用紫外激光输出切断导电链路的方法

文档序号:6828746阅读:323来源:国知局
专利名称:用紫外激光输出切断导电链路的方法
技术领域
本发明涉及一种基于激光的方法,用于在半导体晶片上制作的集成电路装置中切断导电链路,特别是涉及应用紫外激光输出的一种方法,该紫外激光输出具有预先确定的波长、足够幅度的功率密度,以切断一条具有高度和吸收灵敏度特征的位于钝化层之上的链路,其高度和吸收灵敏度足以防止激光输出照射到下面的基片。
背景技术
20多年来,传统的1.047μm或1.064μm激光波长,被用于爆炸性地移去可用激光切断的电路链路来断开连接,例如,在一个如DRAM、SRAM或嵌入式存储器的存储装置中断开一个失效的储存单元,并用一个备用的单元替换。相似的技术也被用于为编程逻辑产品、门阵列或ASIC而切断链路。

图1A展示了一个点直径尺寸14的传统红外(IR)脉冲激光束12照射一链路结构16,该链路结构由多晶硅或金属链路18组成,位于硅基片20上且介于包括上面钝化层21和下面钝化层22的钝化层器件层之间。硅基片20只吸收相对很少部分的IR辐射量,并且传统钝化层21和22,如二氧化硅或氮化硅,对于IR辐射相对地透明。
在维持足够的能量来处理金属链路18时,为了避免损伤基片20,Sunet al.在美国专利5,265,114中,建议使用更长的激光波长,如1.3μm,用于处理硅晶片上的链路18。在1.3μm激光波长在链路材料和硅基片20之间的吸收比例,比在传统的1μm激光波长的吸收比例大很多。这种技术提供了更宽的激光处理窗口和更好的处理质量,这已经在工业上使用了约3年,并取得了巨大的成功。
但是,IR激光波长具有缺点IR激光束12到高导电性的金属链路18的耦合效率相对较差;并且用于切断链路的IR激光束12的实际可获得的点尺寸14相对较大,这限制了接触垫28和链路间距30之间的链路宽度24和链路长度26。IR激光链路处理依赖于在链路18中的加热、熔化,以及产生的机械力来爆炸性地打开下面钝化层21。热应力爆炸行为在某种程度上取决于链路18的宽度。当链路宽度变得窄于1μm时,钝化层21的爆炸方式变得无规则,结果链路处理质量不一致,这是不可接受的。
实际可获得的较小激光点尺寸限制,决定了光学元件的选择和它们与基片20的间隙,这是因为可以很容易地近似算出链路处理激光束12大约为2倍波长(2λ)。因此,对于1.32μm、1.06μm和1.04μm激光波长,用于去掉链路的实际的点尺寸限制,直径分别约为2.6μm、2.1μm和2.0μm。因为可使用的链路间距30的较低限制,是激光束点尺寸14和激光束12与链路18的目标位置间的校准精度的函数,较小的点尺寸限制直接影响电路的集成度。
目前在工业中用于修复64兆位DRAM的最小聚焦的除去材料的激光点尺寸14,直径约为2μm。2.1μm的点尺寸14,期望可用于从256兆位到大约1吉位的DRAM设计。图2是以年为单位的点尺寸图,说明当链路间距30和链路宽度24减小时,工业上需要更小的点尺寸。该图基于一个简单的公式来近似估算对于点尺寸需求点尺寸直径=2(最小链路间隙)-2(系统校准精度)-(链路宽度)。(这些参数如图1B中所示。)该图假设在1997年的精度为0.5μm,在1999年的精度为0.35μm,以及以后的精度为0.25μm。相应地,工业专家预言不久将需要2μm以下的点尺寸用于处理链路18。但是,实际上这些点尺寸用传统的IR链路熔断激光波长无法得到。
更短的可见波长,如0.532μm,允许减小激光束的点尺寸。但是,在这些波长上硅基片20是强吸收的,并且激光链路切断过程将损坏部分基片20。为了确保处理过的器件的可靠性,基片损伤是不可接受的。
因此,所需要的是把具有选定激光波长用于切断半导体晶片上制作的导电链路的处理方法和装置,该处理方法和装置将实际的光束点尺寸减小到2μm以下,但是在切断链路时能够不损伤半导体晶片基片。
