电动机换向器和用于激励电动机换向器的方法

文档序号:7422981阅读:154来源:国知局
专利名称:电动机换向器和用于激励电动机换向器的方法
电动机换向器和用于激励电动机换向器的方法
技术领域
本发明涉及一种电子电动机换向器和一种用于激励这种换向器的方法。
电子换向器用于控制或调节无刷电动机的转速和转矩。每个电动机都 具有至少一个定子线圈和/或转子线圏,其通过换向器供电。为此,换向 器具有开关桥路,该开关桥路带有所谓的低侧半导体
(Lowside-Halbleiter)和高侧半导体(Highside-Halbleiter )。该开关桥路 通过脉宽调制器来激励。该脉宽调制器生成脉宽调制的周期信号,借助该 信号来激励该开关桥路的两个开关半导体之一。调制频率高到使得由于马 达的电气时间常数和相电感中存储的能量而将由脉宽调制器周期性引入 马达线圏中的电流平滑成在相关的马达线圏中的平均电流。通过占空比的 变化可以以此方式设置在零伏特到供给电压之间的任意电压。
在DE 101 56 939 B4中公开了一种根据现有技术的电子电动机换向器。
在根据现有技术的换向器的情况下,开关桥路的低侧半导体或者高侧 半导体通过脉宽调制器来激励,其中互补的开关半导体在整个调制阶段期 间闭合(即导通)。通过持续闭合的互补的开关半导体,在脉宽调制信号 的两个脉冲之间的供电间歇中形成空载运行。与开关桥路是半桥还是全桥 无关,并且与开关桥路驱动一个、两个、三个还是更多个马达线圏无关, 相应的低侧半导体和高侧半导体被不同强度地负载。只有在脉宽比为 100%时(即脉冲长度与节拍长度的比例为1.0时),低侧半导体和高侧半 导体的电负载和热负载才处于整个损耗功率的大约50%的相同水平上。
尤其是在针对短时运行而设计的高动力的电动机或者应用中,例如在 启动期间出现两个彼此互补的半导体明显不对称的负载。出于对称原因, 低侧半导体和高侧半导体在实践中是相同的并且因此都针对出现的整个 功率或者损耗功率的100%而设计。
针对于此,本发明的任务是提出一种电动机换向器或者一种用于激励 电动机换向器的方法,其中开关桥路的功率半导体被对称地负载。
根据本发明,该任务借助权利要求1或9的特征来解决。根据装置权利要求1,脉宽调制器不仅连接到低侧半导体上而且连接 到高侧半导体上。设置有一种工作模式切换器,其将脉宽调制器交替地接 通到高侧半导体或者低侧半导体上。
根据权利要求9所述的根据本发明的方法,在用于驱动电动机的换向
器的工作期间,交替地并且在调制频率fM以下地在高侧工作模式和低侧 工作模式之间切换,其中脉宽调制器信号交替地连接到高侧半导体和低侧 半导体上,其中各互补的半导体分别导通(即闭合)。
根据独立权利要求于是设计的是,规律地并且在调制频率fM以下地 在高侧工作模式和低侧工作模式之间来回切换。由此,即使在调制比小于
100%时,损耗功率也近似相等地分配到低侧半导体和高侧半导体上。工
作模式切换器借助其在低侧工作模式和高侧工作模式之间来回切换的切
换频率fm可以根据两个所涉及的半导体的热惰性来选择。工作模式切换 频率fHL必须高到使得在脉冲宽度为0%到100%之间的情况下避免两个 彼此对应的开关半导体之一相对于另 一对应的开关半导体的不对称的升 温。由此,使在两个对应的半导体中出现的损耗功率对称并且快速地分配, 使得保证了所有半导体的对称和基本上相同形状的无峰值的升温。工作模 式切换可以^使用在不同的开关桥路拓朴结构中,即4吏用在1H、 3H、 M6、 B6等拓朴结构中。
实验表明开关桥路半导体的最高温度可以降低15K-20K以及降低 更多。所涉及的半导体因此可以相应较小地设计,由此又得到了成本优点。 必要时,对散发热的装置可以提出较低的要求。此外,通过可避免的温度 峰值也提高了防止损毁的安全性和可靠性。
