用于控制燃料电池电压的系统和方法

文档序号:9794248阅读:526来源:国知局
用于控制燃料电池电压的系统和方法
【技术领域】
[0001]本发明涉及燃料电池功率系统。
【背景技术】
[0002]燃料电池根据极化曲线产生电压。极化曲线描述了作为燃料电池电流或燃料电池电流密度的函数关系的燃料电池电压。一般而言,随着燃料电池供给的电流从零增加,燃料电池电压通过活化区域开始迅速地下降,然后通过欧姆区域近似线性地下降,再后通过质量传递区域更迅速地下降。在很多情况下,希望改变燃料电池的极化曲线。

【发明内容】

[0003]本发明描述了一种用于控制燃料电池产生的电压的系统和方法。所述系统涉及到在燃料电池的空气出口和燃料电池的空气入口之间设置再循环管线。至少一个可控设备被构造成允许改变通过所述再循环管线的流量。控制器被设置用来控制所述可控设备。所述方法涉及到改变空气出口到空气入口的再循环流量,从而提供燃料电池电压的所需变化。
【附图说明】
[0004]图1是燃料电池功率系统的示意图。
【具体实施方式】
[0005]图1示出了燃料电池功率系统10,可选择地称为燃料电池功率模块。系统10包括燃料电池堆12、吹风机14、空气入口管线16、吹风机入口管线18、空气出口管线20、再循环管线22(可选择地被称为旁路管线)、排气阀24、再循环阀26(可选择地被称为旁路阀)、电压传感器28、控制器30和温度传感器32。系统10也包括若干其他的常规元件,例如为了强调系统10的更多材料元件而未在图1中示出的氢气供给。系统10中的元件构成可以被改变。例如,可以仅存在排气阀24和再循环阀26之一。在另一个例子中,相同的系统可以配置有连接到空气出口管线20的吹风机14。
[0006]在操作中,氢气和空气流过燃料电池堆12。一些或全部的氢气通过与来自空气的氧气在燃料电池堆中反应而被消耗。相对于空气量,过量的空气将会携带化学计量量的氧气与氢气反应,并流过燃料电池堆。过量的空气用于将水分从燃料电池堆除去并且有助于确保燃料电池堆内的局部区域不缺氧。在入口测量到的过量的空气量通常是将会携带化学计量量的氧气的空气量的1.5?3倍。为了简便起见,这种过量的空气量被描述为“N倍的化学计量量”。
[0007]在一些情况下,燃料电池产生的电压不是特别地重要。然而,在其他情况下,电压根据极化曲线随着电流的变化会造成问题。例如,燃料电池经常与电池并联连接以提供混合电力供给系统。随着从混合系统引出的电流变化,电池和燃料电池的极化曲线中的差异可能会导致电池或燃料电池对于总功率需求的过度贡献。电池或燃料电池可能会过热。因此,希望能够使燃料电池的操作就好像它具有更近似电池的极化曲线。在其他情况下,由燃料电池供电的设备具有可以使特定的极化曲线是所希望的特点。在一些情况下,希望具有更近似平坦的极化曲线。在其他情况下,对于欧姆区域中的极化曲线的斜率而言,希望更近似恒定或进一步延伸到活化区域。在这些情况下,有时通过使用DC-DC电压转换器来实现产生所需的电压输出。
[0008]在系统10中,可以准许空气通过打开再循环阀26流过再循环管线22。利用至少部分打开的再循环阀26,空气出口管线20和吹风机14的吸入侧之间的压力差造成在再循环管线22中的流动。通过打开再循环阀26可以增加或者通过关闭再循环阀26可以减少再循环管线22中的流动。当再循环阀26至少部分打开时,关闭排气阀24增加了在再循环管线22中的流动,并且打开排气阀24减少了在再循环管线22中的流动。因此,可以调节排气阀24和再循环阀26中的一个或二者来改变再循环管线22中的流量。尽管调节阀门24、26可能会影响由通过燃料电池堆12吹入空气引发的总流压损失,并因此影响通过燃料电池堆12的总空气流量,但是总流量变化很小且其对该过程并不是很重要。调节一个或多个阀门24、26的更重要结果是可以改变燃料电池堆12的空气侧的氧分压。这种效果将在下面的例子中说明。
[0009]环境空气含有约20.9%的氧气。为了简化以下的讨论,可以假定环境空气具有20%的氧气和80%的氮气,并且在以下句子中所有百分比与环境空气中的这些量成比例。如果环境空气以3倍的化学计量量被供给到燃料电池堆12,那么进入的空气具有由60%的氧气和240的%氮气构成的300%的总流量。随着空气通过燃料电池堆12,1个化学计量量的氧气(或20 % )被氢气消耗。产生的废气具有由40 %的氧气和240 %的氮气构成的280 %的流量。废气中的氧气与总气体的比例现在是1:7而不是环境空气中的1:5。如果一些或全部的废气再次通过燃料电池堆12,那么获得氧气与总气体的更低的比例,即使其被需要提供补给空气而部分地减小。在相对于化学计量量较低的总空气流量下操作的系统可以在氧气与总气体的比例中实现更大的变化。
[0010]调节一个或多个阀门24、26来控制流过燃料电池堆12的废气和环境空气的相对量。其反过来控制燃料电池堆的空气侧氧气与总气体的比例。这个比例反过来会造成燃料电池堆的空气侧的氧分压的变化。燃料电池堆12的电压随着氧分压的变化比随着总气体流的变化更多。较高的氧分压在给定电流输出中产生较高的电压,而较低的氧分压在给定电流输出中产生较低的电压。一般来说,改变氧分压会改变极化曲线的形状。尽管氧分压变化,但是通过燃料电池堆的总空气流量维持在或高于针对用于除去水所选定的最小流量。此外,只要废气/环境空气共混物中的氧气量不会导致少于I个化学计量量的氧气流,则高的总空气流量有助于输送足够的氧气到燃料电池堆12的所有部位。
