钕铁硼磁石及其制造方法

文档序号:10513678阅读:280来源:国知局
钕铁硼磁石及其制造方法
【专利摘要】本发明揭露一种钕铁硼磁石及其制造方法,其是将合金铸料进行粗粉碎处理后,加入重稀土元素脂肪酸盐,经混合步骤、细粉碎处理等步骤,制得钕铁硼磁石。所得的钕铁硼磁石的重稀土元素含量较低,但仍维持良好矫顽磁力,且可抑制残留磁束密度及最大磁能积大幅下降。此外,本发明的制造方法适用于各种大小的钕铁硼磁石。
【专利说明】
钦铁棚磁石及其制造方法
技术领域
[0001] 本发明是有关于一种磁石的制造方法,且特别是有关于一种钦铁测磁石的制造方 法。
【背景技术】
[0002] 在现有磁石材料中,钦铁测磁石具有最高磁能积,且对应用的产品有节能、轻/小 量化的效果,近年来被广泛地应用在机电用马达、硬盘音圈马达、医用核磁共振造影(MRI)、 3C电子产品、节能家电、电动车和风力发电等。
[0003] 钦铁测磁石在大气环境中极易氧化、腐蚀及粉化,磁石表面需先经表面锥膜处理。 其次,钦铁测磁石的居里温度低、不耐高温,在7(TCW上即会发生退磁。因此在合金原料烙 炼制备时,需加入1重量百分比至25重量百分比的铜值y)和/或0. 5重量百分比至13. 5 重量百分比的铺(町)等重稀±元素,取代钦铁测磁石中部分的钦元素,由此增加各异向性 磁场,而提高矫顽磁力α化)。所添加的重稀±含量越多,虽可提高矫顽磁力,但会牺牲部分 残留磁束密度度r)及最大磁能积(度H)mJ。
[0004] 基于近年来地球资源有限、环保意识抬头W及中国稀±元素出口管制措施等限 巧1|,使得生产钦铁测磁石所需的稀±元素(如钦、错、铜、铺等)价格高涨。综上所述,如何 降低如铜或铺等重稀±元素的含量,但维持钦铁测磁石的矫顽磁力,且抑制残留磁束密度 及最大磁能积降低,成为十分重要的议题。
[0005] -般而言,现有钦铁测磁石的制造方法是将合金铸料进行烙炼、粗粉碎处理、细粉 碎处理、磁场配向成形、烧结处理、时效处理及表面锥层处理,W制得钦铁测磁石。而铜或铺 等重稀±元素,则可在前述制造方法的不同阶段,添加至合金铸料中。
[0006] 展开来讲,上述方式之一是在烙炼合金铸料阶段,将重稀±元素烙炼至合金铸料 中。此种方法步骤少、操作简单,但因无法控制重稀±元素位于钦铁测磁石的晶界处或晶相 中,因此需添加较多的重稀±元素,从而大幅降低钦铁测磁石的残留磁束密度W及最大磁 能积。
[0007] 另一种方法则是将细粉碎处理后的合金铸料加入偶联剂及含重稀±元素的有机 混合物,利用偶联剂使含重稀±元素的有机混合物附着于合金铸料后,再进行加压成形、烧 结等后续步骤。此法的制造方法步骤较简易,然而需额外添加偶联剂帮助附着。
[0008] 此外,目前发展出一种晶界扩散法,此法主要是在钦铁测磁石烧结后,将含铜或铺 等重稀±元素的物质,W瓣锥、蒸锥、氣化物或氧化物粉末溶液沾覆等方式,附着于已烧结 的钦铁测磁石表面,然后加热进行晶界扩散处理,使磁石表面的铜或铺可集中在晶界处,沿 晶界扩散至磁石内部,由此有效增加矫顽磁力,同时也大幅抑制残留磁束密度及最大磁能 积的下降。
[0009] 然而,晶界扩散法仍有下述缺点。由于晶界扩散法需使重稀±元素由表面沿晶界 扩散,其扩散距离有限,因此仅能制得厚度小于3-5mm的磁石。其次,晶界扩散法需先将烧 结、热处理后的磁石经切割、加工、清洗、加热进行晶界扩散处理及研磨等处理后,才可进行 表面锥层处理,步骤十分复杂。再者,倘若利用沾覆的方式将含重稀±元素的物质附着于已 烧结的钦铁测磁石表面,再进行晶界扩散法,不易控制重稀±元素的膜厚且易剥落;若利用 瓣锥或蒸锥的方式将含重稀±元素的物质附着于已烧结的钦铁测磁石表面,再进行晶界扩 散法,重稀±元素虽可均匀附着,但制造方法成本较高。
