基于多辐照特性年气象场景的光伏发电接纳能力计算方法与流程

文档序号:16430824发布日期:2018-12-28 20:08阅读:190来源:国知局
基于多辐照特性年气象场景的光伏发电接纳能力计算方法与流程
本发明属于新能源接纳能力评估领域,尤其涉及一种基于多辐照特性年气象场景的光伏发电接纳能力计算方法。
背景技术
太阳能是一种清洁的可再生能源,其开发利用一直是世界各国普遍关注的问题。随着化石燃料枯竭和环境污染问题的日益严重,以光伏发电为代表的新能源发电技术成为世界各国缓解能源压力和促进可持续发展的重要手段。近年来,光伏发电规模快速扩大,技术进步和产业升级加快,成本显著降低,已成为全球能源转型的重要领域。我国光伏装机规模不断扩大,截至2017年12月,累计装机超过130gw,居世界首位。不同于常规电源,光伏发电具有随机性、波动性、不确定性,这些特性给电力系统的规划运行带来了严峻挑战。大规模的光伏接入会引起电力系统的调频问题和调峰问题,出现弃光限电的现象,造成了资源和投资的浪费。因此,有必要研究如何准确评估电力系统对于光伏发电的接纳能力。中国专利,专利号:cn103138256b,公开了一种新能源电力消纳全景分析系统及方法。该方法将风电等新能源发电模型嵌入电力系统检修计划、随机生产模拟及开机组合计算、调峰分析和调频分析,以及新能源消纳规模计算,构建了对新能源电力系统的综合评价系统及方法。且根据新能源发电出力特性数据、发电机组检修计划结果模拟得到新能源电场时序出力曲线,将新能源电场时序出力曲线从持续负荷曲线中分离,得到净负荷曲线,根据等效电量函数法进行系统各机组的运行模拟。该方法中新能源类型仅考虑了风电、水电,未涉及光伏发电。中国专利,专利号:cn105634005a,公开了一种用于评估光伏接纳能力的方法及系统。该发明包括评估模型建立模块、模型求解模块和结果统计与分析模块,基于时序负荷建模,在考虑电力系统对光伏能源接入的限制因素的基础上,寻找使电力系统总运行成本最低时的电力系统最优的光伏接入量。该方法按照充分利用光伏能源的原则,利用蒙特卡洛模拟方法生成光伏机组时序出力序列,考虑机组检修及停运因素得到修正后的等效时序负荷曲线,在此基础上安排火电机组的出力特性,实现对光伏接纳的评价。该方法未能充分考虑影响光伏出力的气象特性,将模拟生成的光伏出力序列作为负荷曲线的修正因素,侧重于电力系统中其他类型机组的出力特性的优化过程。中国专利,专利号:cn102522917b,公开了一种光伏电站发电输出功率预测方法,根据数值天气预报获得光伏电站所在地在预测时间段的气象要素,修正后计算光伏电池的输出特性曲线,计算该输出特性曲线上的最大输出功率即为该光伏电池的输出功率,根据光伏电站电池串并联数量计算得到光伏电站发电输出功率。该方法在光伏电站发电输出功率预测中考虑了水平面总辐照强度和环境温度这两个气象要素,但该方法对于光伏电站输出功率的预测依赖于数值天气预报数据,侧重于短期预测,未考虑长时间尺度光伏电站的出力序列特性,且未涉及电力系统运行模拟问题。光伏电站出力受气象因素影响较大,从电力系统运行角度,除了现有的从典型日出发模拟系统运行得到光伏实际出力,还需要从全年的持续运行角度,判断光伏电站的实际出力以及实际发电量数据,从而准确判断光伏发电的接纳能力,为光伏电站的建设规划提供依据,避免过度投资建设导致资源的浪费。综上所述,需要一套更为科学与全面的光伏发电接纳能力计算方法,充分考虑光伏电站所在区域的历史气象特性,得到准确并且全面的光伏发电出力序列,通过以全年运行费用最小为优化目标并且考虑系统运行约束的电力系统时序运行模拟得到光伏发电的实际出力序列,实现对光伏发电接纳能力全面准确的评估。技术实现要素:本发明的目的是针对现有光伏发电接纳能力计算方法的不足,提出一种基于多辐照特性年气象场景的光伏发电接纳能力计算方法。