用于降压-升压转换器的高效率pfm控制的制作方法

文档序号:7459703阅读:248来源:国知局
专利名称:用于降压-升压转换器的高效率pfm控制的制作方法
技术领域
本发明涉及降压-升压转换器,更具体地涉及限定四开关切换状态的降压-升压转换器。
背景技术
在降压-升压转换器中包括升压操作模式,其中输出电压高于输入电压。在升压模式中,转换器使用脉冲频率调制(PFM)来控制转换器内的开关晶体管的操作。在传统降压-升压转换器中,升压模式PFM效率非常低。这本质上是由于在降压-升压转换器的四个开关晶体管中的每一个基本同时被切换时发生的四开关切换状态弓I起的。一些在PFM操作模式下限定降压-升压转换器中的四开关切换状态发生的方法可大大地提高转换器的效率。

发明内容
本发明一个方面包括DC/DC转换器,该DC/DC转换器包括输入端子,该输入端子用于从设置在输入电压电平的输入电压源接收输入电压。输出端子将处于输出电压电平的输出电压提供给连接于输出端子的负载,该输出电压电平不同于输入电压电平。电荷存储元件经由输入端子从其输入侧上的输入电压源接收并存储电荷,并将至少一部分存储的电荷从其输出侧转移至负载。控制系统控制在至少三个重复阶段将电荷存储至电荷存储元件和将电荷从电荷存储元件转移出,从而获得输出电压电平的要求电平。三个阶段包括用于将来自输入端子的电荷存储在电荷存储元件中的电荷存储阶段;用于仅将所存储电荷的一部分从电荷存储元件转移至负载的第一电荷转移阶段以及将基本所有电荷转移至负载的电荷转移阶段。


为了更全面地理解,现参照以下结合附图进行的描述,在附图中图I示出PFM降压-升压DC/DC转换器的顶层图IA示出H电桥开关的详细示意图;图2示出因变于输入电压的降压-升压转换器的不同操作模式的示意图;图3A和3B示出升压模式下的开关操作的一种状态,其示出开关状态和关联的时序图;图4A和4B示出升压模式下的开关操作的第二状态,其示出开关状态和关联的时序图;图5A和5B示出升压模式下的开关操作的第三状态,其示出开关状态和关联的时序图;图6示出在PFM操作中使用第一和第二状态使电压升压的时序图;图7示出图6的PFM操作的单个循环的电感器电流; 图8示出具有改善的升压PFM控制方案的降压-升压转换器和相关控制电路的升压操作的第一实施例;图9示出与图8的降压-升压转换器的操作相关联的波形;图10示出图8和图9的实施例的状态图;图11示出图10的状态图的时序图;图12示出具有改善的降压-升压PFM控制方案的降压-升压转换器和相关控制电路的升压操作的一替代实施例;图13示出与图12的降压-升压转换器的操作相关联的波形;图14示出图12和图13的实施例的状态图;图15示出图14的状态图的时序图;图16和16A示出转换器的降压侧的操作;以及图17不出根据一个实施例的电子/电气系统,该电子/电气系统包括具有开关电路的电子/电气电路。
具体实施例方式现在参见附图,其中在全部附图中相同的附图标记用来指代相同的元件,说明和描述了用于降压-升压转换器的高效率PFM(脉冲频率调制)控制的系统和方法的多个视图和实施例,还描述了其它可能的实施例。这些附图不一定是按比例绘制的,而且仅为说明目的,在某些情形下有几个地方已将附图放大和/或简化。本领域普通技术人员可以基于以下可能实施例的示例意识到许多可能的应用和变型。现在参见图1,图I示出脉冲频率调制(PFM)降压-升压DC/DC转换器的高级示意图。DC/DC转换器由开关电桥101构成,开关电桥101操作用于将电荷从标不为Vin的电压输入节点116转移以将电荷转移至电荷存储元件115并随后将该电荷转移至负载,该负载配置为设置在电压输出节点128 (标示为Vott)和节点103上的基准电压之间的并联电容器130 (标示为C。)和电阻器132R。,节点103上的基准电压一般设置在接地电位。电桥101受PFM降压-升压控制器105控制,该PFM降压-升压控制器105根据脉冲频率调制(PFM)操作模式操作。该PFM操作被分成两个操作,一个操作用来对电荷存储元件115充电,一个操作用来将存储在其中的电荷转移至负载。PFM操作改变这两个操作之间的比例,如下文中简要描述的那样。来自时钟106的时钟输入提供PFM操作的时基。
电桥101是H电桥。这由两个节点122、126构成,电荷存储元件115设置在这两者之间。第一开关106连接在输入节点116和节点122之间。第二开关108连接在节点122和基准节点103之间。这两个开关106、108,如下文中简要描述的那样,通常用于降压-升压转换器的降压侧。H电桥的另一侧包括第一开关110,其连接在输出电压节点128和电荷存储元件115的另一侧上的节点126之间;以及第二开关112,其连接在节点126和基准节点103之间。开关110、112通常用于降压-升压转换器的升压部分。然而,H电桥配置允许在如何将电荷转移至电荷存储元件115并随后从电荷存储元件115转移至输出节点128的方面表现出多样性,如下文中更详细描述的那样。
现在参见图1A,图IA示出实现H电桥101的更详细示意图。在这种配置中,开关106配置有P沟道晶体管,开关108配置有η沟道晶体管,开关110配置有ρ沟道晶体管,而开关112配置有η沟道晶体管。控制晶体管106、108的栅极的信号分别为BUCK_HS和BUCK_LS信号。类似地,控制晶体管110、112的栅极的信号分别为PFM Boost-d(PFM升压_d)和PFM Boost (PFM升压)。对于本说明书中出现的相同元件,用于元件106、108、110和112的术语“开关”可与术语“晶体管”互换。电荷存储元件115由连接在节点122和126之间的电感器114构成。现在参见图2A,图2A示出与目标Vqut电压关联的因变于降压-升压模式的输入电压图。该Vmjt电压由虚线表不。当输入电压低于V OUT—TARGET—dV^ 时,DC/DC转换器工作在升压模式。当Vin在电压Vtot TARGETV2 和 V〇UT—TARGEfdV1 之间时,DC/DC转换器工作在降压模式或升压模式下。如果Vin大于VTOT TAK;ET+dV2JUDC/DC转换器工作在降压模式下。当工作在降压-升压模式时,这通常被称为“转变”阶段。DC/DC转换器利用脉冲频率调制(PFM)操作,这有时被称为脉冲频率模式。