[0010] 有鉴于此,亟需提出一种简化制造方法且降低成本的钦铁测磁石及其制造方法, 在降低重稀±元素的使用量的同时,仍维持良好矫顽磁力,且可抑制残留磁束密度W及最 大磁能积大幅下降,进而改进现有的钦铁测磁石的制造方法的缺陷。

【发明内容】

[0011] 因此,本发明的一个实施方案是提供一种钦铁测磁石的制造方法,其利用合金铸 料经粗粉碎处理后制得的合金粗粉末,与重稀±元素脂肪酸盐经混合步骤及细粉碎处理, 而制得钦铁测磁石,W降低重稀±元素的使用量、简化制造方法。
[0012] 本发明的另一实施方案是提供一种钦铁测磁石,其利用上述的制造方法而制成, 其中前述的钦铁测磁石仍维持良好矫顽磁力、降低成本并抑制残留磁束密度及最大磁能积 大幅下降。
[0013] 根据本发明的上述实施方案,提出一种钦铁测磁石的制造方法。在一实施例中,此 制造方法先提供合金铸料,其中此合金铸料中可包含10原子百分比(at. %)至16 at. % 的轻稀±元素、3 at. %至9 at. %的测、75 at. %至85 at. %的铁及小于或等于2 at. % 的渗质元素。其中,上述的轻稀±元素可包含钦或错等,而上述的渗质元素可包含但不限于 钻、铅、铜、嫁、银或铅等。
[0014] 接着,对合金铸料进行粗粉碎处理,W得合金粗粉末。然后,将合金粗粉末与重稀 ±元素脂肪酸盐进行混合步骤达第一时间,W获得混合粗粉末。其中,上述的重稀±元素脂 肪酸盐中的重稀±元素可为铜或铺,并且此重稀±元素脂肪酸盐的含量为0. 5重量百分比 至5重量百分比。
[0015] 接下来,将混合粗粉末进行细粉碎处理,W获得混合细粉末。接下来,对此混合细 粉末进行加压成形处理,W获得胚体。后续利用上述步骤所得的胚体进行烧结处理,并制得 烧结体。之后,对此烧结体进行时效处理,W制得钦铁测磁石。所得的钦铁测磁石的重稀± 元素含量为大于0重量百分比且小于2重量百分比。
[0016] 依据本发明的一个实施例,上述的合金铸料为合金薄片,其厚度可为0. 1mm至 Ιγπγπ 〇
[0017] 依据本发明的另一实施例,上述的合金粗粉末的平均粒径可小于500 μ m。
[0018] 依据本发明的一个实施例,上述的重稀±元素脂肪酸盐的碳数可为16至20。
[0019] 依据本发明的一个实施例,上述的第一时间可为30分钟至90分钟。
[0020] 依据本发明的一个实施例,上述的混合细粉末的粒径可为lum至5um。在一例示 中,此混合细粉末的粒径可例如为1. 5 μ m至3 μ m。
[0021] 依据本发明的再一实施例中,上述的加压成形处理在至少lOkOe的磁场W及 50MPa至250MPa的压力下进行。在其它实施例中,上述的烧结处理在900°C至llOCrC的温 度下进行1小时至10小时。而上述之时效处理系于50(TC至60(TC的温度下进行1小时至 5小时。
[0022] 根据本发明的另一实施方案,提出一种钦铁测磁石,其中此钦铁测磁石的重稀 ±元素的含量为大于0重量百分比且小于2重量百分比,且此钦铁测磁石矫顽磁力大于 15k0e、残留磁束密度大于13kGs W及最大磁能积大于48MG0e。
[0023] 应用本发明的钦铁测磁石及其制造方法,其直接添加重稀±元素脂肪酸盐至合金 粗粉末中,克服重稀±元素使用量过高、易氧化及质地过软的问题。而且,所制得的钦铁测 磁石的矫顽磁力大幅提升,但降低残留磁束密度及最大磁能积的相对下降幅度。
【附图说明】
[0024] 为让本发明的上述和其它目的、特征、优点与实施例能更明显易懂,所附附图的详 细说明如下:图1描绘了依照本发明的一个实施例的钦铁膨磁石的制造方法的部分流程 图。
【具体实施方式】
[00巧]本发明提供一种钦铁测磁石的制造方法,其利用合金铸料经粗粉碎处理后制得的 合金粗粉末,与重稀±元素脂肪酸盐经混合步骤及细粉碎处理等步骤,W制得钦铁测磁石。