该方法首先获取光伏电站的基础信息,通过基础信息中的地理信息获取气象监测站提供的历史气象信息,根据历史气象信息计算太阳辐照特性,基于太阳辐照特性生成各光伏电站全年气象场景库,结合光伏电站基础信息计算光伏电站的全年出力序列,以全年运行费用最小为优化目标并且考虑系统运行约束进行电力系统时序运行模拟,通过时序运行模拟结果计算光伏发电接纳能力。为实现上述目的,本发明采取的技术方案是一种基于全太阳能资源类型气象场景的光伏发电接纳能力计算方法。该方法包括以下步骤:1)建立各光伏电站基础信息集并输入各光伏电站基础信息集内相应信息,各光伏电站基础信息集均包括相应光伏电站的地理信息、安装运行方式、安装面积和组件参数;2)建立各光伏电站的历史气象信息库,计算各光伏电站历史太阳辐照特性指标;各光伏电站历史太阳辐照特性指标均包括相应光伏电站年太阳总辐射量、太阳日均辐射量、太阳日辐射量最大值、太阳日辐射量最小值和太阳日辐射量不均衡值;3)根据步骤2)计算的各光伏电站历史太阳辐照特性指标,选择典型场景年并生成各光伏电站全年气象场景库;4)根据生成的全年气象场景库计算各典型场景年各光伏电站的出力时间序列;5)基于日运行模拟以全年运行费用最小为优化目标进行电力系统时序运行模拟,得到各光伏电站的年实际出力时间序列;6)根据时序运行模拟得到的各光伏电站的年实际出力时间序列计算各光伏电站在不同典型场景年的接纳能力。进一步地,步骤1)中,所述各光伏电站基础信息集的表达式如下:pvsii={gii,imi,iai,cpi}式中:pvsii表示第i个光伏电站的基础信息集,i=1,2,...,n,n为正整数;gii表示第i个光伏电站的地理信息数据;gii=[latitudei,longitudei,altitudei],latitudei表示纬度数据,longitudei表示经度数据,altitudei表示海拔高度数据;imi表示第i个光伏电站的安装运行方式;imi∈{a,b,c,d,e,f},a表示最佳倾角固定式,b表示平单轴跟踪式,c表示斜单轴跟踪式,d表示双轴跟踪式,e表示固定可调式,f表示其他安装方式;iai表示第i个光伏电站的安装面积;iaj表示第i个光伏电站内第j块光伏面板的面积,单位为m2;cpi表示第i个光伏电站的组件参数;rti表示第i个光伏电站内光伏组件的额定工作温度,单位℃;表示第i个光伏电站的倾斜面等效辐照系数,由第i个光伏电站的安装运行方式决定;表示第i个光伏电站的转换效率,由太阳能光伏组件的技术参数决定,包括组件转换效率、逆变器效率和线损修正。进一步地,步骤2)所述的建立各光伏电站的历史气象信息库,计算各光伏电站历史太阳辐照特性指标,具体包括以下步骤:2-1)根据各光伏电站的地理信息确定其对应的气象监测站根据各光伏电站的纬度、经度和海拔高度数据以及各气象监测站的纬度、经度和海拔高度数据,选择距离光伏电站最近的气象监测站作为其对应气象监测站;2-2)输入各对应气象监测站的历史气象信息作为相应光伏电站的历史气象信息库,表达式如下:wdi={wiyear|year=year1,year2,…,yearn}式中:wdi表示第i个光伏电站的历史气象信息库;wiyear表示与第i个光伏电站对应的气象监测站某一年的气象数据集;year表示历史气象数据对应的年份;2-3)计算各光伏电站历史气象数据的太阳辐射特征指标,具体包括:2-3-1)计算各光伏电站年太阳总辐射量,表达式如下:式中:sqti(year)表示第i个光伏电站在year年的太阳总辐射量,单位为mj/m2;表示第i个光伏电站在year年第d天的太阳总辐射量,单位为mj/(m2·d);d表示year年的总天数,平年取值365,闰年取值366;2-3-2)计算各光伏电站太阳日均辐射量,表达式如下:式中:表示第i个光伏电站在year年的太阳日均辐射量;2-3-3)计算各光伏电站太阳日辐射量最大值,表达式如下:式中:rmaxi(year)表示第i个光伏电站在year年的太阳日辐射量最大值;max()为求最大值的标准函数;2-3-4)计算各光伏电站太阳日辐射量最小值,表达式如下:式中:rmini(year)表示第i个光伏电站在year年的太阳日辐射量最小值;min()为求最小值的标准函数;2-3-5)计算各光伏电站太阳日辐射量不均衡值,表达式如下:式中:rdi(year)表示第i个光伏电站在year年的太阳日辐射量不均衡值。