串联同时供电正激直流斩波型单级多输入高频环节逆变器的制作方法

文档序号:14717483发布日期:2018-06-16 01:49阅读:239来源:国知局
串联同时供电正激直流斩波型单级多输入高频环节逆变器的制作方法

本发明所涉及的串联同时供电正激直流斩波型单级多输入高频环节逆变器,属于电力电子变换技术。



背景技术:

逆变器是应用功率半导体器件将一种不稳定、劣质的直流电能变换成稳定、优质的交流电能的静止变流装置,供交流负载使用或实现交流并网。输出交流负载或交流电网与输入直流电源间有低频电气隔离或高频电气隔离的逆变器,分别称为低频环节、高频环节逆变器。电气隔离元件在逆变器中主要起到了如下作用:(1)实现了逆变器输出与输入之间的电气隔离,提高了逆变器运行的安全可靠性和电磁兼容性;(2)实现了逆变器输出电压与输入电压之间的匹配,即实现了逆变器输出电压高于、等于或低于输入电压的技术效果,其应用范围得到了大大拓宽;(3)当高频变压器或高频储能式变压器的工作频率在20kHz以上时,其体积、重量大大降低了,音频噪音也消除了。因此,在以直流发电机、蓄电池、光伏电池和燃料电池等为主直流电源的二次电能变换场合,逆变器具有重要的应用价值。

太阳能、风能、潮汐能和地热能等新能源(也称为绿色能源),具有清洁无污染、廉价、可靠、丰富等优点,因而具有广泛的应用前景。由于石油、煤和天然气等传统化石能源(不可再生的能源)日益紧张、环境污染严重、导致全球变暖以及核能的生产又会产生核废料和污染环境等原因,新能源的开发和利用越来越受到人们的重视。新能源发电主要有光伏、风力、燃料电池、水力、地热等类型,均存在电力供应不稳定、不连续、随气候条件变化等缺陷,因此需要采用多种新能源联合供电的分布式供电系统。

传统的新能源分布式供电系统,如图1、2所示。该系统通常是采用多个单输入直流变换器将光伏电池、燃料电池、风力发电机等不需能量存储的新能源发电设备分别通过一个单向直流变换器进行电能变换且在输出端并联或串联后连接到公共的逆变器的直流母线上,旨在确保各种新能源联合供电并且能够协调工作。该分布式发电系统实现了多个输入源同时向负载供电和能源的优先利用,提高了系统的稳定性和灵活性,但存在两级功率变换、功率密度低、变换效率低、成本高等缺陷,其实用性受到了很大程度的限制。

为了简化电路结构和减少功率变换级数,需要用图3所示具有单级电路结构的新型多输入逆变器取代图1、2所示具有直流变换器与逆变器两级级联电路结构的传统多输入逆变器构成新型的单级新能源分布式供电系统。单级多输入逆变器允许多种新能源输入,输入源的性质、幅值和特性可以相同,也可以差别很大。新型的单级新能源分布式供电系统具有电路结构简洁、单级功率变换、一个高频开关周期内多个输入源同时或分时向负载供电、成本低等优点。

因此,积极寻求一类允许多种新能源联合供电的单级多输入逆变器及其新能源分布式供电系统已迫在眉睫,对于提高系统的稳定性和灵活性,实现新能源的优先利用或充分利用将具有十分重要的意义。



技术实现要素:

本发明目的是要提供一种具有多种新能源联合供电、输入直流电源不共地、多输入单输出组合隔离双向正激直流斩波器设置多路串联同时选择开关、输出与输入之间高频隔离、多个输入电源分时或同时向负载供电、电路拓扑简洁、单级功率变换、变换效率高、输出波形质量高、输出中大容量、应用前景广泛等特点的串联同时供电正激直流斩波型单级多输入高频环节逆变器。