这利用一固定时钟频率,其中电荷存储元件115或电感器114被充电长达时长 *,随后进行转移操作长达时长Τ_。通过改变Ton和Ttw之间的比例,转移至负载的电荷量可如图2Β所示地改变。在升压模式下,例如晶体管106闭合而晶体管110、112被切换以实现存储和转移操作,如下文中更详细描述的那样。为了在升压模式下对电感器充电,即将电荷存储在其中,通过在晶体管106闭合时闭合晶体管112并断开晶体管110,节点126被下拉至接地电位。这是图2Β中标示为Ton的阶段。在Ton周期结束时,晶体管112断开且晶体管110闭合,将电荷转移至输出节点128,这被标示为Ttw周期,这个周期持续到时钟的下一发生沿。通过改变1 、1'_这两个周期的时长之比,转移至负载的电荷量可以改变。这在下文中将针对控制器105在升压模式下的操作进行更详细的描述。升压模式的操作将在下面附图中予以描述。一般来说,在所披露实施例的升压模式中存在三种状态。第一充电阶段用来将电荷存储在电感器114中,之后是将电荷部分地从电感器114转移至电阻器132的第二转移状态以及完全地将电感器114中的电荷转移至负载的第三转移状态。参见图3Α,图3Α示出以简化示意图示出的开关示意图。为简化起见,将晶体管106标示为SI,将晶体管108标示为S2,将晶体管110标示为S3并将晶体管112标示为S4,图中仅示出SI、S2、S3和S4的标示。在标示为状态[I]的第一状态,示出充电操作。在该操作中,SI闭合而S2断开以使节点116的电压Vin连接于节点122,节点122连接于电感器114的一侧。电感器114的另一侧连接于节点126,在开关S3断开时,该节点126经由开关S4连接于基准电压。这允许电感器电流向上斜变。图3B示出这种操作。第一状态下的图3A的开关配置在时钟边沿301开始。流过开关S4的电流图示为波形Is4,其示出向上斜变至电流限值下的点303的电流。这是存储在电感器114中的电流能斜变至的预定电流值。一旦检测到电流处于该电平,开关S4将断开,电感器114中的电流在标示为L的波形中示出充电操作。现在参见图4A和4B,图4A和4B示出开关处于状态[2]的简化示意图以及相关的时序图。当电感器电流已达到预定电流限值时,如前所述,状态从状态[I]切换至状态[2],其中在点303开关S4断开且 开关S3闭合。这导致节点126连接至输出节点128和电阻器132。这种操作类型有时被称为“减幅振荡电感器”操作,其中由于从电感器114中流过的电流无法立即改变,跨电感器114的电压被反转。因此,在连接于节点126的电感器的一侧上的电压将高于节点122上的电压。这使得电流流至节点128 (当连接于节点128时),由此使其电压升高。这将使电荷转移发生,直到在下一时钟边沿305的时钟周期结束为止。这种在点303时间和时钟边沿305之间的操作将导致电感器电流L的减小,这指示电荷转移至负载。然而,该操作仅使电感器中存储的一部分量的能量转移,并因此,电感器电流将不会减小至零电流电平。这标示在点307。同样,可以看到流过开关S3的电流将一开始上升至峰值电流电平,在该峰值电流电平下当开关S3闭合时电感器电流被置于点309以指示电流从中流至节点128。流过开关S3的电流是来自电感器114和源自Vin的电流的组合。该电流将跟踪电感器电流直至点307,此时PFM循环将改变至下一状态。在该点307的电流不处于零电平。在该状态[2],电压Vin通过电感器114连接至负载。因此,电流将从电感器114(存储的能量)流出,并也从以Vin为源的节点122流出。当Vin近似等于Vtot时,跨电感器114的电压将接近为零,但电流将仍然从Vin流出。现在参见图5A和5B,图5A和5B示出第三状态——状态[3]——的开关简化示意图以及相关的时序图。在这种状态下,状态[2]的转移操作将在下一发生的时钟边沿305发生之前在点311过早地终止。图5A所示的状态开始于点311。在这一点,检测到事件,例如达到电压限值(即目标电压)。这将导致开关SI断开且开关S2闭合。当这发生时,将能量从电感器114转移至节点128的速度将加快,由此增加了能量转移至负载的速度和电流^从电感器114流出的速度。这部分是因为当电流L如电流感测器119确定的那样在点313达到零值时没有额外的电流源自VIN,开关S2和开关S3将被断开,因为这指示DC/DC转换器处于目标电压并且没有额外的能量需要被转移至输出负载。这可参照流过S3的电流观察到,该电流从流过电感器的峰值电流向下降至零电流。现在参见图6,图6示出一个实施例中的操作的时序图,其中状态[I]和状态[2]顺序地依次出现。状态[I]是充电循环并表示为Tw,这指示SI闭合且S4闭合,而状态[2]由代表SI导通、S4截止且S3导通的Ttw示出。在该示图中,电感器114中的电流在操作开始时从没有被完全放电。在前的发生状态是针对图4B的时序图描述的,其中在点307,电感器114尚未被完全充电并因此当时钟边沿305发生时,在电感器114中留有能量。这导致在下一充电循环开始时或在下一状态开始时具有一电流电平。因此,在点601,在前一状态结束时的电流将处于比零更大的电平。在这一点,在时钟边沿603,开关S I闭合且开关S3断开并且在时钟边沿603流过开关S4的电流已然很高但尚未处于电感器114的峰值电平、Iumit电平、预定电流限值。因此,在该状态期间,额外的电荷将被转移至电感器114。当流过电感器114的电流达到IumitW,开关S3将闭合而开关S4将断开。Iumit的电流电平被设定在充分高的电平以确保针对期望负载水平有足够的能量存储在电感器114中。因此,当达到该电流电平时,在电流限值边沿605,流过电感器114和流过开关SI的电流将在点606达到Iumit,并且当开关S4断开时,这将是在状态[2] —开始就流过开关S4的电流电平。电流将被转移至负载并且能量将从电感器114耗尽,并由于连接于负载的节点126上的电感器114侧具有一开始高于输入电压的电压,因此负载上的电压将上升至高于Vin并且能量将被转移至负载,由此减少电感器中的能量并减少流过电感器的电流。这种能量从电感器114至负载的转移操作将持续到下一时钟边沿,即时钟边沿607。在时钟边沿607,针对以状态[I]开始的下一 PFM循环,开关S4闭合且开关S3断开。根据负载值和转移至负载的电流,从电感器114移去的能量的量将造成来自电感器114的电流耗尽的斜率更大或更小,这因变于Vin和Vott之间的负载和电压两者的值。