欧姆接触,栅状电极还增加了入射光面积。本发明同时利用传统光伏器件的p-n结内建电场和铁电材料的铁电退极化场多物理场耦合增强效应提高光生载流子分离与传输能力,降低复合,增加电池的开路电压,提高薄膜太阳电池的光电转化效率。
19.进一步的,缓冲层可降低吸收层与窗口层之间带隙不连续性和晶格失配率,同时保护吸收层不被后续工艺破坏、避免产生缺陷。
20.实施例测试结果表明,本发明提供的薄膜太阳电池的短路电流密度为30.40~32.79ma/cm2,开路电压为690.04~696.47mv,填充因子为62.64~70.59%,光电转换效率为13.68~16.07%。
附图说明
21.图1为本发明提供的薄膜太阳电池结构示意图,图1中,1-衬底,2-第一载流子传输层,3-p型光学吸收层,4-缓冲层,5-n型窗口层,6-铁电膜层,7-第二载流子传输层,8-金属栅电极层;
22.图2为实施例1制备的薄膜太阳电池的断面sem图;
23.图3为实施例1制备的薄膜太阳电池的iv测试图;
24.图4为实施例2制备的薄膜太阳电池的iv测试图;
25.图5为实施例3制备的薄膜太阳电池的iv测试图;
26.图6为对比例1制备的薄膜太阳电池的iv测试图;
27.图7为对比例2制备的薄膜太阳电池的iv测试图。
具体实施方式
28.本发明提供了一种薄膜太阳电池,包括依次层叠设置的衬底、第一载流子传输层、p型光学吸收层、n型窗口层、铁电膜层、第二载流子传输层和金属栅电极层;
29.所述铁电膜层的材质包括batio3、knbo3、nanbo3或bifeo3。
30.在本发明中,若无特殊说明,所述技术方案中各组成均为本领域技术人员熟知的市售商品。
31.图1为本发明提供的薄膜太阳电池结构示意图,下面结合图1对本发明提供的薄膜太阳电池进行说明。
32.本发明提供的薄膜太阳电池包括衬底。在本发明中,所述衬底的材质优选为玻璃、不锈钢或聚酰亚胺。
33.本发明提供的薄膜太阳电池包括所述衬底上的第一载流子传输层。在本发明中,所述第一载流子传输层的材质优选包括钼或透明导电氧化物;所述透明导电氧化物包括铝掺杂氧化锌(azo)、氟掺杂锡氧化物(fto)或锡掺杂铟氧化物。在本发明中,所述第一载流子传输层的厚度优选为750~880nm,更优选为770~860nm。在本发明中,所述第一载流子传输层的表面优选为鱼鳞状结构;所述鱼鳞状结构有利于增加膜层间的接触面积,增大层间附着力。
34.本发明提供的薄膜太阳电池包括所述第一载流子传输层上的p型光学吸收层。在本发明中,所述p型光学吸收层的材质优选包括cu(in
1-x
ga
x
)(se,s)2(cigs)、cu2basn(s
x
se
1-x
)4(cbts)、cu2mnsn(s
x
se
1-x
)4(cmts)或cu2znsn(s
x
se
1-x
)4(czts);x的取值独立地优选为0~1。在本发明中,所述p型光学吸收层的厚度优选为1.5~2.5μm,更优选为1.6~2.4μm。
35.本发明提供的薄膜太阳电池包括所述p型光学吸收层上的n型窗口层。在本发明中,所述n型窗口层的材质优选包括cds、znmgo、zno、zns或cdzns。在本发明中,所述n型窗口层的厚度优选为300~400nm,更优选为310~390nm。
36.本发明提供的薄膜太阳电池包括所述n型窗口层上的铁电膜层。在本发明中,所述铁电膜层的材质包括batio3(bto)、knbo3、nanbo3或bifeo3。在本发明中,所述铁电膜层的厚度优选≤50nm。
37.本发明提供的薄膜太阳电池包括所述铁电膜层上的第二载流子传输层。在本发明中,所述第二载流子传输层的材质优选包括钼或透明导电氧化物;所述透明导电氧化物包括铝掺杂氧化锌、氟掺杂锡氧化物或锡掺杂铟氧化物。在本发明中,所述第二载流子传输层的厚度优选为470~700nm,更优选为500~690nm。