本发明的技术方案在于:一种串联同时供电正激直流斩波型单级多输入高频环节逆变器,是由一个多输入单输出组合隔离双向正激直流斩波器将多个不共地的输入滤波器和一个共用的输出滤波电路联接构成,多输入单输出组合隔离双向正激直流斩波器的每个输入端与每个输入滤波器的输出端一一对应联接,多输入单输出组合隔离双向正激直流斩波器的输出端与输出滤波电路相联接,所述的多输入单输出组合隔离双向正激直流斩波器由输出端顺向串联的多路串联同时选择功率开关电路、单输入单输出组合隔离双向正激直流斩波器依序级联构成,所述每一路串联同时选择功率开关电路均由一个两象限功率开关和一个功率二极管构成且两象限功率开关的源极与功率二极管的阴极相连接,所述两象限功率开关的漏极和功率二极管的阳极分别为该路串联同时选择功率开关电路的正、负极性输入端,所述两象限功率开关的源极和功率二极管的阳极分别为该路串联同时选择功率开关电路的正、负极性输出端,所述的单输入单输出组合隔离双向正激直流斩波器由两个相同的、分别输出低频正半周和低频负半周单极性脉宽调制电压波的隔离双向正激直流斩波器输入端并联输出端反向串联构成,并且两个隔离双向正激直流斩波器非串联的两个输出端为多输入单输出组合隔离双向正激直流斩波器的输出端,每个所述的隔离双向正激直流斩波器均由两象限高频逆变开关、高频变压器、整流和续流及极性选择用两象限高频功率开关构成的高频整流器依序级联构成,所述的输出滤波电路由滤波电感、滤波电容依序级联构成或由滤波电感、滤波电容、滤波电感依序级联构成。

本发明是将传统多种新能源联合供电系统的直流变换器与逆变器两级级联而成的多输入逆变器电路结构,构建为新型串联同时选择开关的单级多输入逆变器电路结构,提出了串联同时供电正激直流斩波型单级多输入高频环节逆变器电路结构与拓扑族及其能量管理控制策略,即该电路结构是通过提供一种多输入单输出组合隔离双向正激直流斩波器将多个不共地的输入滤波器和一个共用的输出滤波电路联接而成。

本发明的串联同时供电正激直流斩波型单级多输入高频环节逆变器,能够将多个不共地、不稳定的输入直流电压逆变成一个负载所需的稳定优质的输出交流电,具有多输入直流电源不共地、输出与输入高频隔离、多输入电源分时或同时向负载供电、电路拓扑简洁、单级功率变换、变换效率高、输出波形质量高、输出中大容量、应用前景广泛等特点。串联同时供电正激直流斩波型单级多输入高频环节逆变器的综合性能,将比传统的直流变换器与逆变器两级级联而成的多输入逆变器优越。