根据一个优选的扩展方案,工作^=莫式切换频率fHL在脉宽调制器的调 制频率fM以下。特别优选地,工作模式切换频率f肌至少在调制频率fM的 60%以下。然而,工作模式切换频率1始终选<*得高到使得在一种工作 模式直至切换的持续时间中实际上避免了 一个半导体的温度相对于另一 对应半导体的温度的显著升高。根据一个优选的扩展方案,工作模式切换
频率fHL在5kHz以下。
优选地,工作模式切换器受时间控制。与电动机的转速或转动频率无 关地,工作模式的切换以恒定的频率进行。由此,能够可靠地避免过低的 切换频率,这种过低的切换频率会导致对应的半导体的不希望的升温。
然而可替选地,也可以实现工作模式的位置控制的切换。这在技术上是较为简单的解决方式,因为在电换向的电动机中本来就存在转子位置信
息。例如,工作模式可以在转子整转的每15。、 30。或者60。被切换。在位 置控制的工作模式切换中要保证不低于最低工作模式切换频率,以便避免 两个对应的半导体之一的不希望的加热。
基本上,换向器的开关桥路可以构建为半桥。而根据一个优选的扩展 方案,开关桥路构建为全桥。由此,马达线圏或者马W目可以在两个方向 上,皮供电。这尤其提供了在两个转动方向上驱动马达的可能性。
根据一个优选的扩展方案,换向器构建为使得实现或可以实现在节拍 间歇期间的有源空载运行。由此,总体上降低了损耗功率,因为空载运行 电流不再经过续流二极管而是通过闭合的开关半导体。
以下参照附图更为详细地阐述了本发明的实施例。 其中


图1示意性地示出了具有电动机换向器的电动机,其中包括简化示出 的开关桥路和带有脉宽调制器的开关桥路激励装置。
图2示出了在无源空载运行的情况下通过马达线圏的电流的变化过 程、用于开关半导体的激励信号的变化过程和通过图1的开关桥路的开关 半导体的电流的变化过程。
图3示出了在有源空载运行的情况下通过马达线圈的电流的变化过 程、用于开关半导体的激励信号的变化过程和通过图1的开关桥路的开关 半导体的电流的变化过程。
在图1中示出了简化和缩减示出的马达装置10,其基本上由换向器 12和电动机14构成。电动机14是具有7JC磁的马达转子16和三个定子侧 的马达线圏L、 L,、 L"的无刷电子换向电动才几。这三个马达线圏L、 L,、 L"通过换向器12来供给电流。
在图1中出于清楚的原因而强烈缩减地示出了换向器12,以便示例 性并且清楚地阐述关于半桥的两个不同的工作状态,其中该半桥由半导体 Ti和T3构成。换向器12具有构建为全桥的开关桥路20,该开关桥路的 开关半导体1\、 T2、 13和T4通过开关桥路激励装置22来激励。开关半 导体1\、 T2、 T3、 T4是MOSFET半导体,然而也可以由其他可开关的功 率半导体来构成。与半导体TVT4并联地关联有续流二极管D^D4,这些 续流二极管允许在开关间歇中流过电流。
6开关桥路激励装置22尤其是具有微型计算机24、脉宽调制器26和 工作模式切换器28。实际上激励装置22更为复杂,因为这里仅仅示例性 地阐述了关于半桥在一个供电方向上的两种工作模式,并且对此尤其是完 全省去了半导体T2和T4的激励的描述。实际上,所有三个马达线圏L、 L,、 L"都被供电,更确切地说以交变的电流方向供电。激励装置22'的原 理将以三个H桥落t一为例来阐述。
在根据现有技术的换向器中,由脉宽调制器生成的信号被引导至高侧 半导体Tp T2或者引导至低侧半导体T3、 T4。同样在桥支路中的互补开 关半导体T3、 T4或1V T2可以被激励用于有源空载运行。
