控制器的制作方法

文档序号:11622882阅读:219来源:国知局
控制器的制造方法与工艺

本发明涉及一种用于开关模式电源的次级侧控制器。具体来说,它涉及次级侧控制器,其被配置成在开关模式电源的输出施加到连接到其上的负载时,控制被布置在开关模式电源的输出端处的负载断开连接开关,从而进行控制。本发明还涉及开关模式电源,其包括控制器和基于通用串行总线(usb)的充电器。本发明同样涉及控制开关模式电源的负载连接开关的方法,所述负载连接开关被配置成提供开关模式电源的输出端到负载的连接或断开连接,所述负载连接到开关模式电源。



背景技术:

开关模式电源需要次级侧控制器。



技术实现要素:

根据本发明的第一方面,提供用于开关模式电源的次级侧控制器,所述控制器包括

第一半导体管芯,其包括被配置成提供负载连接信号的集成电路;

第二半导体管芯,其利用第一半导体管芯封装,其包括电荷泵,所述电荷泵被配置成响应于从第一半导体管芯的集成电路接收到负载连接信号,提供用于控制负载连接开关的开关信号,所述负载连接开关控制开关模式电源是否电连接到负载;

其中负载连接信号的存在或不存在被配置成控制电荷泵是否产生开关信号,并且负载连接信号的幅度被配置成控制开关信号的电压。

在一个或多个实施例中,负载连接信号包括多个脉冲,所述脉冲被配置成控制电荷泵的至少一个电容器的充电和放电,以便提供开关信号。

在一个或多个实施例中,电荷泵被配置成根据脉冲,将来源于负载连接信号的幅度的电压施加到至少一个电容器。

在一个或多个实施例中,电荷泵包括至少一个驱动器放大器,所述驱动器放大器具有输入端、输出端和电源端,所述输入端被配置成接收负载连接信号,所述输出端连接到至少一个电容器,并且其中负载连接信号在输入端处的施加被配置成对电容器进行充电和放电,且施加到电源端的驱动器供应电压是基于负载连接信号的幅度。

在一个或多个实施例中,电荷泵被配置成接收控制器供应电压,并且开关信号包括基于控制器供应电压的电压和横跨至少一个电容器的电压。

在一个或多个实施例中,电荷泵包括向驱动器放大器的电源端提供驱动器供应电压的供应块,所述供应块包括差分放大器,所述差分放大器被配置成在其正端处接收负载连接信号,并向晶体管的栅极提供输出,所述晶体管的源极和漏极端连接到供应电压端,所述供应电压端被配置成接收分别向控制器和驱动器放大器的电源端提供的控制器供应电压,驱动器放大器的第二电源端连接到参考电压,差分放大器的负端连接到晶体管与驱动器放大器之间的节点。

在一个或多个实施例中,电荷泵包括至少第一级驱动器放大器和第二级驱动器放大器,所述第一驱动器放大器和第二驱动器放大器中的每一者被配置成在其输入端处接收负载连接信号,并向相应的电容器提供输出,横跨电容器的电压以及控制器供应电压提供开关信号,并且其中所述第一驱动器放大器和第二驱动器放大器中的每一者被配置成接收驱动器供应电压和来源于负载连接信号的其相应的电源端。

在一个或多个实施例中,集成电路被配置成基于电源的电压输出,确定负载连接信号的幅度。

在一个或多个实施例中,电荷泵包括输出端布置,所述输出端布置被配置成从至少一个电容器接收电压且经由供应端接收控制器供应电压,并在控制器的输出端处提供开关信号,所述输出端布置包括串联布置的第一电流控制元件和第二电流控制元件,所述第一电流控制元件被配置成连接到控制器供应电压,所述第二电流控制元件被配置成提供开关信号,至少一个电容器连接到所述第一电流控制元件与第二电流控制元件之间的节点,其中所述第一电流控制元件和第二电流控制元件包括二极管或开关,所述二极管或开关被配置成阻止电流从电容器流向供应端。

在一个或多个实施例中,第一半导体管芯的集成电路被配置成通过供应负载连接信号,控制开关信号的施加,并且被配置成响应于开关模式电源的电压输出,通过控制负载连接信号的幅度,控制开关信号的电压。