附图说明

图1,传统的多个单向直流变换器输出端并联的两级式新能源分布式供电系统。

图2,传统的多个单向直流变换器输出端串联的两级式新能源分布式供电系统。

图3,新型的单级多输入逆变器原理框图。

图4,串联同时供电正激直流斩波型单级多输入高频环节逆变器原理框图。

图5,串联同时供电正激直流斩波型单级多输入高频环节逆变器电路结构图。

图6,输出电压瞬时值SPWM控制串联同时供电正激直流斩波型单级多输入高频环节逆变器稳态原理波形图。

图7,串联同时供电正激直流斩波型单级多输入高频环节逆变器电路拓扑实例一----单管正激直流斩波型电路原理图。

图8,串联同时供电正激直流斩波型单级多输入高频环节逆变器电路拓扑实例二----推挽全波直流斩波型电路原理图。

图9,串联同时供电正激直流斩波型单级多输入高频环节逆变器电路拓扑实例三----推挽桥式直流斩波型电路原理图。

图10,串联同时供电正激直流斩波型单级多输入高频环节逆变器电路拓扑实例四----推挽正激全波直流斩波型电路原理图。

图11,串联同时供电正激直流斩波型单级多输入高频环节逆变器电路拓扑实例五----推挽正激桥式直流斩波型电路原理图。

图12,串联同时供电正激直流斩波型单级多输入高频环节逆变器电路拓扑实例六----双管正激直流斩波型电路原理图。

图13,串联同时供电正激直流斩波型单级多输入高频环节逆变器电路拓扑实例七----半桥全波直流斩波型电路原理图。

图14,串联同时供电正激直流斩波型单级多输入高频环节逆变器电路拓扑实例八----半桥桥式直流斩波型电路原理图。

图15,串联同时供电正激直流斩波型单级多输入高频环节逆变器电路拓扑实例九----全桥全波直流斩波型电路原理图。

图16,串联同时供电正激直流斩波型单级多输入高频环节逆变器电路拓扑实例十----全桥桥式直流斩波型电路原理图。

图17,串联同时供电单管式和双管式正激直流斩波型单级多输入高频环节逆变器的输出电压、输入电流瞬时值SPWM主从功率分配能量管理控制框图。

图18,串联同时供电单管式和双管式正激直流斩波型单级多输入高频环节逆变器的输出电压、输入电流瞬时值SPWM主从功率分配能量管理控制原理波形图。

图19,串联同时供电推挽式、推挽正激式、半桥式、全桥式正激直流斩波型单级多输入高频环节逆变器的输出电压、输入电流瞬时值SPWM主从功率分配能量管理控制框图。

图20,串联同时供电推挽式、推挽正激式、半桥式、全桥式正激直流斩波型单级多输入高频环节逆变器的输出电压、输入电流瞬时值SPWM主从功率分配能量管理控制原理波形图。

图21,具有输出端并接单级隔离双向充放电变换器的串联同时供电正激直流斩波型单级多输入高频环节独立供电系统。

图22,具有单级隔离双向充放电变换器输出电压独立控制环路的最大功率输出能量管理控制策略。

图23,独立供电系统的输出电压uo和输出滤波电感电流iLf、iLf′波形。

具体实施方式

下面结合说明书附图及实施例对本发明的技术方案做进一步描述。

串联同时供电正激直流斩波型单级多输入高频环节逆变器,是由一个多输入单输出组合隔离双向正激直流斩波器将多个不共地的输入滤波器和一个共用的输出滤波电路联接构成,多输入单输出组合隔离双向正激直流斩波器的每个输入端与每个输入滤波器的输出端一一对应联接,多输入单输出组合隔离双向正激直流斩波器的输出端与输出滤波电路相联接,所述的多输入单输出组合隔离双向正激直流斩波器由输出端顺向串联的多路串联同时选择功率开关电路、单输入单输出组合隔离双向正激直流斩波器依序级联构成,所述每一路串联同时选择功率开关电路均由一个两象限功率开关和一个功率二极管构成且两象限功率开关的源极与功率二极管的阴极相连接,所述两象限功率开关的漏极和功率二极管的阳极分别为该路串联同时选择功率开关电路的正、负极性输入端,所述两象限功率开关的源极和功率二极管的阳极分别为该路串联同时选择功率开关电路的正、负极性输出端,所述的单输入单输出组合隔离双向正激直流斩波器由两个相同的、分别输出低频正半周和低频负半周单极性脉宽调制电压波的隔离双向正激直流斩波器输入端并联输出端反向串联构成,并且两个隔离双向正激直流斩波器非串联的两个输出端为多输入单输出组合隔离双向正激直流斩波器的输出端,每个所述的隔离双向正激直流斩波器均由两象限高频逆变开关、高频变压器、整流和续流及极性选择用两象限高频功率开关构成的高频整流器依序级联构成,所述的输出滤波电路由滤波电感、滤波电容依序级联构成或由滤波电感、滤波电容、滤波电感依序级联构成。