[0026] 本发明此处所称的合金铸料可含有10原子百分比(at. %)至16 at. %的轻稀± 元素、3 at. %至9 at. %的测、75 at. %至85 at. %的铁及小于或等于2 at. %的渗质 元素。其中,上述的轻稀±元素可包含钦或错等,而上述的渗质元素可包含但不限于钻、铅、 铜、嫁、银或铅等。
[0027] 若上述的轻稀±元素少于10原子百分比(at. %),会降低细粉碎步骤的效率,且 影响磁场配向步骤。若上述的轻稀±元素多于16 at. %时,因轻稀±元素易氧化,而降低 所制得的磁石的性能。若上述的测少于3 at. %时,所制得的磁石的矫顽磁力不佳。若上 述的测多于9 at. %时,则会降低磁石的残留磁束密度及最大磁能积。另外,若渗质元素多 于2 at. %,则使磁石的性能下降。
[0028] 本发明此处所称的粗粉碎处理可使用任何现有的粉碎设备或粉碎方式,使合金铸 料粉碎成合金粗粉末,本发明不限于此处所举。在一例示中,前述粉碎设备可例如捣碎机、 飄式破碎机、盘式磨碎机或其它具有相同功能的设备等。在另一例示中,前述粉碎方式可包 括物理破碎法,例如氨碎法。在使用氨碎法的例子中,合金铸料在吸收氨气后,产生合金膨 胀使合金铸料造成物理性的破碎,W制得合金粗粉末。
[0029] 本发明此处所称的混合步骤,可使用任何现有的混合设备。在一例示中,上述的混 合设备可例如V型、双锥型混合机、滚筒型混合机或其它具有相同功能的混合设备,W制得 混合粗粉末。
[0030] 本发明此处所称的细粉碎步骤可使用任何现有的细粉碎方式。在一例示中,上述 的细粉碎方式可例如球磨、振动研磨或其它具有相同功能的方式等,本发明不限于此处所 举。在另一例示中,前述细粉碎方式为气流磨。在使用气流磨的例子中,混合粗粉末被惰性 气体高速喷射,进行相互碰撞、粉碎,并进一步使重稀±元素脂肪酸盐均匀涂覆在合金粗粉 末上,W制得混合细粉末。
[0031] 本发明此处所称的重稀±元素脂肪酸盐的脂肪酸基的碳数可为16至20,且此重 稀±元素脂肪酸盐中的重稀±元素可为铜或铺。本发明的技术特征之一在于重稀±元素脂 肪酸盐的含量远低于常规使用量,一般为0. 5重量百分比至5重量百分比。
[0032] 若上述的重稀±元素 W重稀±元素脂肪酸盐W外的形式加入,例如W重稀±元素 与脂肪酸盐分开的形式加入,则因重稀±元素易氧化且质地过软等问题,而无法在下述的 细粉碎处理中得到粒径较细的混合细粉末。因此需利用脂肪酸基的碳数介于16至20间的 重稀±元素脂肪酸盐保护重稀±元素并降低粒径。
[003引此外,上述的重稀±元素脂肪酸盐的含量若小于0. 5重量百分比,则对所制成的 钦铁测磁石的矫顽磁力贡献不大。若上述的重稀±元素脂肪酸盐的含量大于5重量百分 比,则会提高制造方法成本,且使所制得的钦铁测磁石的残留磁束密度及最大磁能积大幅 降低。
[0034] 请参照图1,其描绘依照本发明的一个实施例的钦铁测磁石的制造方法的流程图。 在一实施例中,如步骤110所示,此方法100先提供一种合金铸料,其中此合金铸料如前所 述,故不另赏言。
[0035] 在此补充的是,此合金铸料可为由常规烙炼、铸造法制成的合金铸块,更优选可为 利用漉轮旋转急速凝固法所制得的合金薄片。此合金薄片的厚度可为0. 1mm至1mm。
[0036] 接着,如步骤120所示,将合金铸料进行粗粉碎处理,W制得合金粗粉末。在一实 施例中,上述的合金粗粉末具有小于500 μ m的平均粒径。
[0037] 然后,如步骤130所示,将合金粗粉末与重稀±元素脂肪酸盐进行混合步骤达第 一时间,W制得混合粗粉末。在一实施例中,此第一时间可为30分钟至90分钟。而此处所 述的重稀±元素脂肪酸盐与混合步骤的详细内容如前所述,故不另赏言。