发明概述因此,本发明的目的是提供一种基于激光的方法,该方法使用紫外激光输出来切断在半导体晶片上的集成电路结构中制作的导电链路,而不损坏下面的晶片基片。
本发明的另一个目的是提供一种方法,该方法使用选定的激光输出参数,来开发某些链路结构组成材料的波长敏感光吸收特性,以在链路切断中减少激光输出能量耦合到基片。
本发明提供在UV波长范围内的激光输出束,来切断在集成电路结构中的导电链路。这个波长范围在链路处理中不常用,本发明开发了位于链路和基片之间的钝化层的波长敏感光吸收特性。因为传统的钝化层材料,如二氧化硅和氮化硅,表现出对紫外辐射的相对较强吸收,它们可以用于吸收多余的UV激光输出能量,以防止UV激光损伤基片。可以进一步优化这些以及其它钝化材料,来更好地吸收选定的UV波长激光。
更特别地,链路下面的钝化材料层吸收到达所述集成电路结构紫外激光能量,该能量分布在一个光束点尺寸区域,该区域覆盖链路宽度和未被链路覆盖的钝化层邻近部分。因为链路吸收UV光,下面的钝化层衰减该UV光,并防止它在切断链路所需的能量水平损伤晶片基片。在下面的钝化层不吸收UV光的情况下,偶然到达邻近部分的链路之外的激光输出能量,在链路切断过程中将产生基片损伤。
此外,链路的底部是一个很难除去的部分,并且在链路切断后这部分除去不完全会产生一个低的开路电阻。为了确保链路的完全切断,激光束控制器使得UV激光部分地切入下面的钝化层并因此在钝化层形成一个凹痕,以使在该点区域内以干净的深度除去全部链路变得容易。通过控制用于完成链路切断过程的激光能量,该控制器确定凹痕的深度。也可以调整钝化材料的高度到足够厚,来吸收链路除去后剩余的激光能量。因此,没有损伤周围或下面基片材料的危险。
使用UV波长用于链路处理的另一个优点,是与在IR波长产生的光束点尺寸相比,UV波长的光束点尺寸更小。例如,与对应于1μm波长的2.5μm光束点尺寸相比,对应于212nm的波长很容易得到0.5μm的光束点尺寸。更小的链路特征尺寸允许制造商更紧密地排列IC组件。对于具有钝化层覆盖链路的集成电路结构,本发明的另一个优点是,UV激光能量不仅在覆盖的钝化层中产生内建的热应力,而且部分直接烧蚀覆盖的钝化层,这样来除去覆盖的钝化层。这种现象使得覆盖的钝化层上可靠准确的开口成为可能,并且在切割非常窄的链路宽度时非常有用,否则,当使用传统的链路切断过程链路加热使覆盖的钝化层爆破时,窄的链路要受到不规则的破裂轮廓的影响。
本发明的另一个优点,来自钝化层材料对UV激光能量的强吸收。在传统的IR链路处理中,邻近的链路经常被来自正被处理的链路横向反射的激光能量损伤。由于链路间距不断减小,这个问题发生得更为频繁了。但是,被正在用UV激光能量切断的链路横向反射的光,可以被钝化材料衰减,因此,极大地减小了损伤邻近链路或其它电路结构的危险。
从以下参考附图对于本发明优选方案的详细描述中,其它的目的和优点将是明显的。
附图的简要描述图1A是一个传统半导体链路结构的部分剖侧视图,该链路结构接受具有已有技术脉冲参数特征的激光脉冲。
图1B展示参考图1A所描述的链路宽度、间距和激光束点尺寸参数的相互关系,以及相邻的电路结构。
图2是以年为单位的点尺寸图,预测了一定时间后所需的用于链路处理的激光点尺寸。
图3展示了四种不同的金属对波长的光吸收特性的图示。
图4展示了硅中的几种砷浓度对激光光子能量的光吸收系数的图示。
图5展示了在室温下不同半导体对波长的光吸收特性的图示。
图6A和6B展示了常用钝化材料,尤其是二氧化硅和氮化硅,对波长的光吸收特性的图示。
图7A是本发明的半导体链路结构以及邻近的电路结构的放大的部分俯视图。
图7B是图7A中链路结构的放大的部分剖侧视图,其中该链路结构接收具有本发明的脉冲参数特征的激光脉冲。