因此,在下一时钟边沿607,电流电平将低于点601处的电流电平。在该图示中,在电感器电流波形上的点609,在点609下的电感器电流的电平低于点601下的电流。这将导致电感器 114需要额外的时间以在点611充电回到电流Iumit,这增加了时间I 。由于时间Tm增加,时间Ttw必须减少以使更少的时间用于将能量从电感器转移至负载。因此,由于时钟周期是固定的,因此Tw和Ttw之间的时间量将动态地变化。应当理解,由于这是升压操作并且节点122在状态[I]的转移状态期间通过开关SI连接于VIN,因此电流从电感器114和从Vin两者转移。因此,当电压Vin和Vott在升压和降压操作之间达到转变时基本相等时,电流从Ttw开始至结束时的减小将会非常小。这示出在图7中。对于图7,其示出时钟在点701之间的一个循环,在点701,开关S4在前一状态下的初始电流下闭合。根据电流电平,时间I 的时长将改变,直到电流在点703达到Iumit为止。这将为转移操作发起下一状态,即状态[2]。该时间相对于Tm的长度取决于在点701的电流电平。该电流电平越低,Tw的时长越长且Ttw的时长越短。在Ttw期间,转移速度因变于Vin和Vott之间的负载和电压。因此,可以看到,转移的斜率一即能量从电感器转移的速度一用虚线表示,这表示斜率可以平坦的,如果电压基本相等,直至陡峭的斜率。然而,可以看出,电感器电流不落至过零点并且电感器114中只有一部分能量从电感器114转移,从而在下一状态[I]开始时,在点705,流过电感器114的电流不为零。可以看到,由于不经过过零点,因此不需要断开开关S3,并且开关SI防止电流从负载流至电感器114,并因此具有较小的输出波纹和较少的切换,由于开关S2尚未闭合以完全地转移电荷。如下面结合图5A和5B所述,在Ttw期间的一些点,开关S2闭合且开关SI断开以增加能量从电感器放出的速度,由于电流不再由Vin提供并且一旦在过零点完全放电,所有开关SI、S2、S3和S4对于三态节点122、126是断开的。进一步参见图7,可以看到,固定时钟将在诸时钟边沿之间提供Tsw的时钟周期。选择峰值电流电平和Tsw以使对VIN、Vout和VTOT_TAK;ET (或Vumit)的所有负载电平和电压电平来说,电流k将不落到零电流电平。因此,Tw并非固定,而是变化的,并且ΤΜ/Τ_的比值变化以在Ttw期间连续转移电荷而不需要终止电感器与负载的连接,直到满足目标电压为止。这针对一种切换操作,其中开关S3与二极管相反,是闭合开关或断开开关(make or breakswitch),它将在靠近零电流下反偏。
现在参见图8,图中示出降压-升压转换器的升压操作的细节,其示出H电桥101和相关升压控制电路104,所述相关升压控制电路104与升压PFM (脉冲频率调制)控制机制的第一实施例关联,这种升压PFM控制机制利用在状态[I]和状态[3]的充电和放电阶段之间的状态[2]阶段的经过以避免在升压操作期间的四开关切换状态。四开关切换状态发生在降压-升压转换器中的四个切换晶体管中的每一个在同一时间周期在逻辑高状态或逻辑低状态中的一种状态之间切换的时候。这发生在降压-升压转换器从充电阶段过渡至放电阶段或从放电阶段过渡至充电状态时(只要用到状态[I]和状态[3])。充电阶段发生在流过降压-升压转换器的电感器114的电感器电流增加时,而放电阶段发生在流过降压-升压转换器的电感器电流朝向过零电位减小时。通过将转移操作引入在状态[I]和状态[3]之间的升压PFM操作期间的“通过阶段”,PFM升压操作模式利用状态[I]中的充电阶段,之后利用状态[2]中的通过阶段以部分地将存储在电感器114中的能量转移至负载,并随后在充电操作中的某一时间引入状态[3]中的放电阶段以对电感器114完全放电。该通过阶段操作通过使晶体管106、110导通来将Vin连接于节点122并将节点126连接于输出节点128,并允许电感器电流L从Vin流至Vot,如805总体示出的那样,同时使电流从电 感器114流出。当通过阶段出现时,不存在四开关切换状态发生的时间点。这在升压PFM操作模式中将降压-升压转换器的效率改善了高达15%。现在参见附图,尤其参见图8,图中示出了在升压模式中根据一个实施例运作的降压-升压转换器的H-电桥102和相关控制电路104。控制电路104使用电阻分压器监测节点128处的输出电压,该电阻分压器由连接在节点128和节点136之间的电阻134和连接在节点136和接地点之间的电阻138组成。节点136将反馈电压Vfb提供给电压比较器140的非反相输入。电压比较器140的非反相输入接收基准电压VKEF。电压比较器140的输出产生限压信号,该限压信号被提供给或门142的第一输入。或门142的另一输入连接以从电压比较器144的输出接收电流限流信号。电压比较器144在其非反相输入从电流感测器118接收Isns电压信号并在其反相输入从比较器140接收Vumit电压限压信号。或门142的输出连接于SR锁存器148的R输入。或门142的输出将分别响应来自比较器140、144的输出的限压信号或限流信号产生逻辑“高”值,从而转为逻辑“高”电平。当反馈电压Vfb超出基准电压Vkef时,限压信号转为逻辑“高”电平。当来自电流感测器118的Isns信号超出Vimn电压时,限流信号转为逻辑“高”电平。比较器140的输出也作为输入被提供给缓冲器150。缓冲器150的输出连接于与门822的一个输入并将作为控制信号提供的BUCK_LS信号提供给晶体管108的栅极。缓冲器150的输出连接于缓冲器152的输入,缓冲器152在其输出提供BUCK_HS信号。BUCK_HS信号作为控制信号被施加至晶体管106的栅极。SR锁存器148,除了在其R输入接收或门142的输出外,还在其S输入接收时钟信号(CLK)。响应于CLK信号以及或门142的输出,SR锁存器148从其Q输出产生PFM_B00ST。PFM_B00ST信号被提供给或门146的一个输入以产生PFM_B00ST_d信号。在晶体管110的栅极连接于PFM_B00ST-d信号的同时,PFM_B00ST-d信号被提供给晶体管112的栅极,并且BUCK_HS和BUCK_LS信号被分别提供给晶体管106、108的栅极。