串并联式电动车辆驱动系统的制作方法

文档序号:15815907发布日期:2018-11-02 22:38阅读:153来源:国知局
串并联式电动车辆驱动系统的制作方法

本发明大体涉及车辆驱动,并且更具体地,涉及串并联式电动车辆驱动系统。

背景技术

电动车辆(ev)使用一个或多个电动马达或牵引马达来达到其推进的意图。ev的推进系统可以使用各种调节器和逆变器来将来自电池的直流电(dc)调节和转换为ev的感应马达所需的交流电(ac)。电动马达或牵引马达的转速可通过控制逆变器的频率和相位来调节。

然而,ev中的电动马达可能需要昂贵的分立部件来抽取高达1000安培的电流以实现调节和逆变。这些昂贵的分立部件需要复杂的散热器来消散当将dc切换到脉宽调制(pwm)电压时产生的热量。已经开发了各种电路和控制策略来解决成本和热量问题,但是这些现有方法通常很复杂且难以实施。因此,需要改进的电路和方法来改进ev的驱动效率和操作。



技术实现要素:

根据本发明,提供一种串并联式电动车辆(ev)驱动系统,包括:

控制器单元,所述控制器单元可通信地连接到马达控制单元的输入端以向所述马达控制单元发送控制信号,所述马达控制单元包括至少一个逆变器电路,并且所述至少一个逆变器电路还包括串联的绝缘栅双极型晶体管(igbt)和并联的igbt;

ev电源,所述ev电源连接到所述马达控制单元以根据所述控制信号并由所述ev电源来生成绕组控制信号;和

牵引马达的绕组,所述绕组可通信地连接到所述马达控制单元的输出端以接收所述绕组控制信号来调节所述牵引马达。

根据本发明的一个实施例,所述马达控制单元具有四个所述逆变器电路。

根据本发明的一个实施例,所述牵引马达包括六个绕组阵列,其中所述六个绕组阵列的每个绕组连接到所述马达控制单元。

根据本发明的一个实施例,所述ev电源还连接有用于减小纹波电流的滤波电容器。

根据本发明的一个实施例,所述控制器单元被并入所述马达控制单元中。

根据本发明的一个实施例,所述控制单元控制所述逆变器电路的所述绕组控制信号的逆变器频率。

根据本发明的一个实施例,所述控制单元控制所述逆变器电路的所述绕组控制信号的相移。

根据本发明的一个实施例,所述ev电源可以是电池组、超级电容器、动能器件、和车载发电器件中的至少一个。

根据本发明,提供一种用于控制电动车辆(ev)马达的串并联式电动车辆(ev)系统,包括:

连接到马达控制单元的ev电源;

位于所述马达控制单元中的逆变器电路,其中所述逆变器电路包括串联的绝缘栅双极型晶体管(igbt)和并联的igbt;和

控制器,所述控制器可通信地连接到所述逆变器电路,其中所述控制器向所述逆变器电路发送控制信号以向牵引马达的马达绕组输出绕组控制信号。

根据本发明的一个实施例,所述马达控制单元具有四个所述逆变器电路。

根据本发明的一个实施例,所述牵引马达包括六个绕组阵列,其中所述六个绕组阵列的每个绕组连接到所述马达控制单元。

根据本发明的一个实施例,所述系统具有连接到所述ev电源和所述逆变器电路的用于减小纹波电流的滤波电容器。

根据本发明的一个实施例,所述控制器单元被并入所述马达控制单元中。

根据本发明的一个实施例,所述控制单元控制所述逆变器电路的所述绕组控制信号的逆变器频率。

根据本发明的一个实施例,所述控制单元控制所述逆变器电路的所述绕组控制信号的相移。

根据本发明的一个实施例,所述ev电源可以是电池组、超级电容器、动能器件、和车载发电器件中的至少一个。

根据本发明,提供一种用于在电动车辆(ev)中用串联的逆变器控制牵引马达的方法,包括:

确定用于马达转速和马达扭矩中的至少一个的马达控制信号;和

将所述马达控制信号发送到连接到ev电源的马达控制单元中的逆变器电路,其中所述逆变器电路包括至少一个串联的绝缘栅双极型晶体管(igbt)和至少一个并联的igbt,其中所述马达控制信号包括逆变器频率值;和

向所述牵引马达的绕组发送绕组控制信号。

根据本发明的一个实施例,所述牵引马达包括六个绕组阵列,其中所述六个绕组阵列的每个绕组连接到所述马达控制单元。

根据本发明的一个实施例,所述方法还包括生成所述逆变器电路的所述绕组控制信号的逆变器频率。

根据本发明的一个实施例,所述方法还包括生成所述逆变器电路的所述绕组控制信号的相移。

附图说明

图1示出了典型的电动车辆(ev)驱动系统的示意图;

图2示出了用于ev的串并联式电驱动系统;

图3是用于调制四个逆变器的四个载波波形的示例性曲线图;

图4a是第一逆变器中的三相电流的示例性曲线图;

图4b是第二逆变器中的三相电流的示例性曲线图;