串联同时供电正激直流斩波型单级多输入高频环节逆变器的原理框图、电路结构、输出电压瞬时值SPWM控制时的稳态原理波形,分别如图4、5、6所示。图4、5、6中,Ui1、Ui2、…、Uin为n路输入直流电压源(n为大于1的自然数),ZL为单相输出交流负载,uo、io分别为单相输出交流电压(包括交流电网电压)和交流电流。n输入单输出组合隔离双向正激直流斩波器是由输出端顺向串联的多路串联同时选择功率开关电路、单输入单输出组合隔离双向正激直流斩波器依序级联构成,在任意时刻相当于一个双向功率流单输入单输出组合隔离双向正激直流斩波器。其中,输出端顺向串联的多路串联同时选择功率开关电路,是由n个能承受单向电压应力和双向电流应力的两象限高频功率选择开关Ss1、Ss2、…、Ssn及n个选择二极管Ds1、Ds2、…、Dsn构成(功率选择开关Ss1、Ss2、…、Ssn同时开通或有相位差,开关频率相同或不同,这里仅分析Ss1、Ss2、…、Ssn采用相同开关频率且同时开通的控制方式);单输入单输出组合隔离双向正激直流斩波器,是由两个相同的、分别输出低频正半周和低频负半周单极性脉宽调制电压波uo1、uo2的隔离双向正激直流斩波器输入端并联输出端反向串联构成(两个隔离双向正激直流斩波器在一个低频输出电压周期内轮流工作半个低频周期,即当一个直流斩波器工作输出低频正半周的uo1,而另一个直流斩波器止工作且极性选择用两象限功率开关导通,uo2=0,经输出滤波器后输出正弦交流电uO、iO的正半周;反之,当一个直流斩波器工作输出低频负半周的uo2,而另一个直流斩波器停止工作且极性选择用两象限功率开关导通,uo1=0,经输出滤波器后输出正弦交流电uO、iO的负半周。),并且两个隔离双向正激直流斩波器非串联的两个输出端为多输入单输出组合隔离双向正激直流斩波器的输出端,每个所述的隔离双向正激直流斩波器均由两象限高频逆变开关、高频变压器、整流和续流及极性选择用两象限高频功率开关构成的高频整流器依序级联构成,可选用MOSFET、IGBT、GTR等功率器件。输出滤波电路是由滤波电感、滤波电容依序级联构成或由滤波电感、滤波电容、滤波电感依序级联构成,图中画出了适用于无源交流负载的输出LC滤波器和适用于交流电网负载的输出LCL滤波器两种情况的电路图;n路输入滤波器为LC滤波器(含添加虚框的滤波电感Li1、Li2、…、Lin)或电容滤波器(不含添加虚框的滤波电感Li1、Li2、…、Lin),采用LC滤波器时n路输入直流电流会更平滑。n输入单输出组合隔离双向正激直流斩波器中的高频逆变开关将n路输入直流电压源Ui1、Ui2、…、Uin调制成双极性三态多电平SPWM电压波u12N1/N2、u22N1/N2,经高频变压器T1、T2隔离和高频整流器整流成单极性三态多电平SPWM电压波uo1、uo2,经输出LC滤波后在单相交流无源负载或单相交流电网上获得高质量的正弦交流电压uo或正弦交流电流io,n输入单输出组合隔离双向正激直流斩波器的n个输入脉冲电流经输入滤波器Li1-Ci1、Li2-Ci2、…、Lin-Cin或Ci1、Ci2、…、Cin后在n路输入直流电源Ui1、Ui2、…、Uin中获得平滑的输入直流电流Ii1、Ii2、…、Iin。设高频变压器原边绕组匝数N11=N21=N1,副边绕组匝数N12=N22=N2,当iLf×uo>0时,能量正向传递,双极性三态多电平SPWM电压波u12、u22的幅值为±(Ui1+Ui2+…+Uin)N2/N1、±(Ui1+Ui2+…+Uin-1)N2/N1、…、±Ui1N2/N1,单极性三态多电平SPWM电压波uo1、uo2的幅值为(Ui1+Ui2+…+Uin)N2/N1、(Ui1+Ui2+…+Uin-1)N2/N1、…、Ui1N2/N1;当iLf×uo<0时,能量回馈到输入电源侧,u12、u22的幅值为±(Ui1+Ui2+…+Uin)N2/N1,uo1、uo2的幅值为(Ui1+Ui2+…+Uin)N2/N1。