进一步地,步骤3)所述的根据步骤2)计算的各光伏电站历史太阳辐照特性指标,选择典型场景年并生成各光伏电站的全年气象场景库,具体包括:3-1)根据光伏电站太阳辐射特征指标选择典型场景年,分别如下:3-1-1)选择所有光伏电站中太阳日均辐射量最大值和最小值所对应的年份;3-1-2)选择所有光伏电站中太阳日辐射量最大值和最小值所对应的年份;3-1-3)选择所有光伏电站中太阳日辐射量不均衡值最大值和最小值所对应的年份;3-2)根据上述典型场景年选择光伏电站气象信息逐小时时间序列作为各光伏电站典型辐照特性的全年气象场景库,具体包括:3-2-1)选择太阳辐照数据逐小时时间序列选择上述6个年份的太阳总辐照数据时间序列其中,t=1,2,…,t,平年时t取值8760,闰年时t取值8784;3-2-2)选择环境温度逐小时时间序列选择上述6个年份的环境温度数据时间序列其中,t=1,2,…,t,平年时t取值8760,闰年时t取值8784。进一步地,步骤4)所述的根据生成的全年气象场景库计算各典型场景年各光伏电站的出力时间序列,具体包括:4-1)计算各光伏电站的出力修正系数,表达式如下:式中:表示第i个光伏电站在year年的出力修正系数序列;表示峰值功率温度系数,根据光伏组件的性能参数调整;4-2)计算光伏电站全年出力时间序列,表达式如下:式中:表示第i个光伏电站在year年的出力时间序列;η(imi)表示倾斜面等效辐照系数,由第i个光伏电站的安装运行方式决定;η(cpi)表示光伏电站转换效率,由太阳能光伏组件的技术参数决定,包括组件转换效率、逆变器效率和线损修正。进一步地,步骤6)所述的根据时序运行模拟结果计算各光伏电站在不同典型场景年的接纳能力,具体包括:6-1)根据时序运行模拟结果中各光伏电站的年实际出力时间序列,计算光伏电站的实际并网电量,表达式如下:式中:表示第i个光伏电站在year年的实际发电量;表示第i个光伏电站在year年的实际出力时间序列;6-2)根据光伏电站出力序列计算光伏电站可用发电量,表达式如下:式中,表示第i个光伏电站在year年的可用发电量;6-3)根据光伏电站实际发电量和可用发电量,计算光伏发电接纳指标,表达式如下:式中,表示第i个光伏电站在year年的发电接纳能力。本发明的有益效果是:通过光伏电站对应的气象监测站提供的历史气象信息计算太阳辐照特性,生成各光伏电站典型辐照特性全年气象场景库,结合光伏电站基础信息计算光伏电站各场景年的全年出力序列,通过以全年运行费用最小为优化目标的电力系统时序运行模拟得到各光伏电站的实际出力数据,计算得到光伏发电接纳能力。光伏出力序列更接近于运行实际,包含了丰富的气象信息,时序运行模拟结果更接近电力系统运行实际。该方法得到的光伏发电接纳能力能够为光伏发电的规划运行提供可靠依据。附图说明图1(a)、1(b)、1(c)分别是本发明以2010年场景为例,3个光伏电站全年出力时间序列。图2是本发明实施例的电力系统时序运行模拟流程图。具体实施方式下面结合附图及实施例,对本发明提出的一种基于多辐照特性年气象场景的光伏发电接纳能力计算方法进一步详细说明如下。本发明实施例的一种基于多辐照特性年气象场景的光伏发电接纳能力计算方法,以某区域电网为例,评估年共有3座光伏电站投入运行,即n=3,i=1,2,n。