图7C是链路被本发明的激光脉冲除去后,图7B中链路结构的放大的部分剖侧视图,图8是一个优选UV激光系统的一个实施例的部分示意简化图,该UV激光系统包括一个晶片定位装置,该晶片定位装置与激光处理控制系统协同工作,用于实施本发明的方法。
图9A展示了作为脉冲之间时间间隔的函数,传统UV激光输出的每个脉冲的能量差别的图示。
图9B展示了施加电压校正信号,以稳定不同的时间间隙产生的UV激光输出的每个脉冲的能量。
图9C展示了本发明的UV激光输出的每个脉冲的能量的图示,其中与脉冲之间时间间隔相关的不稳定性已被校正。
优选方案的详细描述本发明的方法使应用较短波长,如UV范围的波长,除去链路变得容易,并允许减小激光束点尺寸。小于或等于400μm的波长,使产生小于0.8μm的激光束点尺寸变得容易。以下描述了几种常用链路材料的与波长有关的系数特性。
图3以图的方式展示了不同的金属,如可以用于链路18的铝、镍、钨和铂,对波长的光吸收特性。图3是在“Handbook of Laser Science andTechnology,”Volume Ⅳ Optical Materials:Part 2 By Marvin J.Weber(CRC Press,1986)中找到的吸收图相关部分的组合。图3展示了金属,如铝、镍、钨和铂,一般在UV波长比在IR波长吸收激光能量特性更好。金属氮化物(如氮化钛)以及用于形成链路18的其它导电材料,一般具有相似的光吸收特性。但是,这些材料的吸收系数不如金属的吸收系数那样容易得到。
这些链路材料所展示的在UV波长范围中,尤其是小于300nm的波长中,对波长的强吸收,显示了可以使用UV激光输出很容易地处理它们。因此,在点尺寸的优点之外,UV激光输出还提供了到导电链路的更好的耦合性能,以获得更干净的链路清除效果,在切断的链路上更好的开路阻抗质量、更高的链路处理收益。
不幸的是,许多半导体基片对于具有小于1μm波长的激光输出的损伤更敏感。以下描述几种常用基片材料的吸收特性。
图4以图的方式展示了对于硅中的几种砷浓度对激光光子能量(波长)的光吸收系数。图4是自Jellison et al.,Phys.Rev.Let.,Vol.46,1981,at 1414的一个图的复制。图4显示了掺杂的和未掺杂的硅在波长小于约1μm时,吸收系数迅速增加。这种现象的详细物理机制,在"Pulsed LaserProcessing of Semiconductor,"Semiconductors and Semimetals,Vol.23(Academic Press,Inc.,1984)中进行了描述。
尽管关于掺杂的多晶硅、多酸(polycide)和二硅化物对波长的光吸收的可靠出版文献并不容易获得,熟练的人员可以设想对于这些掺杂材料的吸收系数,在波长小于1μm时,也将显著增大。
图5以图的方式展示了不同半导体,包括砷化镓和硅,在室温时对于波长的光吸收系数。图5是"Handbook of Optics,"Walter G.Driscoll ed.,Optical Society of America(McGraw-Hill Book Co.,1978)中图156的复制。图中显示,在室温时,硅、砷化镓以及其它半导体材料,在可见和UV范围的波长与在IR范围内相比,光吸收增加更为迅速。参考图4和图5可知,这些基片UV范围内波长的强吸收,表明它们容易受到UV激光输出的损坏。
图6A以图的方式展示了熔融的硅石(二氧化硅)对波长的光吸收系数。图6A选自C.M.Randall and R.Rawcliff,Appl.Opt.7:213(1968)。该图显示,二氧化硅在波长小于300μm时表现出良好的吸收特性,并在波长小于200nm时吸收性能迅速增加。熟练的人员将意识到二氧化硅钝化层一般都是掺杂的,或者是特意掺杂的或者是掺杂晶片扩散的结果。常用的掺杂物包括Ⅲ族和Ⅴ族元素,如硼、磷、砷以及锑。二氧化硅钝化层一般也含有缺陷。由于掺杂和/或缺陷,二氧化硅或氮化硅钝化层在较长波长,如约小于或等于400nm,就变得具有相当的吸收性。熟练的人员将意识到,可以调节特定的掺杂物及其浓度,用于“调整”钝化层来更好地吸收所需的UV激光波长。