图4c是第三逆变器中的三相电流的示例性曲线图;

图4d是第四逆变器中的三相电流的示例性曲线图;

图5是四个逆变器之一的三个调制信号的示例性曲线图;

图6是当使用四个逆变器时dc总线电流的示例性曲线图。

具体实施方式

参考附图,其中相同的附图标记在几个视图中表示相同的部件,图1示出了典型的电动车辆(ev)驱动系统10。ev电源16(例如高电压电池)可通信地连接到电池接触器开关18,电池接触器开关18可通信地连接到逆变器系统控制器(isc)12的输入端。然后,isc12的输出端可通信地连接到马达14。马达14可以是感应马达(im)或同步马达(sm)。dc电源16可以是电池组、超级电容器、动能器件、或车载发电器件。

感应马达是交流马达,其中产生扭矩所需的马达转子中的电流通过电磁感应从定子绕组的磁场获得。因此,可以在没有电连接到转子的情况下制造感应马达。感应马达的转子可以是缠绕式的或鼠笼式的。

同步马达是ac马达,其中在稳定状态下轴的旋转与供应电流的频率同步。换句话说,旋转周期恰好等于整数个ac周期。同步马达在马达定子上包括产生随线电流振荡而旋转的磁场的多相ac电磁铁。具有永磁体或电磁体的转子与定子磁场以相同的速率同步旋转,并且从而提供ac马达的第二同步旋转磁场。

在进入高速公路场景中时,ev需要在尽可能快的时间内从电驱动系统获得最大量的扭矩。对于高性能的电动车辆来说,电驱动系统从hv电池抽取高达1000安培的电流不是不可预见的。

从isc向马达输送高电流的一种技术是将isc的多个功率器件并联连接。上述功率器件的一个示例是如图1所示的绝缘栅双极型晶体管(igbt)22。除igbt之外,功率器件可以是功率双极型晶体管(未示出)或功率金属氧化物半导体场效应晶体管(mosfet)(未示出)。因此,通过并联部署功率器件,可以用额定电流较低的器件输出大电流,并且因此避免使用高成本的高电流功率器件。

在一个这种配置中,isc可以针对三相电压中的每一相并联使用四个功率器件,并将其相关电流馈送到马达以实现高电流功率器件的高电流能力。在这种配置中,每个功率器件只需要承载总电流的1/4。并联部署功率器件允许通过并联额外的功率器件来实现更高的最大电流。例如,可以并联组合额定电流为100安培的三个功率器件以产生300安培的总额定值。可以并联组合每个额定电流为100安培的四个功率器件以产生400安培的总额定值。

isc的设计者可以使用更低的电流、更便宜的功率器件、以更大的量获得功率器件、并且因此从制造功率器件的部件的成本上获得折扣。然而,利用并联的功率器件的问题是并联的功率器件之间的电流共享。任何电流不平衡都会导致功率器件变得效率低下,并且因此降低功率器件的输出电流能力。

为了减少并联的功率器件的数量,可以增加马达的并联绕组的数量。一个示例是,对于带有4个isc的12个绕组,无需并联功率器件,而是创建了一系列配置。这导致电流共享问题被消除。但是,这种解决方案将使马达设计和马达控制的设计和实施变得非常困难,并且将需要更多的电流传感器。换句话说,十二个绕组将需要十二个电流传感器,这增加了系统的成本和复杂性。

图2示出了基于连接到ev马达28的开路绕组配置的串并联式逆变器的串并联式电驱动系统11。ev马达28可以是同步马达或感应马达。马达28具有六个绕组阵列。六个绕组阵列的第一组具有绕组30、32、34,并且六个绕组阵列的第二组具有绕组36、38、40。绕组可通信地连接到四个逆变器电路21、23、25、27的组,并且逆变器电路21、23、25、27中的每一个可共享dc电源16,而不需要额外的功率器件。因此,没有电流共享或电流不平衡的问题。此外,该配置还允许每个逆变器21、23、25、27具有其自己的或共享的dc电源16。每个逆变器21、23、25、27包括串联的绝缘栅双极型晶体管(igbt)和并联的绝缘栅双极型晶体管。可替代地,igbt可以是任何半导体功率器件。一个示例是功率双极型晶体管或功率mosfet晶体管。

这个实施例的优点在于,相比于其他逆变器电路,可以跨越dc电源16放置以减小任何纹波电流的滤波电容器20可以具有较小的电容值,从而减小电容器20的尺寸和成本。

四个逆变器电路21、23、25、27由控制器单元(未示出)或马达控制单元(未示出)控制,以确定逆变器21、23、25、27作为马达控制信号而向马达输出的参数(例如逆变器频率值和逆变器频率相位值等)。在一些实施例中,控制器单元和马达控制单元可以组合成单个单元。逆变器21、23、25、27由串联和并联的igbt22组成。马达控制信号可以是例如施加到逆变器21、23、25、27的ibgt的脉宽调制(pwm)信号。结果,逆变器向马达绕组输出绕组控制信号,以产生ev马达28的马达转速和马达扭矩。

isc控制器可以可通信地连接到控制器局域网(can)总线(未示出),例如以已知的方式连接到多个电子控制单元(ecu)(未示出)。isc控制器(例如用于上述系统或控制器)通常包含处理器和存储器,每个存储器存储可由控制器的相应处理器执行的指令。每个控制器存储器还可存储各种数据(例如从ev中的其他控制器或传感器收集的数据、例如可通过can总线获得的数据)、用于控制器操作的参数等。