该方法包括以下步骤:1)建立各光伏电站基础信息集pvsi1,pvsi2,pvsi3,并输入各光伏电站基础信息;各光伏电站基础信息集均包括相应光伏电站的地理信息gii、安装运行方式imi、安装面积iai和组件参数cpi;其中:1-1)输入各光伏电站的地理信息gii=[latitudei,longitudei,altitudei],latitudei表示纬度数据,longitudei表示经度数据,altitudei表示海拔高度数据。本实施例输入的各光伏电站的地理信息如下:gi1=[n31.45°,e118.05°,26.0m]gi2=[n31.42°,e118.34°,80.0m]gi3=[n31.05°,e118.11°,26.8m]1-2)输入各光伏电站的安装运行方式imi∈{a,b,c,d,e,f},a表示最佳倾角固定式,b表示平单轴跟踪式,c表示斜单轴跟踪式,d表示双轴跟踪式,e表示固定可调式,f表示其他安装方式;目前光伏电站的安装运行方式基本可以分为{a,b,c,d,e}五类,预留f类作为未来可能出现的新型安装运行方式。一般情况下,某一个光伏电站内光伏面板的安装运行方式相同,若某一光伏电站内存在多种光伏面板的安装运行方式,则将光伏电站进一步拆分,将所有同类型安装运行方式的光伏面板作为一个光伏电站处理,并修正i的值。例如某光伏电站i内存在两种光伏面板的安装运行方式,即imi={a,b},则此时将安装运行方式为a和b的光伏面板分别作为光伏电站j和j+1,并且j=i,即imi={imj,imj+1},其他原有编号为(i+1,i+2,…n)的光伏电站将编号更新为(i+2,i+3,…,n+1)。本实施例输入的各光伏电站的安装运行方式如下:im1=aim2=bim3=c1-3)输入各光伏电站的安装面积iaj表示第i个光伏电站内第j块光伏面板的面积,单位为m2。本实施例输入的各光伏电站的安装面积如下:ia1=350000m2ia2=120000m2ia3=200000m21-4)输入各光伏电站的组件参数rti表示第i个光伏电站内光伏组件的额定工作温度,单位℃,由光伏组件厂家出;表示第i个光伏电站的倾斜面等效辐照系数,由第i个光伏电站的安装运行方式决定,由光伏组件厂家根据安装运行方式给出;表示第i个光伏电站的转换效率,由太阳能光伏组件的技术参数决定,包括组件转换效率、逆变器效率和线损修正,由厂家技术手册提供。本实施例输入的各光伏电站的组件参数如下:cp1=[44℃,85.5%,15.6%]cp2=[43℃,80.2%,15.3%]cp1=[45℃,79.2%,15.8%]2)建立各光伏电站的历史气象信息库,计算各光伏电站历史太阳辐照特性指标,该太阳辐照特性指标包括相应光伏电站的年太阳总辐射量、太阳日均辐射量、太阳日辐射量最大值、太阳日辐射量最小值和太阳日辐射量不均衡值;具体包括:2-1)根据各光伏电站的地理信息确定其对应气象监测站根据各光伏电站的纬度、经度和海拔高度数据以及各气象监测站的纬度、经度和海拔高度数据,选择距离光伏电站最近的气象监测站作为其对应气象监测站。2-2)输入各对应气象监测站的历史气象信息作为相应光伏电站的历史气象信息库,分别记为wd1,wd2,wd3,wdi={wiyear|year=year1,year2,…,yearn},wiyear表示与第i个光伏电站对应的气象监测站某一年的气象数据集,气象数据集按年份先后顺序排列,即wiyear1表示历史气象信息库中第year1年(也即第1年)的气象数据集,wiyearn表示历史气象信息库中(也即第n年)的气象数据集。例如:输入信息为气象监测站1981-2010年的气象数据集,则year1=1981,yearn=2010。本实施例历史气象数据对应的年份year=[1981,2015]。