图6B以图的方式展示了几种晶体光学材料,包括氮化硅,对波长的光传输范围。图6B是Paul KlocekMarcel Dekker,Inc.,N.Y 1991,编辑的Handbook of Infrared Optical Materials的Figure5.1 from Chapter 4的复制。图6B显示了波长小于300nm时,氮化硅的透射系数减小。
图7A是具有本发明半导体链路结构40的晶片38的放大的部分俯视图;图7B是放大的链路结构40的部分剖侧视图,该链路结构接受具有本发明脉冲参数特征的激光脉冲44的点区域43;图7C是图7B的链路结构40在链路42被激光脉冲44除去后的放大的部分剖侧视图。参考图7A-7C,链路结构40一般包括金属的或导电的链路42,链路42具有在接触垫52和链路宽度47之间的链路长度46。链路宽度47可以设计为比链路18的宽度24(约2.5μm)窄,其中链路18由传统的IR链路烧断激光束12烧断。链路材料可以包括,但并不限于,铝、铜、镍、钨、铂和金,以及其它金属、金属合金,如nickel chromide,金属氮化物(如氮化钛或氮化钽),金属硅化物如硅化钨和掺杂多晶硅以及其它类似材料。尽管链路结构可以具有传统的尺寸,但是链路宽度47可以,例如,小于或等于约1.0μm。类似地,链路42之间的中心到中心链路间距49,可以远小于被激光束12烧断的链路18之间链路间距30(约8μm)。链路42可以,例如,如其它链路42和相邻电路结构那样小于2.5μm。如果使用点尺寸小于或等于约0.5μm的212nm光束来切断链路42,则链路间距可以小于或等于约1.0μm。
链路结构40一般包括覆盖链路42的UV吸收钝化层48。但是,技术人员希望链路42可以是无覆盖的。链路结构40还包括位于基片50和链路42之间的UV吸收钝化层54。
钝化层54最好具有足够尺寸的厚度56来衰减用于切断链路42的UV激光能量的足够量,这样基片50将不受损坏。对于含有二氧化硅或氮化硅的钝化层54,厚度56最好至少约为0.5μm,最佳为0.8μm左右。钝化层48和/或54的厚度56可以特别地调节,这样它们在点区域43内的链路之外部分57可充分衰减来自脉冲44的能量,来保护基片50在链路之外的部分不受损坏。钝化层48和54可以由相同或不同的材料组成。钝化层48和/或54还可以掺杂来在增进其在较长UV波长,如在300nm到400nm之间,的吸收特性。
除了以上论述的UV应用的优点之外,钝化层54还具有其它的处理优点。参照图7B,厚度56可以调节,以允许有意地部分切除钝化层54。有意地部分切除钝化层54,使得完全除去链路42的底部而不损伤基片50变得容易,可以在接触垫52之间获得高的开路电阻。
图8展示了一个简化激光系统120的优选方案,该激光系统120用于产生进行本发明的UV链路切断所需的激光脉冲。为了方便起见,在此模拟激光系统120,仅通过举例的方式来说明由激光二极管110泵送的四次谐波Nd:YAG激光器,其中辐射112由镜片组件114聚焦到IR激光谐振器122。IR激光谐振器122包括激射工作物质124,其沿着光轴130位于后部反射镜126和输出反射镜128之间,并发射波长为1064nm的IR脉冲输出123,特征脉冲宽度小于10ns,FWHM。镜126对于基波的Nd:YAG波长最好为百分之百反射,并且对于沿光轴130传输的第二谐波光具有高透射性。内部共振器倍频器134最好位于激射工作物质124和输出镜128之间。四倍频器138最好位于共振器122之外,来进一步把所述激光束频率转化为第四谐波。