为了实现状态[3],其中电感器114连接在节点103和节点128之间,此时开关108导通且开关106截止并且开关110导通且开关112截止,提供一比较器820,该比较器820具有连接于基准电压的反相输入,该基准电压指示一电平,流过电感器114的电流在该电平下已被放电至零值,如电流感测器119指示的那样。该电平被标示为VzeMlimit。比较器820的非反相输入连接于电流感测器119的输出。当电流被指示为高于零值时,该输出提供逻辑“高”信号,而当电流落到等于或低于零值的值时,该输出提供逻辑“低”。比较器820的输出标示为Vz并连接于与门822的另一输入,该与门822的一个输入连接于缓冲器150的输出,该与门822的输出提供BUCK_LS输出。当电流被确定为低于零值时,与门822的输出为低并使晶体管108截止。同样,比较器820的输出连接于另一输入与门822的一个输入,该输入是反相输入,其一个输入连接于或门146的输出,或门146接收来自与门822的输出的PFM_BOOST信号,用于驱动晶体管110的栅极。因此,当比较器820的输出变低时,Vz信号输入至与门822的反相输入并将使输出变高,从而使晶体管110截止。因为或门142的输出由于电压限压状态为高,这将造成电感器114的三态状态。现在参见图9,图9示出处于降压-升压PFM升压操作模式下的图9的降压-升压转换器及相关控制电路的操作。为了简化起见,节点122或者被拉至节点116上的电压 或者被拉至节点103上的基准电压,并当处于节点116的电压电平时被称为处于逻辑“高”电平,当处于节点103的电压电平时被称为处于逻辑“低”电平。节点122处的信号将被标示为SWl。同样,节点126处的信号将被拉高至输出节点128的电压电平或被拉低至节点103的电压电平。节点126的标号是SW2,并且当电平处于节点128的电平时,它将被称为置于逻辑“高”电平,并当置于节点103的电压电平时,它被称为置于逻辑“低”电平。节点122和126两者的电平被表征为处于这两种状态或电平之一,要理解,该状态实际上是变化的电压电平,即节点103的基准电压、相应节点的输入电压电平或输出电压电平。另外,当所有开关截止时,节点122和126将“浮动”在三态电平,有时将其称为三态状态。在时间T1,响应于在SR锁存器148的输入端转为逻辑“高”电平的时钟信号,在SR锁存器148的输出处的PFM_B00ST信号从逻辑“低”电平变至逻辑“高”电平。开关108和110被截止且开关106、112被导通。这使开关节点(SWl) 122转为逻辑“高”电平并使开关节点(SW2) 126转为逻辑“低”电平。这使电感器电流込从时间T1至时间T2开始增加。在时间T2,响应于转为逻辑“高”电平的限流信号,PFM_B00ST信号将从逻辑“高”电平转为逻辑“低”电平。当开关110导通且开关112截止时,使开关节点SW2(节点126)转为逻辑“高”电平,同时使开关节点SWl (节点122)保持在逻辑“高”电平。电感器电流込从时间T2至时间T3减小。在时间T3,响应于下一时钟信号,PFM_B00ST从逻辑“低”电平转为逻辑“高”电平,从而使晶体管110截止并使晶体管112导通,这在电感器电流已达到过零电平之前终止了电荷转移操作并因此使电感器电流停留在非零电平。这使开关节点SW2 126转为逻辑“低”电平,同时使开关节点SW1122保持“高”。电感器电流则在之后的电感器充电操作中从时间T3至时间T4从非零电平开始增加。在时间T4,限流信号使PFM_B00ST信号从逻辑“高”电平转为逻辑“低”电平,从而使晶体管10导通并使晶体管112截止,这终止了充电阶段并发起下一电荷转移阶段。这使开关节点SW2 126转为逻辑“高”电平,同时使开关节点SWl 122保持“高”。电感器电流込在电荷转移操作期间从时间T4至时间T5减小。在时间T5,响应于另一上升时钟边沿,PFM_BOOST信号从逻辑“高”转为逻辑“低”电平,从而通过使晶体管110截止并使晶体管112导通而将开关节点SW2驱动至逻辑“低”电平,同时使开关节点SWl保持在非零电感器电流电平的逻辑“高”电平。电感器电流从时间T5至时间T6从非零电平开始增加。响应于在时间T6的另一限流信号,PFM_BOOST信号将从逻辑“高”电平转为逻辑“低”电平,从而终止电感器的电荷存储操作。这同样通过使晶体管110导通并使晶体管112截止而将开关节点SW2驱动至“高”。电感器电流随后从时间T6至时间T7减小,T7发生在下一时钟边沿之前。在时间T7,限压信号从逻辑“低”电平转为逻辑“高”电平,从而使PFM_B00ST信号在下一时钟边沿发生前转为逻辑“高”电平。当限压信号变“高”时或开关节点SW2 126保持“高”时(这使晶体管106截止并使晶体管108导通),这驱动开关节点SWl 122至“低”。电感器电流随后从时间T7至时间T8减小。因此,图I电路中的降压-升压PFM操作模式包括第一操作模式下的充电阶段202以及第三操作模式下的放电阶段204。然而,这些充电阶段202和放电阶段204由第二操作模式下的通过阶段206隔开,这消除了四开关切换状态。如针对在整个PFM期间切换电流的开关节点SWl 122和开关节点SW2 126可以看出的那样,不会发生四开关切换状态。图8的实现允许通过阶段持续直至在SR锁存器148的输入侧接收到下一时钟信 号并且电感器电流込低于PFM峰值电流限值或电压限值达到高于目标值I. 5%的值为止。如果时钟边沿发生且电感器电流低于PFM峰值电流限值,则通过阶段将在充电阶段之后,如时间T3和时间T5所示。如果在通过阶段期间达到电压限值,则允许放电阶段将电感器电流放电至零并结束PFM操作,如时间T7所示。现在参见图10,图10示出图8和图9的披露实施例的操作的状态图。在该实施例中,如前所述,充电操作顺序通过状态[I]和状态[2],直到达到电压限值为止,该电压限值表征目标电压,在这个时候电感器114的能量在状态[3]的放电操作中被完全转移。因此,升压操作开始于状态[I]框1001并沿路径1003在框1005进至状态[2]。直到达到电压限值,状态[2]通过路径1007返回到框1001的状态[I]。这种操作将继续,直到目标电压已在输出电压Vqut达到Vumit为止。该状态图随后从框1015的状态[2]转向框1011的状态。一旦已确定k等于零,即在过零点,状态图将沿路径1013流至框1015的第四状态,即状态[4]。