[0011]为了能够实时控制,阀门24、26中的一个或二者与控制器30连接。控制器30可以被编程,从而以基于给出被预测在不同的操作条件下产生所需的电压的阀门运动的存储公式或表格的预定方式来调节阀门24、26中的一个或二者。任选地,控制器30与连接到燃料电池堆12的电压传感器28连接,从而允许反馈回路以允许响应于所需和实际压力之间的差异来调节阀门24、26中的一个或二者。此外,任选地,控制器30可以与温度传感器32连接以提供紧急规避特性。如果燃料电池堆12处于过热的危险中,那么控制器30可以调节阀门24、26中的一个或二者以降低电池堆电压。
[0012]可选择地,控制器30可以是较大系统的一部分或与其连接。在这种情况下,可以由较大系统的任一部分来确定燃料电池电压变化的需求。例如,如果燃料电池堆12与电池并联连接,那么电池电压可以传达到控制器30,然后调节一个或多个阀门24、26以便更加近似地匹配电池的电压、朝着电池的电压移动或者在相对于电池电压的范围内。在这种情况下,电压传感器28仍然可以用来提供在较大系统的外部控制回路的里面操作的内部控制回路。
[0013]上面提到的电池包括组集或者与燃料电池堆12并联连接或串并联的一些组合连接的电池的其他组件。类似地,系统10可以具有多个燃料电池堆12,或者多个系统10可以组装成组集或其他结构,然后连接到一个或多个电池。在这种情况下,可以控制一个或多于一个的燃料电池堆12或系统10,以控制整个组件的电压,从而更近似地匹配并联连接的一个或多个电池的电压。当燃料电池功率系统10与负载在没有电池的情况下连接时,例如直接连接或通过DC-DC电压转换器连接,也可以使用这里描述的方法和装置。所述的方法和装置可以有助于保持燃料电池功率系统10的电压在负载(例如,计算机服务器或其他电子设备,例如,D C电网数据中心)所需的范围内。
【主权项】
1.一种装置,其包括: a)具有空气入口和空气出口的燃料电池堆; b)在所述燃料电池堆的空气出口和所述燃料电池堆的空气入口之间的再循环管线; c)被构造成允许改变通过所述再循环管线的流量的至少一个可控设备;和 d)可操作用来控制所述至少一个可控设备的控制器。2.根据权利要求1所述的装置,其中所述至少一个可控设备包括阀门。3.根据权利要求2所述的装置,其中所述阀门位于所述再循环管线中或所述空气出口处。4.根据权利要求1?3中任一项所述的装置,还包括与所述燃料电池和所述控制器连接的电压传感器。5.根据权利要求4所述的装置,其中所述控制器被构造成操作所述至少一个可控设备,从而接近于、更加近似地匹配所述燃料电池堆的所需电压或者在其范围内。6.根据权利要求1?5中任一项所述的装置,还包括一个或多个电池。7.根据权利要求6所述的装置,其中所述燃料电池堆与所述一个或多个电池并联连接,并且所述控制器被构造成操作所述至少一个可控设备,使得所述燃料电池堆的电压更近似地匹配所述一个或多个电池的电压或其一部分。8.根据权利要求7所述的装置,其中所述控制器被编程,从而控制所述至少一个可控设备达到与所需电压有关的预定方式。9.根据权利要求8所述的装置,其中所述控制器被编程,从而考虑到所述燃料电池堆产生的实际电压来调整预定设置。10.根据权利要求1?9中任一项所述的装置,还包括与所述燃料电池堆和所述控制器连接的温度传感器。11.根据权利要求1?10中任一项所述的装置,其与负载直接连接或通过DC-DC电压转换器连接。12.一种方法,其包括: a)提供具有空气入口和空气出口的燃料电池堆以及在所述燃料电池的空气出口和所述燃料电池的所述空气入口之间的再循环管线;和 b)通过所述再循环管线,将经由所述空气出口排放的空气的一部分再循环到所述空气入口。13.根据权利要求12所述的方法,还包括改变所述再循环管线中的空气流量,从而提供燃料电池堆电压的所需变化。14.根据权利要求13所述的方法,其中所述燃料电池堆电压的所需变化是为了更加近似地匹配与所述燃料电池堆或其一部分并联连接的一个或多个电池的电压。15.根据权利要求12?14中任一项所述的方法,其中通过控制阀门来改变所述再循环管线中的空气流量。16.根据权利要求12?15中任一项所述的方法,包括以下步骤:查询与所述燃料电池堆连接的电压传感器。
【专利摘要】本发明描述了一种用于控制燃料电池产生的电压的系统和方法。所述系统涉及到在燃料电池的空气出口和燃料电池的空气入口之间设置再循环管线。至少一个可控设备被构造成允许改变通过所述再循环管线的流量。控制器被设置用来控制所述可控设备。所述方法涉及到改变空气出口到空气入口的再循环流量,从而提供燃料电池电压的所需变化。
【IPC分类】H01M8/04537, H01M8/04746, H01M8/04858, H01M8/12
【公开号】CN105556724
【申请号】CN201480036214
【发明人】纳撒尼尔·伊恩·约斯, 保罗·福特
【申请人】水吉能公司
【公开日】2016年5月4日
【申请日】2014年3月6日
【公告号】CA2913376A1, CA2913553A1, CN105556723A, EP3005456A1, EP3005457A1, US20160111741, US20160118679, WO2014186880A1, WO2014186881A1
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1