通过使用另一个非线性晶体来组合基波和第四谐波或者组合第二和第三谐波,所述激光系统可以进一步配置来产生第五谐波(对于Nd:YAG为212nm,对于Nd:YLF为210)。谐波转换过程在pp.138-141,V.G.Dmitriev,et.al.,“Handbook of Nonlinear Optical Crystals”,Springer-Verlag,New York,1991 ISBN 3-540-53547-0中进行了描述。
IR激光谐振器122也可以是具有1.047μm基波波长的Nd:YLF激光器或具有1.064μm基波波长的Nd:YVO4激光器。技术人员希望可以使用Nd:YAG(355nm)和Nd:YLF(349nm)的第三谐波,来处理被掺杂的钝化材料围绕的链路42。技术人员还希望发射短于300nm波长的其它适当的激光器经济可行,并且可以使用。激光系统的改进型,如由Electro Scientific Industries,Inc.,Portland,Oregon制造的Model 9300系列改进型,最好由技术人员调节来提供较短波长,UV激光。
激光系统输出140可以由各种不同的传统光组件142和144来处理,所述光组件沿光通路146安放。组件142和144可以包括一光束扩展器或其它激光组件,用于校准UV激光输出140来产生具有有益传输特性的光束。光束反射镜172、174、176和178在第四谐波UV激光波长是强反射的,但是在Nd:YAG的第二谐波波长是强透射的,所以仅仅第四谐波UV将到达链路结构40的表面51。聚焦透镜148最好使用F1、F2或F3单个组件或多组件透镜系统,它们把校准的UV脉冲输出140聚焦,来得到聚焦点尺寸58,该尺寸远小于2μm,并且最佳小于1μm。聚焦的激光点43被导向到晶片38,对准链路结构40,最好用UV激光输出140的一个单个脉冲44除去链路42。用于链路42的脉冲44的切断深度,可以通过选择脉冲44的能量来精确地计算和控制。通常,聚焦点尺寸58的最佳切除参数,包括脉冲能量,介于0.01μJ和10μJ之间,其中在1到5KHz脉冲44具有1ns到100ns持续时间,最好是在5kHz为15ns。
Overbeck的美国专利4,532,402详细描述了一个优选的光束位置控制系统160。光束定位系统160最好使用一激光控制器170,该控制器控制至少两个平台或工作台以及多个反射器172、174、176和178,来对准并聚焦激光系统输出140到晶片38上所需的激光处理链路42。光束定位系统160允许在相同的或不同的芯片上的链路42间快速移动,以基于提供的测试或设计数据实现单独链路切断操作。对于每个分立的链路42,位置数据最好一次控制激光系统输出140的一个脉冲。
对于使用一Q开关的内腔激光束调制,如图8所示,激光控制器170可能会受定时数据的影响,该定时数据使激光系统120的发射与工作台的运动同步,如Konecny的美国专利5,453,594 Radiation Beam Positionand Emission Coordination System。可选择地,技术人员希望激光控制器170可以通过一Pockels室或一声光装置用于连续波(CW)激光能量的外腔调制。这种选择可以提供持续的峰值能量,而不管斩波重复速率或输出脉冲持续时间。光束定位系统160还可以选择地或额外地使用在Cutler et al的美国专利5,751,585中所述的改进或光束定位器,该专利已转让给本申请的受让人。