根据本发明的第二方面,提供开关模式电源,其包括在开关模式电源的输出端处的负载断开连接开关,并且被配置成提供将开关模式电源的输出端连接到负载,负载连接开关包括基于nmos的晶体管,其中所述晶体管的栅极端连接到第一方面的次级侧控制器,并且被配置成接收用于控制负载连接开关的开关信号。

在一个或多个实施例中,开关模式电源包括通过绕组连接的初级侧和次级侧,所述次级侧控制器被配置成向初级侧的初级侧控制器提供反馈信号,以调节开关模式电源的输出端的电压。

根据本发明的第三方面,提供用于对电子装置进行充电的基于通用串行总线的充电器,所述电子装置包括第一方面的控制器或第二方面的开关模式电源。

次级侧控制器可被配置成使用usb电力输送协议或其它充电协议(例如,快充(quickcharge)、c型usb(usbtype-c)和海思(hisilicon))操作。

根据本发明的第四方面,提供控制开关模式电源的负载连接开关的方法,所述负载连接开关被配置成提供将开关模式电源的输出端连接到负载,或断开其之间的连接,所述负载连接到开关模式电源,所述方法包括:

向电荷泵提供负载连接信号,以向负载连接开关提供开关信号,其中负载连接信号的存在或不存在被配置成控制电荷泵是否产生开关信号,并且负载连接信号的幅度被配置成控制开关信号的电压。

虽然本发明容许各种修改和替代形式,但其细节已经借助于例子在图式中示出且将进行详细描述。然而,应理解,也可能存在除所描述的特定实施例以外的其它实施例。还涵盖落在所附权利要求书的精神和范畴内的所有修改、等效物和替代实施例。

附图说明

以上论述并不意图表示当前或将来权利要求集的范畴内的每一示例实施例或每一实施方案。图式和随后的具体实施方式还举例说明各种示例实施例。结合附图并考虑以下具体实施方式可以更全面地理解各种示例实施例。

现将仅借助于例子参看附图描述一个或多个实施例,附图中:

图1示出了被就地布置在开关模式电源的次级侧上的次级侧控制器的示例实施例;

图2示出了示例电荷泵布置;

图3示出了示出在接收负载连接信号时的图2的电荷泵的多个信号的时序图;

图4示出了第二示例电荷泵布置;

图5示出了示出在接收负载连接信号时的图4的电荷泵的多个信号的第二时序图;以及

图6示出了示出示例方法的流程图。

具体实施方式

图1示出了开关模式电源100,其被配置成为基于usb的充电器提供电力。应了解,电源100也可为其它装置或应用提供电力。电源100包括次级侧控制器101和负载断开连接开关102。次级侧控制器被配置成提供开关信号,以激活负载断开连接开关102。负载断开连接开关102与电源100的电压输出端103和输出端104串联布置。电压输出端103可为电源100的正电压输出端。输出端104、参考端(例如,接地)105和两个数据端106、107可被布置在一起,以形成usb接头端108。在此例子中,次级侧控制器101除了控制负载断开连接开关102之外,还被配置成调节电源100的电压输出。控制器101还可提供与负载的数据交换,以提供负载请求的电压输出电平,并因此控制电源。因此,在图1中,次级侧控制器101示出为从数据端106、107接收数据线110、111,并向电源100的其余部分提供反馈信号112。应了解,在其它实施例中,上文所述的额外功能可由此控制器101或不同的控制器提供。控制器101还包括控制器供应电压输入端113,其被配置成接收来源于电源100的输出端103的供应电压,接地连接114(或到另一参考电压的连接)以及开关信号输出端115,其将开关信号施加到负载断开连接开关102。

在此例子中,负载断开连接开关102包括基于nmos的晶体管开关。使用基于nmos的晶体管开关是有利的(例如,相比于基于pmost的开关),因为其可为管芯面积优化的,且具有较低的导通状态阻抗。为了有效控制被配置成控制电源100的输出电压的基于nmos的晶体管开关,施加在nmos开关的栅极端处的开关信号的电压必须高于由在nmos开关的源极端处的电源100提供的电源电压,例如,高至少3、4或5伏。