该状态是睡眠状态,其中所有开关断开并且系统将维持在这个状态直到电压Vtot落到目标电压或要求的电压以下,此时状态图将沿路径1017回到框1001的状态[I]。图10的状态图示出于图11的时序图中。在该图中,可以看到状态顺序通过状态和状态[2],直到在框1001已出现电压限值Vumit为止。此时,状态图沿路径1003从状态[2]改变至状态[3]。这将使放电速度升高至点905,此时已检测到电感器电流的过零并且之后将进入状态[4]。这将发生在下一时钟边沿之前。然而要理解,如果在足够靠近时钟边沿的位置出现电压限值,则可能过零不发生在下一时钟边沿之前,然而,由于已达到VUMIT,这将被改写并且开关SI将保持断开且开关S2将保持闭合,直到过零出现为止,此时系统将转至状态[4]。现在参见图12,图12示出在升压模式下具有改进的PFM操作的降压-升压转换器和控制电路的替代实施例。降压-升压转换器302包括四个开关晶体管306、308、310和312以及电感器314。在输入电压节点316施加输入电压VIN。电流感测器318监测通过输入电压节点316施加的输入电流并产生包含与输入电流关联的电压的信号Isns,并且电流感测器319监测通过晶体管310至电压节点328的输出电流并产生包含与输出电流关联的电压的信号ISNS。晶体管306具有连接在节点320和节点322之间的源极/漏极路径。晶体管308具有连接在节点322和基准节点317之间的漏极/源极路径,基准节点317连接于例如接地的基准电压。电感器314连接在节点322和节点326之间。晶体管310具有连接在输出电压节点Vqut328和节点326之间的源极/漏极路径。晶体管312具有连接在节点326和节点317之间的漏极/源极路径。电容器330连接在节点328和节点317之间,而电阻器332并联于节点328和节点317之间的电容器330。晶体管310、312的栅极连接以分别从控制电路304接收PFM_BOOST-d和PFM-Boost信号。控制电路304使用电阻分压器监测节点328处的输出电压,该电阻分压器由连接在节点328和节点336之间的电阻器334和连接在节点336和接地点之间的电阻器338。节点336将反馈电压Vfb提供给电压比较器340的非反相输入。电压比较器340的非反相输入接收基准电压VKEF。电压比较器340的输出产生限压信号,该限压信号被提供给或门 342的第一输入。或门342的另一输入连接以从电压比较器344的输出接收限流信号ViUMIT。电压比较器344在其非反相输入从电流感测器318接收Isns电压信号并在其反相输入从比较器340接收Vumit电压限压信号。或门342的输出连接于SR锁存器348的R输入。或门342的输出将分别响应来自比较器340、344的输出的限压信号或限流信号产生逻辑“高”值,从而转为逻辑“高”电平。当反馈电压Vfb超出基准电压Vkef时,限压信号转为逻辑“高”电平。当来自电流感测器318的Isns信号超出Vimn电压时,限流信号转为逻辑“高”电平。SR锁存器348,除了在其R输入接收或门342的输出外,还在其S输入接收时钟信号(CLK)。响应于CLK信号以及或门342的输出,SR锁存器348连接至或门1226的一个输入,其输出产生PFM_B00ST信号。锁存器348的输出也连接于缓冲器346的输入以产生PFM-B00ST-d信号。SR锁存器348的Q输出被输入到固定上升沿延时器350的输入端。固定上升沿延时器350将延时加至PFM_B00ST信号并被输入至与门1224的一个输入,从而在与门1224输出端提供BUCK_LS信号,BUCK_LS信号被提供给晶体管308的栅极。延时器350的输出也作为输入提供给缓冲器352。缓冲器352的输出提供BUCK_HS信号。PFM_B00ST_d和PFM-Boost信号分别被提供给晶体管310、312的栅极,而BUCK HS信号被提供给晶体管306的栅极。控制电路304在充电阶段之后插入通过阶段,该通过阶段将持续一“固定”时间周期,之后跟随的是放电阶段。该方法尽管没有象图9的实现那样消除四开关切换状态,但却大为减少了四开关切换状态的次数,这提高了降压-升压转换器的总效率。进一步参见图12,当通过电感器314的电流在状态[3]处于零值时,需要使晶体管308和晶体管310截止。比较器1220具有连接于限压电压Vzeralimit的反相输入以及连接于电流感测器119的输出的非反相输入。当确定电感器电流已变得低于零限值时,比较器1220的输出将变低。比较器1220的输出被标示为Vz,其连接于与门1224的另一输入。当Vz变低时,与门1224的输出将变低,从而使晶体管308截止。同样,或门1226具有连接于比较器1220的输出的反相输入\。因此,当Vz下降时,或门1226的输出将为高,这将使晶体管310——P沟道晶体管一一截止。因此,当超出零电流限值且已超出电压限值时,比较器1220的输出为低且比较器340的输出为高将导致所有开关的三态状态。此外,超出电压限值也将保持SR锁存器348处于低输出状态,因此上升时钟边沿将不会在该SR锁存器348上进行重置。
现在参见图13,图13示出图12的降压-升压转换器和控制电路的操作,该操作包括在每个充电阶段后的固定通过操作阶段。响应在时间T1的时钟边沿,PFM_B00ST和PFM-Boost-d信号从逻辑“低”电平转为逻辑“高”电平,使开关310截止并使晶体管开关312导通。当开关306导通且开关308截止时,这使得在开关节点SWl (节点322)处的电压转为逻辑“高”电平,并且在开关节点SW2 (节点326)处的电压响应于晶体管310截止和晶体管312导通而转为逻辑“低”电平。电感器电流k从时间T1至时间T2开始增大。在时间T2,响应于来自电压比较器344的输出的限流信号的逻辑“高”电平,由于开关310导通而开关312截止,在开关节点SW2(节点326)的电压从逻辑“低”电平转为逻辑“高”电平。当电感器电流k减小并且电荷转移至负载时,这发起从时间T2至时间T3的通过周期。从时间T2至时间T3的周期是由固定上升沿延时器350建立的确定时间。在时间T3时确定时间届满后,PFM_B00ST信号从逻辑“高”转为逻辑“低”电平,这当晶体管306截止且晶体管308导通时使节点SWl (节点322)处的电压从逻辑“高”转为逻辑“低”电平。电感器电流Il从时间T3至时间T4经历放电阶段,直至过零发生为止。