串联同时供电正激直流斩波型单级多输入高频环节逆变器属于降压型逆变器,n个输入源既可以分时也可以同时向负载供电,其原理相当于多个电压型单输入逆变器在输出端电压的叠加。设功率选择开关Ss1、Ss2、…、Ssn开关频率相同且同时开通,占空比分别为d1、d2、…、dn,d1>d2>…>dn,则输出电压uo与输入直流电压(Ui1、Ui2、…、Uin)、高频变压器匝比(N2/N1)、占空比(d1、d2、…、dn)之间的关系为uo=(d1Ui1+d2Ui2+…+dnUin)N2/N1。对于适当的占空比(d1、d2、…、dn)和高频变压器匝比(N2/N1),uo可以大于、等于或小于输入直流电压之和Ui1+Ui2+…+Uin,该逆变器中的高频变压器不但起到了提高逆变器运行的安全可靠性和电磁兼容性,更重要的是起到了匹配输出电压与输入电压的作用,即实现了逆变器的输出电压高于、等于或低于输入直流电压之和Ui1+Ui2+…+Uin的技术效果,其应用范围得到了大大拓宽。由于存在0<d1<1,所以uo<(Ui1+Ui2+…+Uin)N2/N1,即输出电压uo总是低于输入直流电压(Ui1、Ui2、…、Uin)与高频变压器匝比(N2/N1)的乘积之和(Ui1+Ui2+…+Uin)N2/N1;由于所述逆变器属于单级电路结构,其变压器工作频率为高频,多输入单输出组合隔离双向正激直流斩波器设置有输出端顺向串联的多路串联同时选择功率开关电路,故将这类逆变器称为串联同时供电正激直流斩波型(降压型)单级多输入高频环节逆变器。该逆变器的n个输入源分时或同时对输出交流负载供电,占空比可以相同(d1=d2=…=dn),也可以不同(d1≠d2≠…≠dn)。

本发明所述的串联同时供电正激直流斩波型单级多输入高频环节逆变器,由于共用一个多输入单输出组合隔离双向正激直流斩波器和一个输出滤波电路,与直流变换器和逆变器两级级联构成的传统多输入逆变器的电路结构存在着本质上的区别。因此,本发明所述逆变器具有新颖性和创造性,并且具有输出与输入高频隔离、多输入电源分时或同时供电、电路拓扑简洁、单级功率变换、升降压比大、输入电压配制灵活、变换效率高(意味着能量损耗小)、输出电压波形质量高、输出中大容量、成本低、应用前景广泛等特点,是一种理想的节能降耗型单级多输入逆变器,在大力倡导建设节能型、节约型社会的今天,更具有重要价值。