38.本发明提供的薄膜太阳电池包括所述第二载流子传输层上的金属栅电极层。在本发明中,所述金属栅电极层的材质优选包括ag、au或ni-al-ni。在本发明中,所述金属栅电极层的厚度优选为130~200nm,更优选为140~190nm。
39.在本发明中,所述p型光学吸收层和n型窗口层之间优选还设置有缓冲层。在本发明中,所述缓冲层优选为n型缓冲层。在本发明中,所述缓冲层的材质优选包括cds、cdi、zns
或znmgo。在本发明中,所述缓冲层的厚度优选为65~120nm,更优选为70~120nm。
40.本发明还提供了上述技术方案所述薄膜太阳电池的制备方法,包括以下步骤:
41.在衬底上依次制备第一载流子传输层、p型光学吸收层、n型窗口层、磁控溅射铁电膜层、第二载流子传输层和金属栅电极层。
42.在衬底上制备第一载流子传输层前,本发明优选将所述衬底进行清洁。本发明对所述衬底的清洁没有特殊限定,以保证衬底表面洁净无杂质为准。
43.在本发明中,制备第一载流子传输层的方法优选为直流磁控溅射。
44.在本发明中,制备p型光学吸收层的方法优选为三步共蒸发法。
45.在本发明中,制备n型窗口层的方法优选为射频磁控溅射。
46.在本发明中,制备铁电膜层的方法为磁控溅射,更优选为射频磁控溅射。
47.在本发明中,制备第二载流子传输层的方法优选为射频溅射。
48.在本发明中,制备金属栅电极层的方法优选为射频磁控溅射。
49.在本发明中,当所述p型光学吸收层和n型窗口层之间还包括缓冲层时,所述p型光学吸收层制备得到后、n型窗口层制备前还包括:在所述p型光学吸收层表面制备缓冲层。在本发明中,制备缓冲层的方法优选为化学水浴沉积法(cbd法)。
50.为了进一步说明本发明,下面结合实施例对本发明提供的一种薄膜太阳电池及其制备方法进行详细地描述,但不能将它们理解为对本发明保护范围的限定。显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
51.实施例1
52.在洁净的玻璃衬底上通过直流磁控溅射法生长厚800nm、材质为mo的第一载流子传输层;在第一载流子传输层的表面采用三步共蒸发法生长厚1.7μm、材质为cuin
0.6
ga
0.4
se2的p型光学吸收层;在p型光学吸收层上通过化学水浴沉积法生长120nm、材质为n型cds的缓冲层;在缓冲层上通过射频磁控溅射生长厚度为370nm、材质为znmgo的n型窗口层;在n型窗口层上通过射频磁控溅射生长厚50nm、材质为batio3的n型铁电膜层;在铁电膜层上通过射频溅射生长厚690nm、材质为铝掺杂氧化锌的第二载流子传输层;在第二载流子传输层上通过射频磁控溅射生长厚180nm、材质为ag的金属栅电极层,得到所述薄膜太阳电池。
53.对实施例1制备的薄膜太阳电池的断面进行扫描电镜测试,所得断面sem图见图2。由图2可见,薄膜太阳电池的断面层状结构明显,且从中可得出该薄膜太阳电池的吸收层厚1.7μm。
54.对实施例1制备的薄膜太阳电池进行光电测试,所得iv测试图见图3。由图3可见,薄膜太阳电池的短路电流密度为32.68ma/cm2,开路电压为696.47mv,填充因子为70.59%,光电转换效率为16.07%。
55.实施例2
56.在洁净的玻璃衬底上通过直流磁控溅射法生长厚769.2nm、材质为mo的第一载流子传输层;在第一载流子传输层的表面采用三步共蒸发法生长厚2.27μm、材质为cuin
0.5
ga
0.5
se2的p型光学吸收层;在p型光学吸收层上通过化学水浴沉积法生长120nm、材