如果usb充电器为usb-pd(电力输送)类型,那么开关模式电源可被配置成输出高达20伏的电压,并且因此控制器可能需要向nmos晶体管负载断开连接开关的栅极端提供至少25伏或至少30伏的电压。

控制器101包括第一半导体管芯116,其可包括集成电路(例如,微控制器或微处理器),以及第二半导体管芯117,其包括电荷泵118,以产生具有合适电压的开关信号,从而控制负载断开连接开关102。第一半导体管芯116和第二半导体管芯117被安装在单个封装内,以形成次级侧控制器101。第一半导体管芯的集成电路可使用高密度集成电路工艺(例如,cmos14或cmos090)制造。第二半导体管芯的电荷泵可使用半导体制造工艺(例如,a-bcd2或a-bcd3)制造。第一半导体管芯116的集成电路被配置成在103处的电源电压被施加到连接到端104的负载时,产生用于控制的负载连接信号。集成电路可被配置成基于在数据线110、111中的一者或两者处接收到的数据,或基于其它参数(例如,由错误条件导致,在所述错误条件中,控制器将打开负载断开连接开关以保护所连接的电话、平板计算机或其它负载免受损害)而提供负载连接信号。集成电路还可被配置成确定为了操作负载断开连接开关102,开关信号需要何种电压。此电压可根据nmost102的特性设置。例如,逻辑电平类型的nmost具有低阈值电压,所以需要较低vcp信号以将其驱动到其最低rdson。例如,4v到5v就足够了。另外,正常电平的mosfet可能需要大约8v。

在此实施例中,集成电路被配置成向电荷泵118提供经调制负载连接信号,其中负载连接信号的存在或不存在被配置成控制电荷泵118是否产生开关信号115,并且负载连接信号的幅度被配置成控制开关信号115的电压。这可为有利的,因为集成电路可能仅需要一个接合线来指示电荷泵在何时提供开关信号和开关信号的所需量值。电荷泵118被进一步配置成接收经调制负载连接信号,并向开关信号提供所指示的电压电平,如将在下文更详细地描述。

图2示出了第二半导体管芯117,并且具体来说,示出了电荷泵118的示例布置。电荷泵118被配置成接收来源于电源100的输出端103的控制器供应电压113,vcc;到接地114(或其它参考电压)的连接;从第一半导体管芯116的集成电路接收的负载连接信号200,cp_in;以及提供开关信号115,vcp。控制器供应电压113和接地连接中的每一者可直接或经由第一半导体管芯116提供。到第二半导体管芯117的连接和从第二半导体管芯117的连接可由接合线提供。

负载连接信号可包括一系列脉冲,其中所述系列脉冲的存在或不存在用于控制负载断开连接开关是打开还是关闭,并且脉冲的幅度用于控制开关信号的电压。

电荷泵118包括第一部分201,其被配置成使用负载连接信号的脉冲来控制电容器202(或其它能量存储元件)的充电和放电,以及第二部分203,其被配置成使用负载连接信号的幅度来控制对电容器进行充电所达到的电压。具体来说,第一部分201可包括驱动器放大器204,其输入端205连接到负载连接信号,并且其输出端206连接到电容器202的第一端207。第二部分203可包括驱动器电压源块,其被配置成在第一电源端208处向驱动器放大器提供电力。第二电源端209可连接到参考电压,例如接地。

开关信号vcp的电压由控制器供应电压vcc和电容器207的电压提供,因为其由驱动器放大器204进行充电。因此,开关信号输出端布置包括第一二极管210,所述第一二极管210被配置成在其阳极处接收控制器电压源vcc,并通过其阴极连接到第二二极管211。第一二极管和第二二极管与彼此串联,并经布置以在相同的方向上传递电流。第二二极管的阴极连接到开关信号输出端115。电容器207的第二端212连接到第一二极管210的阴极与第二二极管211的阳极之间的节点。开关信号输出端布置可另外包括位于开关信号输出端115与第二二极管211之间的输出开关213。输出开关213可由驱动器电路214控制,所述驱动器电路214接收负载连接信号cp_in。当信号存在于cp_in上时,此驱动器电路关闭开关213。