串联同时供电正激直流斩波型单级多输入高频环节逆变器电路拓扑族实施例,如图7、8、9、10、11、12、13、14、15、16所示。图7-16所示电路中,输出端顺向串联的多路串联同时选择功率开关电路均由n个能承受单向电压应力、双向电流应力的两象限高频功率开关和n个二极管构成,而单输入单输出组合隔离双向正激直流斩波器由多个能承受单向电压应力、双向电流应力的两象限高频功率开关实现;单输入单输出组合隔离双向正激直流斩波器中的两个隔离双向正激直流斩波器轮流工作半个低频输出周期;每个隔离双向正激直流斩波器输出端并接的有源箝位电路用来抑制高频整流器功率开关的电压尖峰,该有源箝位电路是由箝位开关Sc1和箝位电容Cc1或箝位开关Sc2和箝位电容Cc2串联构成;图7中的R1、C1、D1和R2、C2、D2分别构成两个单管正激直流斩波器的箝位电路,用来实现高频变压器T1、T2的磁复位和抑制高频功率开关的关断电压尖峰,当然也可以采用复位绕组、LCD箝位、有源箝位等磁复位技术。准确地说,图7所示单管正激直流斩波型电路是由n+6个能承受单向电压应力、双向电流应力的两象限高频功率开关和n个二极管来实现,图8、10、13所示推挽全波、推挽正激全波、半桥全波直流斩波型电路是由n+8个能承受单向电压应力、双向电流应力的两象限高频功率开关和n个二极管来实现,图9、11、14所示推挽桥式、推挽正激桥式、半桥桥式直流斩波型电路是由n+12个能承受单向电压应力、双向电流应力的两象限高频功率开关和n个二极管来实现,图12所示双管正激直流斩波型电路是由n+8个能承受单向电压应力、双向电流应力的两象限高频功率开关和n+4个二极管来实现,图15、16所示全桥全波、全桥桥式直流斩波型电路分别是由n+12、n+16个能承受单向电压应力、双向电流应力的两象限高频功率开关和n个二极管来实现。需要补充说明的是,图7-16所示电路给出了输入滤波器为LC滤波器情形,限于篇幅未给出输入滤波器为电容滤波器情形时的电路;图7-16所示电路仅画出了适用于无源交流负载的输出LC滤波器的电路图,而未画出适用于交流电网负载的输出LCL滤波器的电路图。串联同时供电正激直流斩波型单级多输入高频环节逆变器拓扑实施例的功率开关电压应力,如表1所示。单管式、推挽式、推挽正激式正激直流斩波型电路分别适用于中、大功率低压输入逆变场合,而双管式、半桥式、全桥式正激直流斩波型电路分别适用于中、大功率高压输入逆变场合。该电路拓扑族适用于将多个不共地、不稳定的输入直流电压变换成一个所需电压大小、稳定优质的输出交流电,可用来实现具有优良性能和广泛应用前景的新型单级多种新能源分布式供电系统,如光伏电池40-60VDC/220V50HzAC or 115V400HzAC、质子交换膜燃料电池85-120V/220V50HzAC or 115V400HzAC、中小型户用风力发电24-36-48VDC/220V50HzAC or 115V400HzAC、大型风力发电510VDC/220V50HzAC or 115V400HzAC等多输入源对交流负载或交流电网供电。

表1串联同时供电正激直流斩波型单级多输入高频环节逆变器拓扑实施例的功率开关电压应力

能量管理控制策略对于多种新能源联合供电系统来说是至关重要的。由于存在多个输入源及相应的功率开关单元,因此需要对多个占空比进行控制,也就是存在多个控制自由度,这就为多种新能源的能量管理提供了可能性。串联同时供电正激直流斩波型单级多输入高频环节逆变器的能量管理控制策略,需同时具备输入源的能量管理、光伏电池和风力发电机等新能源发电设备的MPPT、输出电压(电流)控制三大功能,有时还需考虑蓄电池的充放电控制和系统在不同供电模式下的平滑无缝切换。串联同时供电正激直流斩波型单级多输入高频环节逆变器采用两种不同的能量管理模式:(1)能量管理模式I--主从功率分配方式,已知负载所需功率尽可能由主供电设备第1、2、…、n-1路输入源提供,给定第1、2、…、n-1路输入源的输入电流,相当于给定第1、2、…、n-1路输入源的输入功率,负载所需的不足功率由从供电设备第n路输入源提供,可以不需添加蓄电池储能设备;(2)能量管理模式Ⅱ—最大功率输出方式,第1、2、…、n路输入源均以最大功率输出到负载,省去了蓄电池储能设备,实现了并网发电系统对能源充分利用的要求,若在输出端并接一个蓄电池充放电器还可实现独立供电系统输出电压(电流)的稳定。当n路新能源的输入电压均给定时,通过控制第1、2、…、n路输入源的输入电流,就相当于控制了第1、2、…、n路输入源的输入功率。