在时间T4,响应上升时钟边沿,PFM_B00ST从逻辑“低”电平转变至逻辑“高”电平,这使开关308、310截止并使开关306、312导通。这使开关节点SWl (节点322)处的电压从逻辑“低”电平转为逻辑“高”电平并使开关节点SW2(节点326)处的电压从逻辑“高”转为逻辑“低”电平。这造成四开关切换状态。电感器电流从时间T4至时间T5经历另一充电阶段。在时间T5,PFM_B00ST信号从逻辑“高”电平转至逻辑“低”电平,从而当开关310导通且开关312截止时使开关节点SW2(节点326)处的电压从逻辑“低”电平转为逻辑“高”电平。当电感器电流込减小时,这发起从时间T5至时间T6的通过阶段。通过阶段基于固定上升沿延时器350的输出对应于从时间T5至时间T6的确定时间。在从时间T5至时间T6的确定时间之后,节点SWl处的电压将响应开关306截止和开关308导通而从逻辑“高”电平转至逻辑“低”电平,由此在时间T6至时间T7开始发起放电阶段。在时间T7,另一上升时钟边沿使PFM_B00ST信号从逻辑“低”电平转至逻辑“高”电平,致使晶体管310、312截止并使开关节点SWl (节点322)处的电压从逻辑“低”电平转至逻辑“高”电平同时使开关节点SW2(节点326)处的电压从逻辑“高”电平转至逻辑“低”电平。这发起下一充电周期,并且四开关切换状态发生在时间T7。图12的电路包括包括数个处于第一操作模式的充电阶段402、处于第三操作模式的放电阶段404,所述充电阶段402和放电阶段404通过处于第二操作模式的固定长度通过阶段408彼此隔开。如可从开关信号看出的那样,次数减少的四开关切换状态发生在开关晶体管的切换循环中的点410上。这改善了降压-升压转换器的电路操作的效率,尽管不像图8描述的示例那样多。现在参见图14,图14示出描述图12和图13的操作和这里披露的实施例的状态图。图14中的状态图开始于状态[I]的状态框1401,并随后沿路径1405流至状态[2]的框1403。然而,如前面提到的那样,在预定时延之后,状态将沿路径1407从状态[2]改变至框1406的状态[3]。在下一时钟循环,状态将沿路径1409从状态[3]改变至框1411的状态[4]。状态将继续沿路径1405、1407和1409流动,直到达到电压限值为止。此时,状态将保持在框1406的状态[3],直到流至电感器的电流等于零值为止,即过零为止。在这一点,状态将从在1406的状态[3]改变,其中开关S2闭合且SI断开并且S3闭合且S4断开,直到这发生为止。此时,状态图将沿路径1413改变至框1411处的状态[4]。系统将保持在这个状态直到电压落到Vumit目标值以下为止,这时状态将沿路径1415改变至框1401处的状态[I]。图14的状态图的时序流示出于图15。在该操作中,可以看到状态[2]维持一预定量的时间TD。因此,时钟边沿开始于状态[1],并且与电流限值込_相等的电感器电流込导致从状态[I]至状态[2]的改变。在固定延时结束时,系统改变至状态[3]。在电压尚未达到电压限值Vumit的操作期间,下一充电循环将发生在下一时钟循环,即再次进入状态[I]。这是沿路径1405、1407和1409的流动。然而,一旦达到Vumit,则状态[3]被迫停留在现存状态,直到对电感器充电的电流已减 小至零值为止,即便在这段时间出现下一时钟边沿也是如此。系统模式随后在点1501转至状态[4]。现在参见图16,图16示出降压操作的上层框图。如本文描述的那样,降压-升压控制器105由两个操作构成,即升压操作和降压操作。因此,提供与升压操作关联的控制部,也就是针对升压操作的控制在上文中描述的升压控制器104。这也将提供一降压控制器1602,该降压控制器1602可操作以控制降压操作。在降压操作中,H电桥101受到控制以使H电桥101的降压侧受控以根据降压操作交替地切换SI和S2至闭合或断开位置,并且在H电桥101的升压侧上,开关S4将保持断开且开关S3保持闭合。对于标准降压操作,通过开关S1将电感器114的降压侧连接至Vin而对电感器114充电。一旦被充电,通过断开开关SI并闭合开关S2并将电感器114的降压侧连接至基准电压或接地点而转移电荷。充电操作使电感器电流增至预定电流限值,并随后切换至放电或电荷转移操作以使电感器电流减小至零值。这根据PFM操作而进行。进一步参见图16A,图16A示出降压控制器1602的操作的时序图。通过时钟电路107提供一固定频率,其中时钟边沿将发起PFM充电操作以闭合开关SI并断开开关S2,使开关S4保持断开并使开关S3保持闭合。该充电操作将继续,直到已达到最大电流限值的时间点1610为止。这将操作切换至放电或转移模式,其中能量从电感器114转移至负载。该转移将继续,直到通过电感器的电流为零为止,如由降压控制器1602通过用电流感测器119感测流过晶体管310的电流而确定的那样。在这一点,即点1612,开关S1-S4将处于三态模式并且所有开关将被断开。在下一时钟边沿1614,下一充电操作将发生。这将继续直到确定已达到电压限值为止,如电压限压信号1616所指示的那样。此时,将要发生的是,开关将保持在三态模式并且下一时钟边沿将不发起另一充电操作。如果电压限压信号1616发生在流过电感器114的电流已减小至零值之前,则三态模式将被延迟直到这种情况出现,在这之后所有开关将处于三态模式。进一步参见图16,注意提供具有磁滞的比较器1618以比较输入和输出电压。这确定升压模式是否已移动至过渡降压或升压区,如前面结合图2A描述的那样。磁滞将允许对输入电压是小于输出电压达ClV1还是大于Vtot达值dV2作出判断。如果这样,则升压模式将切换至降压模式,或者降压模式将切换至升压模式。升压模式将保持直到输入电压大于输出电压达dV2为止,并且降压模式将保持在降压模式,直到ClV1减小至输出电压以下为止。根据本公开实施例的电压调节器和关联电路可具体化为多种不同类型的电子设备和系统,例如计算机、蜂窝电话、个人数字助理以及工业系统和设备。更具体地,一些应用包括但不局限于,CPU功率调节器、芯片调节器、负载功率调节器和存储器调节器的点。图17是电子/电气系统或功能性设备1702的方框图。功能性设备1702是要求在具体和设定电压下经调节电压的器件,这由设备1702的工作参数定义。为了解说目的,设备1702包括某些操作块,例如CPU1712、存储器1716、时钟或定时电路1714,这些操作块一起工作以提供集成的专用设备。