对于使用非线性频率转换的Q开关脉冲固态UV激光器,UV输出的脉冲间能量水平,对连续脉冲发射的重复速率或间隔时间特别敏感。图9A是传统的UV激光系统的对于脉冲间时间间隔每个脉冲UV激光能量的图示。在优选方案中,在四倍频器138和光组件142之间可以插入一光调制器(OM)181。系统120用不同的脉冲间隔时间预先检测每个脉冲UV能量差别,并形成一能量曲线。然后,基于能量曲线信息产生一个“校正”信号并施加到OM181。图9B展示了校正信号施加到OM181来补偿相应的时间间隔。无论何时,发射一个激光脉冲44,都将触发一个校正信号,因此OM181上的控制信号电压将在最近的激光脉冲发射后随着时间的流逝而改变。无论何时,发射下一个脉冲,OM181上的校正信号都将确保跟随校正信号的激光能量保持在预先设定的恒定水平,而不管任何两个连续的激光脉冲44之间的间隔如何。图9C是用OM181校正后的UV能量脉冲。使用这种方法,不管脉冲44之间的不同时间间隔如何,都可以执行系统的最高定位速度,而没有每个脉冲UV激光能量的变化,技术人员对此将非常欣赏。
技术人员将认识到本发明的各部分,可以以不同于优选方案中所描述的实施例的方式来实施。例如,系统控制计算机170、OM控制器171以及光束定位器控制器160,可以组合为一个单个处理器,或以硬件连线数字逻辑、单个处理器中执行的程序、微处理器、状态机或模拟电路的某种组合来实施。
对于本领域的技术人员,显然可以对于上述本发明的实施例的细节进行许多改变,而不背离本发明的潜在原则。因此,本发明的范围只能由所述的权利要求来确定。
权利要求
1.一种用于切断在集成电路链路结构中半导体基片上构造的导电链路的方法,所述链路结构包括一个上表面以及位于所述链路和所述基片之间的一个钝化层,所述链路具有一链路宽度,并且所述钝化层具有一厚度和波长敏感的光吸收特性,包括产生紫外激光输出并引导到所述链路结构,所述紫外激光输出具有预先确定的以能量密度为特征的波长能量,所述能量密度分布在所述链路结构上表面的一个点区域,所述点区域覆盖所述链路宽度和未被链路覆盖的钝化层的一个邻近部分,所述能量密度具有足够的幅值来切断所述链路,并与预先确定的波长一起作用于钝化层,这样钝化层的波长敏感光吸收特性和厚度,使未被链路覆盖的钝化层的邻近部分衰减切断链路过程中偶然到达邻近部分的链路外的激光输出能量,以防止激光输出损伤基片。
2.如权利要求1中所述的方法,其中预先确定的激光输出波长小于约300nm。
3.如权利要求2中所述的方法,其中所述预先确定的激光输出波长约为266nm、262nm、212nm、210nm或193nm。
4.如权利要求3中所述的方法,其中紫外激光输出的产生进一步包括通过光泵一个Q开关紫外光发射的固态激光器,来形成一个脉冲的紫外激光输出。
5.如权利要求1中所述的方法,其中所述钝化层由二氧化硅或氮化硅组成。
6.如权利要求5中所述的方法,其中钝化层的厚度至少约为0.5μm。
7.如权利要求1中所述的方法,其中所述链路是在基片上制成的多个导电链路之一,所述多个导电链路被以小于约2.5μm的间距相互地隔离开。
8.如权利要求1中所述的方法,其中所述链路宽度小于或等于约1.0μm。
9.如权利要求1中所述的方法,其中所述点区域的直径小于约2.0μm。
10.如权利要求1中所述的方法,其中所述激光输出除去钝化层在链路下边并被链路覆盖的一部分,以确保在所述点区域内的全部链路被彻底除去并且在链路下边并被链路覆盖的基片不被损坏。
11.如权利要求1中所述的方法,其中所述链路结构进一步包括一位于链路上部的顶部钝化层,这样所述顶部钝化层直接被切断链路的紫外激光输出除去。
12.如权利要求1中所述的方法,其中所述链路形成一存储装置或一ASIC的部分。
13.如权利要求1中所述的方法,其中所述钝化层被掺杂,来增加所述钝化层在预先确定波长的吸收性。
14.如权利要求1中所述的方法,其中所述激光输出的预先确定的波长约为349nm或355nm。
15.如权利要求1中所述的方法,其中在链路下边并被链路覆盖的钝化层衰减切断链路所需能量以外部分的激光输出能量,来确保在链路下边并被链路覆盖的基片不受损坏。
16.如权利要求1中所述的方法,其中所述链路是在基片上制成的多个导电链路之一,所述链路被具有波长敏感的光吸收特性的钝化材料相互隔离,这样钝化材料衰减由一个第一个链路之一向一个第二个链路反射的激光输出能量,来防止激光输出损坏所述第二个链路。