串联同时供电正激直流斩波型单级多输入高频环节逆变器,采用输出电压、输入电流瞬时值SPWM主从功率分配能量管理控制策略,以构成独立供电系统;或采用输入电流瞬时值SPWM最大功率输出能量管理控制策略,以构成并网发电系统。第1、2、…、n-1路输入源输出功率固定和第n路输入源补充负载所需的不足功率的输出电压、输入电流瞬时值SPWM主从功率分配能量管理控制框图和控制原理波形,分别如图17、18、19、20所示。图17、18为单管式和双管式正激直流斩波型电路拓扑的控制方案,图19、20为推挽式、推挽正激式、半桥式、全桥式正激直流斩波型电路拓扑的控制方案,二者在本质上是十分相似的。该控制方案的基本思想是,n输入单输出组合隔离双向正激直流斩波器中的高频逆变开关将n路输入直流电压源Ui1、Ui2、…、Uin调制成双极性三态多电平SPWM电压波,第1、2、…、n-1路选择功率开关的导通时间是按照误差电流大小与基准正弦同步信号的乘积与锯齿波交截获得(实现第1、2、…、n-1路输入源的最大功率输出),第n路选择功率开关的导通时间是按照误差电压大小与锯齿波交截获得(实现第n路输入源功率的补足),第1路选择功率开关的导通时间为逆变开关的导通时间,经高频变压器T1、T2隔离和高频整流器整流成单极性三态多电平SPWM电压波uo1、uo2,经滤波后得到高质量的正弦交流电压uo或正弦交流电流io;通过调节输出电压误差信号来实现逆变器输出电压的稳定,该控制策略适用于图7-16所示电路。第1、2、…、n-1路输入源经最大功率点计算后得到基准电流信号Ii1r、Ii2r、…、Ii(n-1)r,逆变器第1、2、…、n-1路的输入电流反馈信号Ii1f、Ii2f、…、Ii(n-1)f分别与第1、2、…、n-1路基准电流信号Ii1r、Ii2r、…、Ii(n-1)r经比例积分调节器比较放大,放大了的误差信号I1e、I2e、…、I(n-1)e分别与基准正弦同步信号相乘后得i1e、i2e、…、i(n-1)e以及反相信号-i1e、-i2e、…、-i(n-1)e,逆变器的输出电压反馈信号uof与基准正弦电压ur经比例积分调节器比较放大得到电压误差放大信号ue,i1e、i2e、…、i(n-1)e、ue、-i1e、-i2e、…、-i(n-1)e、-ue均分别与单极性锯齿形载波uc比较,经适当的组合逻辑电路后得到图7、12所示单管式和双管式电路拓扑的功率开关控制信号ugss1、ugss2、…、ugssn、ugs11(ugs′11)、ugs13、ugs21(ugs′21)、ugs23、ugs15、ugs25、ugsc1、ugsc2,或图8、9、10、11、13、14、15、16所示推挽式、推挽正激式、半桥式、全桥式电路拓扑的功率开关控制信号ugss1、ugss2、…、ugssn、ugs11(ugs′11)、ugs12(ugs′12)、ugs13(ugs′13)、ugs14(ugs′14)、ugs21(ugs′21)、ugs22(ugs′22)、ugs23(ugs′23)、ugs24(ugs′24)、ugsc1、ugsc2。当负载功率Po大于第1、2、…、n-1路输入源的最大功率之和时,输出电压uo减小,电压调节器输出电压ue的有效值大于门槛比较电平Ut并且I1e、I2e、…、I(n-1)e均大于零,二极管D1、D2、…、Dn-1阻断,第1、2、…、n-1路电流调节器与第n路电压调节器分别独立工作,即Ii1r=Ii1r、Ii2r=Ii2r、…、Ii(n-1)r=Ii(n-1)r,第1、2、…、n-1路电流调节器用于实现第1、2、…、n-1路输入源的最大功率输出,第n路电压调节器用于实现逆变器输出电压的稳定,n路输入源同时或分时向负载供电;当负载功率Po小于第1、2、…、n-1路输入源的最大功率之和时,输出电压uo增大,当电压调节器输出电压ue的有效值降低到门槛比较电平Ut以下时,二极管Dn-1导通,D1、D2、…、Dn-2仍阻断,滞环比较电路n+1输出低电平,第n路输入源中止供电,电压调节器与电流调节器构成双闭环控制系统,第1、2、…、n-1路输入源在一个开关周期内同时或分时向负载供电,电流调节器的基准电流Ii(n-1)r减小,即Ii(n-1)r<Ii(n-1)r,第n-1路输入源输出功率降低(工作在非最大工作点),第n路输入源输出功率降为零,逆变器的输出电压uo趋于稳定。当输入电压或负载变化时,通过调节基准电压ur或反馈电压uof来改变误差电压信号ue和误差电流信号i1e、i2e、…、i(n-1)e,从而改变n路串联同时选择开关的占空比d1、d2、…、dn,故可实现所述逆变器输出电压、输入电流(输出功率)的调节与稳定。