在其它例子中,第一二极管210和第二二极管211可被由驱动器信号控制的有源开关代替。当驱动器信号vdriver较低时,关闭代替二极管210的开关,并打开代替二极管211的开关,因此电容器212被充电到等于vcc电压的电压。随后,当驱动器信号较高(vdriver=vsupply=vref=vpeak(cp_in))时,打开代替二极管210的开关,并关闭代替二极管211的开关。接着,将电容器212中的能量传送到输出端115(vcp)。应了解,因为有源开关的栅电容通常比电荷泵电容器212高得多,所以vdriver信号的一个开关循环仅引发相对较小数量(例如,大约是电容212除以栅电容的比值乘以驱动器电压)的vcp电压。因此,如果有源开关的栅电容是1nf,电容器202是10pf,并且vref=3v,那么用于一个循环的电压阶跃是10pf/1nf*3v=30mv。在一个或多个例子中,电荷泵在大体上1mhz下运行,输出电压vcp快速上升,并且之后,许多开关循环达到稳定的输出电压vcc+vref。出于清楚起见,图3中所绘制的脉冲只有几个脉冲,但在其它实施方案中,需要许多开关循环以将开关信号的电压升高到所希望水平(但随后,脉冲的频率适当地为更高)。

驱动器放大器204被配置成使用负载连接信号的脉冲,以根据负载连接信号定期对电容器207进行电荷。在供应到驱动器放大器204的电力由负载连接信号的幅度确定的条件下,电荷泵118能够有效控制开关信号的电压。

第二部分或驱动器电压源块203包括差分放大器214,所述差分放大器214被配置成在其正端216处接收负载连接信号,并向晶体管218的栅极217提供输出。晶体管218的源极220被配置成连接到控制器供应电压vcc,并且晶体管218的漏极端221连接到驱动器放大器204的第一电源端208。差分放大器214的负端222被配置成从晶体管218与驱动器放大器204之间的节点223接收电压。提供二极管224,其阳极被配置成接收负载连接信号cp_in,并且其阴极连接到正端216。提供存储电容器225,其具有连接到二极管224与正端216之间的节点的第一板和连接到接地(或其它参考电压)的第二板。存储电容器被配置成在cp_in较低的时刻期间存储cp_in的峰值电压。

图3示出了包括在电荷泵118中存在的各种电压/信号的时序图。在时间300处,集成电路提供电荷泵,其经调幅的负载连接信号301标示为cp_in。负载连接信号包括一系列或一串脉冲302,其中提供所述脉冲的幅度或电压vpeak,以控制施加到负载断开连接开关102的电压。迹线vdriver303包括施加到电容器202的驱动器放大器204的输出。如可见,vdriver信号包括在参考电压(例如接地)与具有幅度vpeak的vsupply之间的一系列脉冲。迹线vcp305示出了由电荷泵输出并被施加到负载断开连接开关102的开关信号。在时间300处,开关信号从参考电压增加到接近vcc+vpeak的电压。当在时间306处,vcp超过供应电压vcc之后,负载断开连接开关关闭,并且在输出端104处的电压vout307增加到大体上为vcc。在时间308处,负载连接信号301停止,并且由电荷泵输出的开关信号vcp降低。当在时间309处,vcp的电压大体上降到vcc以下时,负载断开连接开关102打开,由此断开负载的连接。