质为n型cds的缓冲层;在缓冲层上通过射频磁控溅射生长厚度为370nm、材质为znmgo的n型窗口层;在n型窗口层上通过射频磁控溅射生长厚48nm、材质为batio3的n型铁电膜层;在铁电膜层上通过射频溅射生长厚700nm、材质为铝掺杂氧化锌的第二载流子传输层;在第二载流子传输层上通过射频磁控溅射生长厚180nm、材质为au的金属栅电极层,得到所述薄膜太阳电池。
57.对实施例2制备的薄膜太阳电池进行光电测试,所得iv测试图见图4。由图4可见,薄膜太阳电池的短路电流密度为32.79ma/cm2,开路电压为690.04mv,填充因子为62.64%,效率为14.16%。
58.实施例3
59.在洁净的玻璃衬底上通过直流磁控溅射法生长厚850.8nm、材质为mo的第一载流子传输层;在第一载流子传输层的表面采用三步共蒸发法生长厚2.04μm、材质为cuin
0.6
ga
0.4
se2的p型光学吸收层;在p型光学吸收层上通过化学水浴沉积法生长117.5nm、材质为n型cds的缓冲层;在缓冲层上通过射频磁控溅射生长厚度为334.7nm、材质为znmgo的n型窗口层;在n型窗口层上通过射频磁控溅射生长厚50nm、材质为batio3的n型铁电膜层;在铁电膜层上通过射频溅射生长厚690nm、材质为铝掺杂氧化锌的第二载流子传输层;在第二载流子传输层上通过射频磁控溅射生长厚190nm、材质为ag的金属栅电极层,得到所述薄膜太阳电池。
60.对实施例3制备的薄膜太阳电池进行光电测试,所得iv测试图见图5。由图5可见,薄膜太阳电池的短路电流密度为30.40ma/cm2,开路电压为691.82mv,填充因子为65.04%,光电转换效率为13.68%。
61.对比例1
62.在洁净的玻璃衬底上通过直流磁控溅射法生长厚800nm、材质为mo的第一载流子传输层;在第一载流子传输层的表面采用三步共蒸发法生长厚1.98μm、材质为cuin
0.5
ga
0.5
se2的p型光学吸收层;在p型光学吸收层上通过化学水浴沉积法生长120nm、材质为n型cds的缓冲层;在n型窗口层上通过射频磁控溅射生长厚50nm、材质为batio3的n型铁电膜层;在铁电膜层上通过射频溅射生长厚690nm、材质为铝掺杂氧化锌的第二载流子传输层;在第二载流子传输层上通过射频磁控溅射生长厚130nm、材质为au的金属栅电极层,得到所述铁电薄膜耦合cigs薄膜太阳能电池。
63.对对比例1制备的铁电薄膜耦合cigs薄膜太阳电池进行光电测试,所得iv测试图见图6。由图6可见,薄膜太阳能电池的短路电流密度为28.06ma/cm2,开路电压为611.08mv,填充因子为63.42%,光电转换效率为10.88%。
64.对比例2
65.在洁净的玻璃衬底上通过直流磁控溅射法生长厚800nm、材质为mo的第一载流子传输层;在第一载流子传输层的表面采用三步共蒸发法生长厚1.85μm、材质为cuin
0.5
ga
0.5
se2的p型光学吸收层;在p型光学吸收层上通过化学水浴沉积法生长120nm、材质为n型cds的缓冲层;在缓冲层上通过射频磁控溅射生长厚度为350nm、材质为znmgo的n型窗口层;在n型窗口层上通过射频磁控溅射生长厚230nm、材质为batio3的n型铁电膜层;在铁电膜层上通过射频溅射生长厚580nm、材质为铝掺杂氧化锌的第二载流子传输层;在第二载流子传输层上通过射频磁控溅射生长厚190nm、材质为au的金属栅电极层,得到所述铁电
薄膜耦合cigs薄膜太阳能电池。
66.对对比例2制备的铁电薄膜耦合cigs薄膜太阳电池进行光电测试,所得iv测试图见图7。由图7可见,薄膜太阳能电池的短路电流密度为26.73ma/cm2,开路电压为496.57mv,填充因子为31.59%,光电转换效率为4.19%。
67.以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1