这可完全地实现在集成电路上的硅片中或由分立器件形成。提供数据总线1722以允许设备1702内的组件之间的通信。为了向器件提供功率,外部电压Vin被输入至要么工作在降压模式要么工作在低波纹PFM升压模式下的降压-升压调节器1701。输入电压可工作在比器件工作电压大得多的范围内,以使调节器1701必须适应从低于工作电压的电压至高于工作电压的电压的范围内的电压。工作电压被标示为Vtm并且图示为为CPU1712和时钟1714供电。在图中它也为USB驱动器1718供电,该USB驱动器1718与外部USB设备1704通过接口连接。对于这种操作,来自调节器1701的功率用来向外部USB设备1704供电。另外,还有其它外部设备可与设备1702形成接口,例如诸如键盘和扫描仪等的输入设备1706以及诸如IXD显示器之类的输出设备1708。此外,外部存储1710可以闪存驱动器、硬驱动器、DVD等形式出现。这些外部存储1710与数据总线1722通过接口连接。这里提供I/O 1720以在设备1702上的组件和输入/输出设备之间形成接口,从而提供各种驱动器以及类似物。所有外部设备 可与USB驱动器1718通过接口连接,只要它们是USB可接口设备。调节器1701利用前面描述的PFM升压电路以获得改善的效率和较低的波纹。本领域内技术人员在细阅本公开后将理解,用于降压-升压转换器的高效PWM控制的这种系统和方法提供更有效操作的降压-升压转换器。应当理解的是,本文中的附图和详细描述应被认为是说明性而非限制性的,并且不旨在受限于所公开的特定形式和示例。相反,如所附权利要求所限定的,在不背离本发明的精神和范围的情况下,包括了对本领域的普通技术人员而言显而易见的任何进一步修改、变化、重排、替换、替代、设计选择以及实施例。因此,旨在使所附权利要求被解释为涵盖所有这些进一步修改、变化、重排、替换、替代、设计选择以及实施例。
权利要求
1.一种DC-DC转换器,包括 输入端子,用于从设置在输入电压电平的输入电压源接收输入电压; 输出端子,用于将处于输出电压电平的输出电压提供给连接于所述输出端子的负载,所述输出电压电平不同于所述输入电压电平; 电荷存储元件,用于经由输入端子从其输入侧上的输入电压源接收并存储电荷,并将至少一部分存储的电荷从其输出侧转移至所述负载;以及 控制系统,用于在至少三个重复阶段控制将电荷存储至所述电荷存储元件和 将电荷从所述电荷存储元件转移以使输出电压电平达到要求的电平,所述三个阶段包括用于将来自所述输入端子的电荷存储到所述电荷存储元件中的电荷存储阶段、用于将所存储的电荷的仅一部分从所述电荷存储元件转移至所述负载的第一电荷转移阶段以及将基本所有电荷转移至所述负载的第二电荷转移阶段。
2.如权利要求I所述的转换器,其特征在于,所述电荷存储元件包括电感器。
3.如权利要求I所述的转换器,其特征在于,还包括具有固定频率的时钟电路,且其中所述电荷存储阶段和所述第一电荷转移阶段受所述控制系统控制以发生在单个时钟周期内,所述第一电荷存储阶段的结束发生在所述时钟周期结束时。
4.如权利要求3所述的转换器,其特征在于,所述第二电荷转移阶段独立于时钟地响应所述输出电压的外部状态而发生。
5.如权利要求4所述的转换器,其特征在于,所述外部状态是通过比较器确定的,所述比较器确定所述输出电压等于或超出所述输出电压的要求电平。
6.如权利要求4所述的转换器,其特征在于,所述控制系统的操作开始于所述充电阶段,之后在接下来的时钟周期内处于第一转移阶段,直到所述外部状态发生为止,因此在所述时钟的前一周期结束时在所述电荷存储元件中存在非零能量电平,并且所述电流周期的充电阶段将从所述非零能量电平对所述电荷存储元件充电,直到所述外部条件发生为止。
7.如权利要求3所述的转换器,其特征在于,所述电荷存储阶段将电荷存储在所述电荷存储元件中,直到其中存储了预定量的能量为止,由此达到预定量的能量的时间长度因变于在所述电荷转移阶段开始时存储在其中的最初能量的量并且所述第一电荷转移阶段的时间长度将相应地改变。
8.如权利要求7所述的转换器,其特征在于,所述电荷存储元件包括电感器,并且所述预定量的能量由在所述电荷存储阶段对所述电感器充电的过程中流过所述电感器的电流的电流限值所限定。
9.如权利要求I所述的转换器,其特征在于,所述输出电压的要求电平高于所述输入电压以提供升压DC-DC转换操作。
10.如权利要求I所述的转换器,其特征在于,所述电荷存储元件包括电感器,并且所述控制系统包括 开关电桥,所述开关电桥具有第一和第二开关节点,每个开关节点连接于所述电感器的相对两侧,其具有一组第一和第二输入开关,用于将所述第一开关节点通过所述第一输入开关连接于所述输入端子并通过所述第二输入开关连接于基准电压;以及一组第一和第二输出开关,用于将所述第二开关节点通过所述第一输出开关连接于所述输出端子并通过所述第二输出开关连接于基准电压;以及开关控制器,所述开关控制器控制所述第一和第二输入开关以及第一和第二输出开关以将所述电感器连接在所述输入端子和所述基准电压之间,并在所述第一电荷转移阶段将所述电感器连接在所述输入端子和输出端子之间,并在所述第二电荷转移阶段将所述电感器连接在所述基准电压和所述输出端子之间。
11.一种降压-升压DC-DC转换器,包括 输入端子,所述输入端子连接于工作在输入电压电平下的输入电压源; 输出端子,所述输出端子连接于负载; 基准节点,所述基准节点设置在基准电压电平; 降压-升压转换电路,包括 电感器, 降压开关部,用于将电荷转移至所述电感器并随后在降压转换操作中将电荷转移至所述输出端子上的负载,以及 升压开关部,用于将电荷转移至所述电感器并随后在升压转换操作中将电荷转移至所述输出端子上的负载;以及 降压-升压控制器,用于控制至少所述升压开关部以使其工作在脉冲频率调制(PFM)升压操作模式下,所述控制器包括 运打在固定频率下的时钟;以及 阶段控制器,用来控制所述第一和第二输出开关以运行在时钟边沿处发起的充电阶段,从而将所述电感器连接在所述输入端子和所述基准电压节点之间以将所述电感器充电至预定充电电平,并随后运行在第一电荷转移阶段以将所述电感器连接在所述输入端子和所述输出端子之间,如此从所述电感器和所述输入端子将电荷转移至所述输出端子,直到下一时钟边沿发生为止,其中所述电感器将处于非零存储的能量电平。