2-3)计算各光伏电站历史气象数据的太阳辐射特征指标,具体包括:2-3-1)计算各光伏电站年太阳总辐射量sqt1(year),sqt2(year),sqt3(year),其中,式中:sqti(year)表示第i个光伏电站在year年的太阳总辐射量,单位为mj/m2;表示第i个光伏电站在year年第d天的太阳总辐射量,单位为mj/(m2·d);d表示year年的总天数,平年取值365,闰年取值366;2-3-2)计算各光伏电站太阳日均辐射量其中,2-3-3)计算各光伏电站太阳日辐射量最大值rmax1(year),rmax2(year),rmax3(year),其中,rmaxi(year)表示第i个光伏电站在year年的太阳日辐射量最大值;max()为求最大值的标准函数;2-3-4)计算各光伏电站太阳日辐射量最小值rmin1(year),rmin2(year),rmin3(year),其中,rmini(year)表示第i个光伏电站在year年的太阳日辐射量最小值;min()为求最小值的标准函数;2-3-5)计算各光伏电站太阳日辐射量不均衡值rd1(year),rd2(year),rd3(year),其中,3)根据步骤2)计算的各光伏电站历史太阳辐照特性指标,选择典型场景年并生成各光伏电站的全年气象场景库;所述典型场景年是指能够反映出光伏电站历史气象信息典型特点的年份,如历史最大值所在年份、历史最小值所在年份、历史不均衡值最大值所在年份等,通过典型场景年的选取,能够得到符合历史气象信息基本特性同时涵盖极端情况的气象数据。本步骤具体包括:3-1)根据光伏电站太阳辐射特征指标选择典型场景年,分别如下:3-1-1)选择所有光伏电站中太阳日均辐射量最大值和最小值所对应的年份,即:选择对应的year值。3-1-2)选择所有光伏电站中太阳日辐射量最大值和最小值所对应的年份,即:选择max(rmaxi(year))、min(rmini(year))对应的year值。3-1-3)选择所有光伏电站中太阳日辐射量不均衡值最大值和最小值所对应的年份,即:选择max(rdi(year))、min(rdi(year))对应的year值。本实施例通过本步骤,选择出1985、1991、1993、2002、2008、2010共6个年份。3-2)根据上述典型场景年选择光伏电站气象信息逐小时时间序列作为各光伏电站典型辐照特性的全年气象场景库,具体包括:3-2-1)选择太阳辐照数据逐小时时间序列选择上述6个年份的太阳总辐照数据时间序列即表示第i个光伏电站在year年的太阳辐照强度时间序列;其中,t=1,2,…,t,平年时t取值8760,闰年时t取值8784。3-2-2)选择环境温度逐小时时间序列选择上述6个年份的环境温度数据时间序列其中,t=1,2,…,t,平年时t取值8760,闰年时t取值8784。4)根据生成的全年气象场景库计算各典型场景年各光伏电站的出力时间序列;具体包括:4-1)计算各光伏电站的出力修正系数其中,式中:表示第i个光伏电站在year年的出力修正系数序列;表示峰值功率温度系数,根据光伏组件的性能参数调整,一般取值-0.30%/k;rti表示第i个光伏电站内光伏组件的额定工作温度,单位℃,由光伏组件厂家给出。4-2)计算光伏电站全年出力时间序列其中,式中:表示第i个光伏电站在year年的出力时间序列;表示第i个光伏电站在year年的太阳辐照强度时间序列;iai表示第i个光伏电站的安装面积;η(imi)表示倾斜面等效辐照系数,由第i个光伏电站的安装运行方式决定,由光伏组件厂家根据安装运行方式给出;表示第i个光伏电站在year年的出力修正系数序列;η(cpi)表示光伏电站转换效率,由太阳能光伏组件的技术参数决定,包括组件转换效率、逆变器效率和线损修正等,由厂家技术手册提供。现以2010年场景为例,得到3个光伏电站全年出力时间序列分别如图1(a)、图1(b)、图1(c)所示。5)基于日运行模拟以全年运行费用最小为优化目标进行电力系统时序运行模拟,得到各光伏电站的年实际出力时间序列;具体包括:5-1)输入电力系统的负荷、线路、发电机组信息数据,包括负荷曲线、线路电抗、线路电阻、线路电容、线路传输容量、机组类型、机组容量、强迫停运率、启停成本、固定运行费用等运行模拟基本输入参数;5-2)根据步骤5-1)输入的数据确定电力系统的运行模拟流程;运行模拟是电力系统领域的基础问题,已有较多研究以及通用的流程方法,本发明实施例选用基于时序负荷曲线的电力系统确定型运行模拟方法。