当图1中所示的装置以所谓高侧模式工作时,在根据现有技术的装置 的情况下脉宽调制器仅仅连接在所涉及的高侧半导体1\上。对应的低压 半导体T4于是被持续地闭合。在脉宽调制信号的节拍间歇期间,高侧半 导体L被断开,即在节拍间歇期间在那里没有出现损耗功率并且由此没 有进一步地升温。然而对应的半导体T4保持闭合,由此在开关桥路20的 下半部分中可以形成空载运行,该空载运行顺时针地循环通过马达线圏 L、低侧半导体T4以及续流二极管D4或必要时通过闭合的半导体T3。仅 仅在100%的占空比的情况下,在高侧半导体L和对应的低侧半导体T4 中的损耗功率相同。
如果马达线圏L在两个供电方向上工作(通常情况如此),则当在反 方向上调制马达线圉L的供电的高侧半导体T2断开时,也在有源空载运 行阶段期间使所观察的低侧半导体T4负荷。
由于在工作中100%的脉宽比是例外情况并且必要时由于原理造成 在技术上是不可能的,所以该桥路的一部分(低侧半导体或高侧半导体) 根据定时方式通常比对应的半导体负荷明显更多。这导致损耗功率和由此 的升温不同地分配到半导体上。
在根据本发明的该换向器12中因此设置有工作模式切换器28,其可 以将脉宽调制器26交替地连接到高侧半导体1\、 12和低侧半导体T4、 13上。可以持续地在高侧工作模式与低侧工作模式之间来回切换。由此,
在高侧半导体1V T2和低侧半导体T3、 T4之间的损耗功率不对称性以工
作模式切换的频率也始终转换,即可能的较高的损耗功率交替地切换到高 侧半导体1V T2或者切换到低侧半导体T3、 T4。
激励信号的时间变化过程以及通过半导体TrT4的电流的时间变化过程将参照图l至3来阐述。
360。的转子旋转划分成六个阶段A-F,每个60°。图2和图3的九个 时间图表示出了线圏电流L (1)的时间变化过程、半导体1\、 T3、 T2 和Xt( 2至5 )的开关状态以及通过半导体TVT4的相应的半导体电流IT1、 IT3、 It2和It4,更确切地说图2中是在无源空载运行的情况下而在图3中 是在有源空载运行的情况下。高侧阶段和低侧阶段在这些图表中用"h"或 "I"表示。
在阶段A (0。-60°)中,脉宽调制器26的脉宽调制信号连接到高側 半导体1\上,使得形成通过半导体1\的相应的电流变化过程IT1。对应 的低侧半导体14在阶段A中持续闭合。在脉宽调制器26的高信号 (High-Signal)期间,高侧半导体Tl被控制接通并且电流从正极流经半 导体1\、马达线圏、半导体T4至负极。在调制器26的低信号(Low-Signal) 期间,维持通过线圏L流经二极管D3或半导体T3和低侧半导体T4的电 流,这是所谓的空载运行。以此方式,在阶段A中得到通过对应的低侧 半导体14的、实际持续的比较恒定的电流。其他高侧半导体T2在阶段A 中断开。低侧半导体T3在无源空载运行的情况下断开(参见图2)。电流 在此通过二极管D3维持。在有源空载运行的情况下,低侧半导体T3与高 侧半导体1\互补地切换或者时钟控制(参见图3 )。
在随后的阶段B (60。-120。)中,从高侧工作模式切换到低侧工作模 式,使得脉宽调制器26的脉宽调制的信号现在连接到与高侧半导体1\ 对应的低侧半导体T4上。对应的高侧半导体1\在整个阶段B期间闭合, 即接通。高侧半导体Tl在空载运行中的脉宽调制的信号的脉冲期间并且 同样在脉冲间歇期间导通电流,使得在阶段B期间在1\中连续地积累相 应的损耗功率。
随后的阶段C (120°-180。)如阶段F (300°-360° ) —样用于换向。在 阶段C和F期间,所有半导体TVT4都断开,使得没有电流流经半导体 L-T4或者流经线圏L。
在随后的阶段D和E中,以相反的方向对线圏L进行供电,使得半 导体T2和T3形成彼此对应的半导体。在阶段D中,适用低侧工作模式, 使得脉宽调制的信号引导至第一低侧半导体T3。对应的第二高侧半导体 T2在阶段D中相应地被完全并且无中断地闭合。