当将图17-20中的第n路输入源设计为输入电流反馈来控制输入电流,则构成了输入电流瞬时值SPWM最大功率输出能量管理控制策略。第1、2、…、n路电流调节器分别独立工作,均用于实现各自输入源的最大功率输出,n路输入源同时或分时向负载供电。

图18、20所示控制原理波形标出了高频开关周期TS、某一高频开关周期TS内第1、2、…、n路输入源的导通时间Ton1、Ton2、…、Tonn和逆变开关的导通时间Ton=Ton1,逆变开关的导通时间Ton在一个输出电压周期内是按正弦规律变化的。

为了构成能充分利用多输入源能量的独立供电系统,多个输入源应工作在最大功率输出方式且需要配置储能设备,以实现输出电压的稳定,即在逆变器的输出端并接一个单级隔离双向充放电变换器,如图21所示。所述单级隔离双向充放电变换器由输入滤波器(Li、Ci或Ci)、高频逆变器、高频变压器、周波变换器、输出滤波器(Lf′、Cf′)依序级联构成,所述的周波变换器由能承受双向电压应力和双向电流应力的四象限高频功率开关构成。所述的单级隔离双向充放电变换器在能量正向传递(储能设备放电)、反向传递(储能设备充电)时,分别等效于一个单级高频环节DC-AC变换器和一个单级高频环节AC-DC变换器。

该独立供电系统采用具有单级隔离双向充放电变换器输出电压独立控制环路的最大功率输出能量管理控制策略,如图22所示。当负载功率Po=UoIo大于多个输入源的最大功率之和P1max+P2max+…+Pnmax时,蓄电池、超级电容等储能设备通过单级隔离双向充放电变换器向负载提供所需的不足功率—供电模式Ⅱ,储能设备单独向负载供电--供电模式Ⅲ,属于供电模式Ⅱ的极端情形;当负载功率Po=UoIo小于多个输入源的最大功率之和P1max+P2max+…+Pnmax时,多个输入源输出的剩余能量通过单级隔离双向充放电变换器对储能设备充电--供电模式Ⅰ。以带阻性负载为例,论述单级隔离双向充放电变换器的功率流向控制,如图23所示。对于输出滤波电容Cf、Cf′和负载ZL来说,串联同时供电正激直流斩波型单级多输入高频环节逆变器和单级隔离双向充放电变换器的输出端并接相当于两个电流源的并联叠加。由图22所示能量管理控制策略可知,串联同时供电正激直流斩波型单级多输入高频环节逆变器的输出滤波电感电流iLf与输出电压uo同频同相,输出有功功率;而充放电变换器是通过输出电压uo与基准电压uoref的误差放大信号uoe与高频载波交截生成的SPWM信号进行控制的,其输出滤波电感电流iLf′与uo之间存在相位差θ,不同的相位差θ意味着输出不同大小和方向的有功功率。当Po=P1max+P2max+…+Pnmax时,θ=90°,充放电变换器输出的有功功率为零,处于空载状态;当Po>P1max+P2max+…+Pnmax时,uo减小,θ<90°,充放电变换器输出有功功率,储能设备对负载放电,即储能设备提供负载所需的不足功率;当Po<P1max+P2max+…+Pnmax时,uo增大,θ>90°,充放电变换器输出负有功功率,负载向储能设备回馈能量,即多个输入源输出的剩余功率对储能设备充电,当θ=180°时负载向储能设备回馈的能量最大。因此,该能量管理控制策略能根据Po与P1max+P2max+…+Pnmax的相对大小实时控制单级隔离双向充放电变换器的功率流大小和方向,实现了系统在三种不同供电模式下的平滑无缝切换。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1