该方法流程如附图2所示。基于时序负荷曲线的电力系统确定型运行模拟方法以日运行模拟为基础。首先根据装机进度表和机组检修计划确定该日机组状态,包括确定该日可运行机组、安排固定出力或指定出力机组出力序列、安排抽水蓄能及常规水电机组出力序列、确定指定状态机组;其次根据光伏电站出力时间序列、固定出力或指定出力机组出力序列、抽水蓄能及常规水电机组出力序列得到修正后的负荷曲线;然后根据原始负荷曲线和正负备用率确定电力系统每个时段需要的正负备用容量;最后通过该日可运行机组、修正后负荷曲线、指定状态机组、电力系统每个时段需要的正负备用容量、分时段机组报价和启停费用、机组和网络安全约束、运行模式及其他参数,进行机组优化运行,得到电力系统日运行模拟结果,逐日模拟结果即为所需的电力系统时序运行模拟结果。5-3)按照全年系统运行费用最小为优化目标进行时序运行模拟,得到各光伏电站的年实际出力时间序列;本实施例的运行模拟的目标函数为模拟时段内运行费用最小,即全年电力系统运行成本最小。约束条件包括电力平衡约束、机组出力上下限约束、系统正负备用约束、线路潮流上下限约束、断面潮流上下限约束、启停机组最短停机、开机时间约束、机组爬坡约束、水电机组电量约束和抽蓄机组抽水发电平衡约束。6)根据时序运行模拟得到的各光伏电站的实际出力序列计算各光伏电站在不同典型场景年的接纳能力,具体包括:6-1)根据时序运行模拟结果中各光伏电站的年实际出力时间序列,计算各光伏电站的实际并网电量其中,式中:表示第i个光伏电站在year年的实际发电量;表示第i个光伏电站在year年的实际出力时间序列。6-2)根据光伏电站出力序列计算光伏电站可用发电量其中,式中,表示第i个光伏电站在year年的可用发电量;6-3)根据光伏电站实际发电量和可用发电量,计算光伏发电量接纳指标其中,表示第i个光伏电站在year年的发电接纳能力。本实施例根据电力系统时序运行结果,可以得到十分丰富的光伏发电并网数据,从多个角度分析光伏发电的接纳情况,此处仅给出光伏电站可用发电量、实际发电量、发电量接纳指标,如表1、表2、表3所示。表1光伏电站可用发电量光伏电站序号1231985年场景4865413325259791991年场景5048214260278151993年场景4732912861249832002年场景4769013294261082008年场景4951714153266192010年场景484241369726209表2光伏电站实际发电量表3光伏电站发电量接纳比例光伏电站序号1231985年场景93.5%95.2%96.1%1991年场景71.8%75.2%72.6%1993年场景83.2%85.1%82.9%2002年场景79.6%80.8%78.5%2008年场景88.1%90.7%90.2%2010年场景85.4%87.3%86.6%综上,本发明充分考虑光伏电站的历史辐照特性模拟光伏电站出力,使得光伏电站出力序列更接近于实际运行并且能够考虑不同气象因素的影响,通过电力系统时序运行模拟得到详细和准确的光伏电站实际出力数据,进而实现对光伏发电接纳的准确评估,为光伏发电的规划和运行提供依据。以上提供的本发明的说明书的描述是示范性的,而不是限制性的。按照上述教导,本发明的许多修改和变更都是可能的。因此,选择并描述实施方式是为了更好地解释本发明的原理及其应用,并使本领域普通技术人员明白,在不脱离本发明实质的前提下,所有修改和变更均落入由权利要求所限定的本发明的保护范围之内。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1