12.如权利要求11所述的转换器,其特征在于,所述降压-升压控制器包括比较器,用于将所述输出端子上的电压电平与要求的基准电压比较,并当所述输出端子上的电压电平等于或超出所述基准电压时,所述阶段控制器使所述升压开关部和所述降压开关部运行在第二电荷转移阶段以将所述电感器连接在所述基准节点和所述输出端子之间,从而将存储在电感器中的基本所有能量转移至所述输出端子以将其中的能量减少至基本零值。
13.如权利要求12所述的转换器,其特征在于,所述降压-升压控制器控制所述升压开关部和所述降压开关部以在所述第二电荷转移阶段结束时将所述电感器从所述输入和输出端子以及所述基准节点断开。
14.如权利要求11所述的转换器,其特征在于,所述降压-升压控制器控制所述降压开关部以使其运行在PFM降压操作模式下。
15.如权利要求14所述的转换器,其特征在于,还包括模式比较器,用以比较所述输入端子和输出端子上的电压电平并当两电压处于预定电压以内时在降压操作模式和升压操作模式之间切换。
16.如权利要求11所述的转换器,其特征在于,所述降压-升压控制器进一步包括电流限流检测器以检测进入所述电感器的电流流动并当在所述充电阶段中检测到预定电感器电流时将阶段从所述充电阶段改变至所述第一电荷转移阶段。
17.一种升压调节器,包括电感器, 充电电路,用于从输入电压源将所述电感器充电至预定电流电平; 电荷转移电路,用于将能量从所述电感器和电压源转移至负载; 时钟,用于为充电/转移操作限定一固定的重复周期;以及 控制器,用于控制所述充电电路以在给定周期开始时将所述电感器从初始电流电平充电至所述预定电流电平,随后通过控制所述电荷转移电路以对剩下的周期部分将能量转移至小于零电感器电流电平。
18.—种控制降压/升压调节器的操作的方法,包括 响应于在输入接收的输入电压和多个控制信号产生经调节的输出电压或输出; 监测所述经调节的输出电压;以及 响应所述输出电压产生多个控制信号,其中所述多个控制信号包括第一操作模式,所述第一操作模式控制所述降/升压调节器的充电阶段以从输入上的输入电压对电荷存储元件充电;第二操作模式,所述第二操作模式控制所述降压/升压调节器的通过阶段以既将存储的电荷从所述电荷存储元件转移至所述输出又将电荷从所述输入转移至所述输出;以及第三操作模式,所述第三操作模式控制所述降压/升压调节器的放电阶段以完全将所述电荷存储元件中存储的电荷转移至所述输出; 其中所述多个控制信号控制所述降压/升压调节器以消除四开关切换状态的出现。
19.如权利要求18所述的方法,其特征在于,所述产生还包括 产生限压信号,所述限压信号指示何时经调整的输出电压超出基准电压; 产生限流信号,所述限流信号指示在所述降压/升压电压调节器的充电阶段期间对所述电荷存储元件的输入电流何时超出一预定限流基准信号; 产生多个控制信号的第一部分以控制多个开关晶体管中的一对升压开关晶体管,所述一对升压开关晶体管在充电阶段将所述电荷存储元件的一侧切换至基准电压并在与所述降压/升压调节器关联的通过阶段和放电阶段切换至输出节点,所述降压/升压调节器响应于所述限压基准信号、限流信号和时钟信号在充电阶段将所述电荷存储元件的一侧切换至基准电压并在所述通过阶段和放电阶段切换至输出节点;以及 产生多个控制信号中的第二部分以控制与所述降压/升压调节器关联的所述多个开关晶体管中的一对降压开关晶体管,所述一对降压开关晶体管响应所述限压信号将所述电荷存储元件的另一侧要么在所述放电阶段连接至基准电压要么在所述通过阶段连接至所述输入节点。
20.如权利要求17所述的方法,其特征在于,还包括 响应在所述降压/升压调节器侧的输入电压和多个控制信号产生经调节的输出电压;以及 根据所述多个控制信号使所述降压/升压调节器工作在所述第一、第二或第三操作模式中的一种模式下。
21.如权利要求19所述的方法,其特征在于,所述操作还包括 响应时钟信号和限流信号控制所述降压/升压调节器中的多个开关晶体管以允许第一操作模式下的充电阶段,从而将电感器充电至与限流信号对应的电流;以及 响应所述时钟信号和限流信号控制所述降压/升压调节器中的多个开关晶体管以允许处于第二操作模式下的通过阶段,已既将存储在所述电感器中的能量转移至所述输出节点又将电流从所述输入节点转移至所述输出,从而使所述电感器中仅一部分存储的能量转移至所述输出。
22.如权利要求20所述的方法,其特征在于,所述操作还包括响应限压信号控制所述多个开关晶体管以允许第三操作模式下的放电阶段,以完全地将存储在所述电感器中的能量转移至所述输出,其中没有能量从所述输入节点转移至所述输出。
23.—种系统,包括 降压/升压电压调节器,用于响应在输入节点上接收的输入电压和驱动控制信号在输出上产生经调节的输出电压,所述降压/升压电压调节器包括多个开关晶体管; 控制电路,用于监测经调节的输出电压并响应于此产生多个驱动控制信号,其中所述控制电路控制所述多个开关晶体管的操作以允许第一操作模式下的充电阶段以将电荷从所述输入节点存储至电感器中,并允许第二操作模式下的通过阶段将仅一部分存储在所述 电感器中的电荷转移至所述输出节点并将电荷从所述输入节点转移至所述输出节点,并允 许第三操作模式下的放电阶段,其中所述电感器中的电荷被完全转移至所述降压/升压电压调节器中的输出节点以消除四开关切换状态的出现;以及 负载,所述负载耦合至所述降压/升压电压调节器的输出。
24.如权利要求23所述的系统,其特征在于,所述负载是从包括处理器、存储器、输入设备、输出设备和存储设备的组中选择的。
全文摘要
一种降压/升压电压调节器响应输入电压和多个控制信号产生经调节的输出电压。该降压/升压电压调节器包括响应多个控制信号的多个开关晶体管。控制电路监测经调节的输出电压并响应于此产生多个控制信号。控制电路控制多个开关晶体管的操作以允许降压/升压电压调节器中处于第一操作模式下的充电阶段、处于第二操作模式下的通过阶段以及处于第三操作模式下的放电阶段,从而消除四开关切换状态的发生。
文档编号H02M3/156GK102882371SQ20121006951
公开日2013年1月16日 申请日期2012年3月7日 优先权日2011年3月8日
发明者黄丛中, S·派特利瑟克 申请人:英特赛尔美国有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1