17.一种切断一个第一个在半导体基片上制成的导电链路的方法,所述第一个链路与一个第二个导电链路通过在它们之间的钝化材料相互隔离,并且具有对波长敏感的光吸收特性,包括产生一预先确定波长的紫外激光输出并导向所述第一个链路,所述紫外激光输出具有以能量密度为特征的能量,所述能量密度具有足够的幅值来切断链路,并以预先确定的波长作用于所述钝化材料,这样钝化材料的波长敏感光吸收特性使它能够衰减由所述第一个链路向所述第二个链路反射的激光输出能量,来防止激光输出损坏所述第二个链路。
18.如权利要求17所述的方法,其中所述激光输出预先确定的波长小于约300nm。
19.如权利要求17所述的方法,其中所述第一个和第二个链路以一个小于约2.5μm的间距中性地隔离开。
20.一种切断集成电路链路结构中在半导体基片上制成的一对导电接触垫之间的导电链路的方法,所述链路结构包括位于链路和基片之间的一钝化层,所述钝化层具有一厚度和波长敏感的光吸收特性,包括产生一预先确定波长的紫外激光输出并导向所述链路结构,以钝化层的波长敏感的光吸收特性来切断所述链路,并在链路下边的钝化层中形成一定深度的凹陷,以在接触垫之间形成高的开路电阻,钝化层的厚度和波长敏感的光吸收特性共同防止所述激光输出损坏链路下的基片。
21.如权利要求20所述的方法,其中预先确定的激光输出波长小于约300nm。
22.如权利要求21中所述的方法,其中所述预先确定的激光输出波长约为266nm、262nm、212nm、210nm或193nm。
23.如权利要求20所述的方法,其中所述预先确定的激光输出波长约为349nm或355nm。
24.如权利要求11所述的方法,其中所述顶部钝化层被掺杂来增加其在预先确定波长的光吸收。
25.如权利要求17所述的方法,其中所述钝化材料被掺杂来增加其在预先确定波长的光吸收。
26.如权利要求17所述的方法,其中所述激光输出的预先确定波长约为349nm或355nm。
27.如权利要求18所述的方法,其中所述激光输出的预先确定波长约为266nm、262nm、212nm、210nm或193nm。
28.如权利要求1所述的方法,其中所述激光输出的预先确定波长包括由Nd:YLF激光器产生的基波波长的第三谐波。
29.如权利要求17所述的方法,其中所述激光输出的预先确定波长包括由Nd:YLF激光器产生的基波波长的第三谐波。
30.如权利要求20所述的方法,其中所述激光输出的预先确定波长包括由Nd:YLF激光器产生的基波波长的第三谐波。
31.如权利要求9所述的方法,其中所述点区域的直径小于约1.0μm。
全文摘要
紫外(UV)激光输出利用了材料的光吸收特性,由此,导电链路(42)、下边的半导体基片(50)、钝化层(48和54)在高效地除去链路(42)时基片(50)不受损坏。UV激光输出因为其波长短,所以形成比传统IR激光链路熔断更小的点直径(58),因此可以实现更高的电路密度。位于链路和基片之间的钝化层,可以制成对UV激光能量充分地吸收,并且具有足够厚来衰减激光能量,以防止损伤激光束点区域(43)中的在链路之外或链路覆盖部分之内基片(50)。UV激光输出可以用于可控制地切除链路(42)下边的钝化层(54),以使完全除去链路(42)变得容易。此外,使用UV激光输出直接切除钝化层(48),使得得到可预测的、一致的链路切断剖面变得容易。钝化材料的吸收特性也减少了对邻近链路或其它有源结构的损伤。
文档编号H01L21/768GK1303519SQ99806720
公开日2001年7月11日 申请日期1999年6月4日 优先权日1998年6月5日
发明者孙云龙, E·斯温森 申请人:电子科学工业公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1