在阶段E中,脉宽调制的信号切换到第二高侧半导体T2上。相应地,对应的第一低侧半导体T3完全并且无中断地闭合。
如从图2中的四个半导体1VT4的时间变化过程不难看出的那样,通 过所有四个半导体1VT4的相应电流变化过程的积分相等,使得在所有四 个半导体TrT4上的损耗功率也相等,即是对称的。这与脉宽调制的信号 的占空比无关地适用于0%-100%的占空比。由此,相对于在没有工作模 式切换的工作的情乂下的不对称的负载,可以降低在半导体Ji出现的最大 损耗功率并且由此降低最大升温,并且可以相应小地设计半导体以及冷却 措施。
权利要求
1.一种电动机换向器(12),具有开关桥路(20),其具有高侧半导体(T1)和低侧半导体(T4),以及用于激励开关桥路(20)的脉宽调制器(26),其特征在于,脉宽调制器(26)连接到两个半导体(T1,T4),以及设置有工作模式切换器(28),其将脉宽调制器(26)交替地接通到高侧半导体(T1)和低侧半导体(T4)上。
2. 根据权利要求l所述的电动机换向器(12),其特征在于,工作模式切换频率(fHL)在脉宽调制器(26)的调制频率(fM)以下。
3. 根据权利要求2所述的电动机换向器(12),其特征在于,工作模式切换频率(fHL)至少在调制频率(fM)的60%以下。
4. 根据权利要求l-3中任一项所述的电动机换向器(12),其特征在于,工作模式切换频率(fHL)在5kHz以下。
5. 根据权利要求l-4中任一项所述的电动机换向器(12),其特征在于,工作模式切换器(28)被以时间控制方式切换。
6. 根据权利要求l-4中任一项所述的电动机换向器(12),其特征在于,工作模式切换器(28)被以位置方式控制。
7. 根据权利要求l-6中任一项所述的电动机换向器(12),其特征在于,开关桥路(20)是全桥。
8. 根据权利要求l-7中任一项所述的电动机换向器(12),其特征在于,在脉宽调制的信号的供电间歇期间的空载运行设计为有源空载运行。
9. 一种用于激励电子电动机换向器(12)的方法,所述电动机换向器具有以调制频率(fM)工作的脉宽调制器(26),用于生成脉宽调制的信号,以及开关桥路(20 ),其具有高侧半导体(L )和低侧半导体(T4 ),其中并且在调制频率(fM)以下交替地在高侧工作模式与低侧工作模式之间切换,其中脉宽调制的信号交替地连接到高侧半导体(1\ )和低侧半导体(T4)上,并且相应地导通各互补的半导体(T4, Tj。
10.根据权利要求9所述的方法,其特征在于具有权利要求2-8中任 一项所述的特征。
全文摘要
本发明针对一种电动机换向器(12),其具有开关桥路(20),该开关桥路具有高侧半导体(T<sub>1</sub>)和低侧半导体(T<sub>4</sub>)。换向器(12)此外具有用于激励开关桥路(20)的脉宽调制器(26)。脉宽调制器(26)连接到两个半导体(T<sub>1</sub>,T<sub>4</sub>)上。脉宽调制器交替地接通到两个半导体(T<sub>1</sub>,T<sub>4</sub>)上。由此,实现了开关桥路(20)的所有开关半导体(T<sub>1</sub>,T<sub>4</sub>)的均匀的升温,使得开关半导体的温度负载和损耗功率相等。
文档编号H02P7/29GK101689822SQ200880023532
公开日2010年3月31日 申请日期2008年5月29日 优先权日2007年7月6日
发明者瓦尔德马·斯特凡, 马丁·舒马彻斯, 马蒂亚斯·马尔克曼 申请人:皮尔伯格有限责任公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1