[0038] 另外一提的是,利用上述的混合步骤将重稀±元素加入合金粗粉末中,可使重稀 ±元素位于晶界处而非晶相中,因此可有效提升矫顽磁力,但抑制最大磁能积及残留磁束 密度的大幅降低。
[0039] 接下来,如步骤140所示,将混合粗粉末进行细粉碎处理,W制得混合细粉末。在 一实施例中,上述的混合细粉末可具有介于1 μ m至5 μ m的平均粒径,然而优选为1. 5 μ m 至3 μ m。而此处的细粉碎处理已于前段落详加描述,此不另赏言。
[0040] 若上述的混合细粉末的平均粒径大于5 μ m,则能接触到重稀±元素脂肪酸盐的表 面积降低,而使所制成的重稀±元素含量降低。若上述的混合细粉末的平均粒径小于1 μ m, 所得的烧结体会有配向度降低W及残留磁束密度减少的问题,进而增加后续处理的困难 度。
[0041] 后续进行步骤150所示的加压成形处理,W制得胚体。在一实施例中,此加压成形 处理可于至少lOkOe的磁场W及50MPa至250MPa的压力下进行,然而上述的磁场优选为 巧kOe W上。
[0042] 接下来,如步骤160所示,进行烧结处理,W制得烧结体。在一实施例中,此烧结处 理可于9〇(Tc至iiocrc的温度下进行1小时至10小时。
[0043] 之后,将烧结体进行时效处理(步骤170),W得钦铁测磁石。在一实施例中,此时 效处理可于50(TC至60(TC的温度下进行1小时至5小时。
[0044] 在此说明的是,本发明的钦铁测磁石的制造方法仅需在粗粉碎处理后添加重稀± 元素脂肪酸盐,经混合步骤及细粉碎处理后,即可进行加压成形处理等步骤。因此,在细粉 碎处理后,不需额外添加偶联剂及重稀±元素有机物并经混合步骤后,才进行后续的步骤。 由本发明的制造方法制得的磁石可具有任意厚度,视实际需求而定。
[0045] 本发明所得的钦铁测磁石的重稀±元素的含量为大于0重量百分比且小于2重量 百分比,且此钦铁测磁石具有大于15k0e的矫顽磁力、大于13kGs的残留磁束密度W及大于 48MG0e的最大磁能积。
[0046] 上述的钦铁测磁石可应用于机电用马达、硬盘音圈马达、医用核磁共振造影 (MRI)、3C电子产品、节能家电、电动车和风力发电等,W达到节能及轻量化的效果。
[0047] W下利用实施例W说明本发明的应用,然而其并非用W限定本发明,本领域技术 人员在不脱离本发明的精神与范围内能够作出各种改动与润饰。
[0048] 制备钦铁测磁石 实施例1 首先,提供合金铸料,此合金铸料是由纯度大于99%的钦、钻、铜、铁金属及测铁合金, 经由漉轮急速冷凝固法所制成的合金薄片。其中,上述的合金铸料的组成为13. 8原子百分 比(at. %)的钦、6.0 at. %的测、1.1 at. %的钻、0.5 at. %的铅及0.2 at. %的铜W及 78. 4 at. %的铁。接着,对合金铸料进行粗粉碎处理,此粗粉碎处理包括将合金铸料放入压 力为1. 9kg/cm2的氨气环境下进行氨化及粉碎,再抽真空并加热至55(TC W脱除部分氨气, 即可获得小于500 μ m的合金粗粉末。随后,在合金粗粉末中添加3重量百分比的硬脂酸铜, 并在氮气气氛保护下,W滚筒型混合机进行40分钟的混合步骤,制得混合粗粉末。接下来, 在氮气气氛下,于气流磨设备中对混合粗粉末进行细粉碎处理,W获得平均粒径2 μ m的混 合细粉末。接下来,在15k0e的磁场与120MPa的压力下,对混合细粉末进行加压成形处理, W获得胚体。然后,对胚体进行真空烧结处理,此烧结处理的温度为loicrc,且保温时间为 4小时,W获得直径为20mm、厚度为11mm的烧结体。之后,将烧结体于氮气气氛下,进行温 度为50(TC、保温2小时的时效处理,之后加工获得直径为20mm、厚度为5mm的钦铁测磁石。