图4示出了包括二级电荷泵的另一示例电荷泵118。在此例子中,电荷泵大体类似于图2的电荷泵,但提供了两个驱动器放大器:第一级驱动器放大器400和第二级驱动器放大器401,所述第一驱动器放大器400和第二驱动器放大器402中的每一者被配置成在其相应的输入端402、403处接收负载连接信号cp_in,并向相应的电容器404、405提供输出。此例子的开关信号输出端布置包括第一二极管406、第二二极管407和第三二极管406,其全部被布置在相同正向方向上,以使得第一二极管的阳极接收vcc,第三二极管的阴极提供开关信号。与第一驱动器放大器400相关联的电容器404连接到第一二极管406与第二二极管407之间的节点。与第二驱动器放大器401相关联的电容器405连接到第二二极管407与第三二极管408之间的节点。第二驱动器放大器401的输出端被配置成相对于第一驱动器放大器的输出端倒置,以使得当负载连接信号存在时,由驱动器放大器中的每一者交替地输出电压。横跨电容器404、405的电压以及控制器供应电压vcc提供开关信号。驱动器放大器400、403二者由驱动器电压源块410提供电力,所述驱动器电压源块410大体类似于块203,除了其输出端连接到那两个驱动器放大器,此处将不再进行描述。

图5示出了示例时序图。此图式不同于图3,因为来自第一驱动器放大器400和第二驱动器放大器401的输出示出为vdriver1和vdriver2。vdriver1和vdriver2的脉冲为180°反相,并在参考电压(例如,接地)与vsupply之间转换,且具有vpeak的幅度。开关信号相应地具有大体上接近vcc+2*vpeak的最大电压。二级电荷泵相比于图2的单级电荷泵可为有利的,此归因于(例如)可由集成电路实现的电压电平的限制或nmos负载断开连接开关102的性能。

图6示出了控制开关模式电源100的nmos负载连接开关102的示例方法,所述负载连接开关102被配置成提供开关模式电源100的输出端104到负载的连接或断开连接,所述负载连接到开关模式电源,所述方法包括步骤600:向电荷泵提供负载连接信号,以向负载连接开关提供开关信号,其中负载连接信号的存在或不存在被配置成控制电荷泵是否产生开关信号,并且负载连接信号的幅度被配置成控制开关信号的电压。在步骤601处,提供电荷泵的输出以控制负载断开连接开关102。

除非明确陈述特定次序,否则可以任何次序执行以上各图中的指令和/或流程图步骤。而且,本领域的技术人员将认识到,尽管已经论述一个示例指令集/方法,但是本说明书中的材料可以多种方式组合从而还产生其它例子,并且应在由此详细描述提供的上下文内来理解。

在一些示例实施例中,上文描述的指令集/方法实施为体现为可执行指令集的功能和软件指令,这些指令在计算机或以所述可执行指令编程和控制的机器上实现。这些指令经加载以在处理器(例如,一个或多个cpu)上执行。术语处理器包括微处理器、微控制器、处理器模块或子系统(包括一个或多个微处理器或微控制器),或其它控制或计算装置。处理器可以指代单个组件或指代多个组件。

在其它例子中,本文示出的指令集/方法以及与其相关联的数据和指令存储在相应的存储装置中,这些存储装置实施为一个或多个非暂时性机器或计算机可读存储媒体或计算机可用存储媒体。此类计算机可读存储媒体或计算机可用存储媒体被视为物品(或制品)的一部分。物品或制品可以指代任何所制造的单个组件或多个组件。如本文中所限定的非暂时性机器或计算机可用媒体不包括信号,但此类媒体能够接收和处理来自信号和/或其它暂时性媒体的信息。

本说明书中论述的材料的示例实施例可以整体或部分地经由网络、计算机或基于数据的装置和/或服务实施。这些可包括云、互联网、内联网、移动装置、台式计算机、处理器、查找表、微控制器、消费者设备、基础架构,或其它致能装置和服务。如本文和权利要求书中可使用,提供以下非排他性限定。

在一个例子中,使本文论述的一个或多个指令或步骤自动化。术语“自动化”或“自动”(及其类似变化)意味着使用计算机和/或机械/电气装置控制设备、系统和/或过程的操作,而不需要人类干预、观测、努力和/或决策。

应了解,据称将耦合的任何组件可以直接地或间接地耦合或连接。在间接耦合的情况下,可在据称将耦合的两个组件之间安置额外的组件。

在本说明书中,已经依据选定的细节集呈现示例实施例。然而,本领域的普通技术人员应理解,可实施包括这些细节的不同选定集合的许多其它示例实施例。希望所附权利要求书涵盖所有可能的示例实施例。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1