本实施例允许isc控制器控制任何两个单独绕组之间的相移。相移可以是从零到+/-180度的任何值。由于isc控制器独立控制四个逆变器电路21、23、25、27,因而系统11得以优化。作为逆变器21、逆变器23、逆变器25、和逆变器27的示例可以设置为针对其pwm马达控制信号具有不同的相移,以便减小电容器纹波电流,这如上所述减小了电容器20的尺寸和成本。

图3是由isc控制器生成的用于调制四个逆变器电路21、23、25、27的四个载波波形100、102、104、106的示例性曲线图。四个逆变器电路21、23、25、27各自具有一组三相电流。图4a示出了逆变器21的三相电流110、112、114。图4b示出了逆变器23的三相电流118、120、122。图4c示出了逆变器25的三相电流124、126、128。图4d示出了逆变器27的三相电流130、132、134。

图5是作为一组三相调制信号134、136、138的马达控制信号的示例性曲线图。y轴表示相对于x轴的时间绘制的单位形式(-1至+1)的调制信号的幅度。将三相调制信号134、136、138与来自每个逆变器的马达控制信号进行比较,并且isc控制器调整三相调制信号134、136、138的频率和幅度以获得峰值性能同时最小化纹波。结果,dc总线电流19如图6所示。

例如,如果来自dc电源16的dc总线电压为375v、功率因数为0.75、调制指数为0.86、并且总负载电流有效值为900安培。由此产生的dc总线纹波电流有效值为172安培。纹波比是dc总线纹波电流有效值除以总负载电流,或172安培/900安培=0.19。为了比较,如果使用单个逆变器以相同的功率因数、调制指数达到900安培的相同电流,则dc总线纹波电流有效值将为495安培,因此纹波比为495安培/900安培=0.55。单个逆变器将需要更大的、更昂贵的高压dc电容器来处理高纹波电流。

在本文中,用来修饰形容词的副词“大体”是指,由于材料、加工、制造、传感器测量、计算、处理时间、通讯时间等方面的不完善,形状、结构、测量、数值、计算等可以偏离精确描述的几何形状、距离、测量值、值、计算等。

例如本文所描述的那些计算设备通常各自包括可由一个或多个计算设备(例如上述确定的那些计算设备)执行的指令,并且执行上述过程的框或步骤。计算机可执行指令可以由使用各种编程语言和/或技术(包括但不限于单独使用或组合使用的javatm、c、c++、c#、visualbasic、python、javascript、perl、html、php等)创建的计算机程序进行编译或解释。通常,处理器(例如微处理器)例如从存储器、计算机可读介质等处接收指令并执行这些指令,从而执行包括本文所述的一个或多个步骤的一个或多个过程。可以使用各种计算机可读介质来存储并发送这种指令和其它数据。计算设备中的文件通常是存储在计算机可读介质上的数据集合,例如存储装置介质、随机存取存储器等。

计算机可读介质包括参与提供可由计算机读取的数据(例如指令)的任何介质。这种介质可以采取许多形式,包括但不限于非易失性介质、易失性介质等。非易失性介质包括例如光盘或磁盘、以及其它持久存储器。易失性介质包括通常构成主存储器的动态随机存取存储器(dram)。计算机可读介质的常见形式包括例如软盘、可折叠磁盘、硬盘、磁带、任何其它磁介质、cd-rom、dvd、任何其它光学介质、穿孔卡片、纸带、任何其它设有孔的物理介质、ram、prom(可编程只读存储器)、eprom(可擦可编程只读存储器)、闪存eeprom(电可擦可编程只读存储器)、任何其它存储器芯片或盒式磁盘、或计算机可读取的任何其它介质。

关于本文所述的媒介、过程、系统、方法等应当理解,尽管已经将这些过程的步骤等描述为根据某个有序序列发生,但是可以使用除本文所述的顺序之外的顺序来执行描述的步骤来实施这些过程。还应当理解,可以同时执行某些步骤,可以添加其它步骤,或者可以省略本文描述的某些步骤。换言之,出于说明某些实施例的目的而提供本文的系统和/或过程描述,并且不应将其解释为限制所公开的主题。

因此应当理解,上述描述旨在说明而非限制。在阅读上述描述之后,除所提供的实施例之外的许多实施例和应用对本领域技术人员而言将是显而易见的。本发明获得权利的范围不应该是参考上述描述确定,而应该参照所附权利要求和基于本发明的非临时专利申请中包括的权利要求、以及这些权利要求的等同物的全部范围来确定。可以预计和意在将在本文讨论的领域中发生的未来的发展,并且所公开的系统和方法将并入到未来的实施例中。总之应该理解,所公开的主题能够修改和变化。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1