[0049] 利用上述方法制得的钦铁测磁石W下列方式评价其重稀±含量、残留磁束密度 度r)、矫顽磁力(iHc)及最大磁能积度H) max。
[0050] 实施例2至3与比较例1至4 实施例2至3与比较例1至2系使用与实施例1相同的方法来制备钦铁测磁石,不同 的是,实施例2至3与比较例1至2改变重稀±元素的含量或种类。而比较例3与4利用 比较例1的钦铁测磁石,经由现有技术的晶界扩散法,W加入重稀±元素。上述的实施例与 比较例的含量、制造方法条件及评价结果如表1所示,此处不另赏述。
[0051] 补充说明的是,上述的晶界扩散法是将比较例1的磁石经过碱溶液、酸溶液及清 水等清洗并干燥后,再将磁石浸泡在氣化铜与酒精重量比1 ;1的含重稀±元素溶液中,W 超音波振荡3分钟后,取出磁石并干燥。后将表面沾覆氣化铜的磁石置于90(TC的真空环 境中,进行5小时的晶界扩散处理。接着,再于50(TC中进行2小时的时效处理。最后,将 含重稀±元素的磁石的表面加工、研磨,W去除剩余的氣化铜,而制得直径为20mm、厚度为 5mm或10mm的钦铁测磁石。
[0052] 评价方式 1.重稀±元素含量 本发明的重稀±含量是由制造方法中的重稀±元素的添加量计算出磁石内部所含的 重稀±元素含量。比较例3与4的重稀±元素含量是指配制上述含重稀±元素溶液的重稀 ±元素总使用量,而非磁石内部所含的重稀±元素含量。此重稀±元素的含量或使用量越 少越好。
[0053] 2.残留磁束密度度r) 本发明的残留磁束密度是W未添加重稀±元素的比较例1的残留磁束密度做为参考 值,评估实施例1至3与比较例2至4的钦铁测磁石的残留磁束密度的相对下降幅度。所 得的残留磁束密度的相对下降幅度越小越好。
[0054] 3.矫顽磁力(iHc) 本发明的矫顽磁力是W未添加重稀±元素的比较例1的矫顽磁力做为参考值,评估实 施例1至3与比较例2至4的钦铁测磁石的矫顽磁力的相对上升幅度。所得的矫顽磁力的 相对上升幅度越大越好。
[0055] 4.最大磁能积度H) max 本发明的最大磁能积是W未添加重稀±元素的比较例1的最大磁能积做为参考值,评 估W现有技术的方法W及本发明的方法所制备的含重稀±元素的钦铁测磁石的最大磁能 积的下降幅度。所得的最大磁能积的相对下降幅度越小越好。
[0056] 根据表1的结果可知,利用本发明的钦铁测磁石的制造方法所得的钦铁测磁石, 重稀±元素含量大于0重量百分比至小于2重量百分比,且维持大于15k0e的矫顽磁力、大 于13kGs的残留磁束密度W及大于48MG0e的最大磁能积。
[0057] 再者,根据表1的实施例1及比较例1与2可知,实施例1所得的钦铁测磁石的 重稀±元素使用量为0.47重量百分比,相对于未添加重稀±元素的钦铁测磁石(比较 例1),矫顽磁力提升了 4. 42k0e,但残留磁束密度仅下降0. 12kGs,而且最大磁能积仅下降 0. 85MG0e。然而,直接在合金铸料中添加重稀±元素的比较例2的重稀±元素使用量多达 2. 41重量百分比,虽可达到与本实施例相当的矫顽磁力,但残留磁束密度下降了 0. 67kGs, 而最大磁能积则下降了 3. 88MG0e。
[005引而根据表1的比较例3与4可知,利用现有技术的晶界扩散法所制得知钦铁测磁 石,虽在较薄巧mm)的磁石中表现与本发明的方法所制得的钦铁测磁石的矫顽磁力相当, 并且也可有效地抑制最大磁能积及残留磁束密度的下降,但当厚度增加至10mm时,则无法 有效提升矫顽磁力。此外,利用晶界扩散法制造钦铁测磁石的程序繁多,增加复杂性及制造 时间。再者,由于晶界扩散法系将磁石浸泡于含重稀±元素的溶液,可推知晶界扩散法的重 稀±元素使用量会大于本发明的方法。
[0059] 由本发明上述的实施例可知,本发明的钦铁测磁石的制造方法的优点在于,可利 用简单的步骤及少量的重稀±元素,制造具有良好矫顽磁力的钦铁测磁石,且可有效抑制 最大磁能积及残留磁束密度的下降。此外,本发明的方法适用于制造各种厚度的磁石。
[0060] 虽然本发明已W数个实施例掲露如上,然而其并非用W限定本发明,在本发明所 属技术领域中任何普通技术人员,在不脱离本发明的精神和范围内,都能作各种的改动与 润饰,因此本发明的保护范围当W后附的权利要求的限定为准。
[00川符号说明 100 方法 110 提供合金铸料 120 对合金铸料进行粗粉碎处理,W获得合金粗粉末 130 进行混合步骤,使合金粗粉末与重稀±元素脂肪酸盐混合达到第一时间,W获 得混合粗粉末 140 对混合粗粉末进行细粉碎处理,W获得混合细粉末 150 对混合细粉末进行加压成形处理,W获得胚体 160 对胚体进行烧结处理,W获得烧结体 170 对烧结体进行时效处理,W获得钦铁测磁石。
[0062] 表 1

【主权项】
1. 一种钕铁硼磁石的制造方法,包含: 提供合金铸料,其中该合金铸料不含重稀土元素且包含: 10原子百分比(at. %)至16 at. %的轻稀土元素,其中该轻稀土元素包括钕或镨; 3 at. % 至 9 at. % 的硼; 75 at. %至85 at. %的铁;以及 小于或等于2 at. %的掺质元素,其中该掺质元素包括钴、铝、铜、镓、铌或锆; 对该合金铸料进行粗粉碎处理,以获得合金粗粉末; 进行混合步骤,使该合金粗粉末与重稀土元素脂肪酸盐混合达到第一时间,以获得混 合粗粉末,其中该重稀土元素脂肪酸盐中的重稀土元素为镝或铖,且该重稀土元素脂肪酸 盐的含量为〇. 5重量百分比至5重量百分比; 对该混合粗粉末进行细粉碎处理,以获得混合细粉末; 对该混合细粉末进行加压成形处理,以获得胚体; 对该胚体进行烧结处理,以获得烧结体;以及 对该烧结体进行时效处理,以获得该钕铁硼磁石, 其中该钕铁硼磁石的该重稀土元素的含量为大于〇重量百分比且小于2重量百分比。2. 根据权利要求1所述的钕铁硼磁石的制造方法,其中该合金铸料为合金薄片,且该 合金薄片的厚度为〇· 1mm至1mm。3. 根据权利要求1所述的钕铁硼磁石的制造方法,其中该合金粗粉末的平均粒径小于 500 μ m〇4. 根据权利要求1所述的钕铁硼磁石的制造方法,其中该重稀土元素脂肪酸盐的脂肪 酸基的碳数为16至20。5. 根据权利要求1所述的钕铁硼磁石的制造方法,其中该第一时间为30分钟至90分 钟。6. 根据权利要求1所述的钕铁硼磁石的制造方法,其中该混合细粉末的平均粒径为 1 U m Μ 5 μ m。7. 根据权利要求1所述的钕铁硼磁石的制造方法,其中该混合细粉末的平均粒径介于 1. 5 μ m Μ 3 μ m。8. 根据权利要求1所述的钕铁硼磁石的制造方法,其中该加压成形处理在至少lOkOe 的磁场以及50MPa至250MPa的压力下进行。9. 根据权利要求1所述的钕铁硼磁石的制造方法,其中该烧结处理在900°C至1KKTC 的温度下进行1小时至10小时。10. 根据权利要求1所述的钕铁硼磁石的制造方法,其中该时效处理在500°C至600°C 的温度下进行1小时至5小时。11. 一种钕铁硼磁石,其利用根据权利要求1-10中任一项所述的钕铁硼磁石的制造方 法制得,其中该钕铁硼磁石的重稀土元素的含量为大于0重量百分比且小于2重量百分比, 且该钕铁硼磁石具有大于15k0e的矫顽磁力、大于13kGs的残留磁束密度以及大于48MG0e 的最大磁能积。
【文档编号】H01F41/02GK105869815SQ201510024817
【公开日】2016年8月17日
【申请日】2015年1月19日
【发明人】黄宏胜, 邱军浩, 陈镱夫, 陈柏伟
【申请人】中国钢铁股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1