同步电机驱动控制装置以及搭载了由该同步电机驱动控制装置进行驱动控制的同步电机的车辆的制作方法

文档序号:23186743发布日期:2020-12-04 14:15阅读:105来源:国知局
同步电机驱动控制装置以及搭载了由该同步电机驱动控制装置进行驱动控制的同步电机的车辆的制作方法

本申请涉及对搭载于车辆的同步电机进行驱动控制的同步电机驱动控制装置、以及搭载了由该同步电机驱动控制装置进行驱动控制的同步电机的车辆。



背景技术:

近年来,从环境意识的提高以及未来石油资源枯竭的角度出发,要求汽车等车辆的燃料消耗率的降低。另外,以锂离子电池为代表的充电电池(battery)取得了飞跃性进步,像电动车或混合动力汽车那样使行驶用的动力电动化的尝试也变得盛行。

在电动车或混合动力汽车中,出于驱动车辆的目的、或出于实施发电的目的而使用同步电机。同步电机中,由于需要与转子的旋转角度同步地实施电流的通电因而设置旋转角度传感器,旋转角度传感器使用旋转变压器等的情况较多。

为了使同步电机高效地动作,需要利用旋转角度传感器高精度地检测磁极位置,然而,由于制造同步电机时的偏差等,相对于实际的磁极位置,旋转角度传感器所检测的磁极位置有时会偏离。

对此,专利文献1中,在同步电机通过发动机而旋转的状态下,将d轴电流和q轴电流设定为零,根据此时的指令电压信息运算旋转角度校正量,在通常使用时根据该旋转角度校正量对旋转角度进行校正并使用。

现有技术文献

专利文献

专利文献1:日本专利特开2004-129359号公报



技术实现要素:

发明所要解决的技术问题

在专利文献1所公开的控制装置中,如该文献的段落0031中所记载的那样,在同步电机处于高速旋转的区域,感应电压变高,因此,需要将d轴电流设定为负的值来进行通电。因此,在高速旋转的情况下不处于d轴电流和q轴电流为零的状态,存在无法实施旋转角度校正量的运算的问题。由此,仅在转速较低的状态下才能实施旋转角度校正量的运算,存在运算旋转角度校正量的定时被限制的问题。

本申请公开用于解决上述问题的技术,其目的在于提供一种同步电机驱动控制装置、以及搭载了利用该同步电机驱动控制装置进行驱动控制的同步电机的车辆,即使在同步电机处于较高转速的情况下也能检测旋转角度校正量,能在较宽范围内进行旋转角度校正量的检测。

解决技术问题所采用的技术方案

本申请所公开的同步电机驱动控制装置是对同步电机进行驱动控制的同步电机驱动控制装置,所述同步电机驱动控制装置包括:电流检测装置,该电流检测装置检测三相电流;功率转换器;以及控制装置,该控制装置具有运算所述同步电机的旋转角度的校正量的旋转角度校正量运算部,并对所述功率转换器进行控制,

所述旋转角度的校正量基于在所述同步电机旋转的状态下实施三相短路、并由所述电流检测装置检测的电流来运算。

发明效果

根据本申请所公开的同步电机驱动控制装置,即使在同步电机处于较高转速的情况下也能检测旋转角度校正量,能在较宽范围内进行旋转角度校正量的检测。

本申请的上述以外的目的、特征、观点及效果通过参照附图的以下详细说明将进一步变得明确。

附图说明

图1是示出搭载了由实施方式1所涉及的同步电机驱动控制装置进行驱动控制的同步电机的车辆的图。

图2是示出实施方式1所涉及的同步电机驱动控制装置的详情的图。

图3是图2所示的逆变器控制装置的详细图。

图4是示出图3的旋转角度校正量运算部的动作的流程图。

图5是示出图3的旋转角度校正量运算部的硬件的一个示例的图。

图6是对实施方式2进行说明的图,是示出搭载了由实施方式1所涉及的同步电机驱动控制装置进行驱动控制的同步电机的车辆的其它实施方式的图。

图7是搭载于图6所示的车辆的同步电机驱动控制装置中的旋转角度校正量运算的时序图。

图8是对实施方式3进行说明的图,是示出搭载了由实施方式1所涉及的同步电机驱动控制装置进行驱动控制的同步电机的车辆的其它实施方式的图。

图9是对实施方式4进行说明的图,是示出搭载了由实施方式1所涉及的同步电机驱动控制装置进行驱动控制的同步电机的车辆的其它实施方式的图。

图10是对实施方式5进行说明的图,是示出搭载了由实施方式1所涉及的同步电机驱动控制装置进行驱动控制的同步电机的车辆的其它实施方式的图。

具体实施方式

以下,使用附图,对本申请所涉及的同步电机驱动控制装置、以及搭载了由该同步电机驱动控制装置进行驱动控制的同步电机的车辆的优选实施方式进行说明。另外,各图中,相同标号表示相同或相当的部分。

实施方式1.

图1是示出搭载了由实施方式1所涉及的同步电机驱动控制装置进行驱动控制的同步电机的车辆的实施方式的图。

在图1中,标号10表示车辆,是搭载有发动机11和同步电机12的混合动力汽车。同步电机12与变速器13和发动机11这两者机械性相连结。利用同步电机12产生的转矩,来进行发动机11的启动或驱动轴14的驱动。

同步电机驱动控制装置15将电池16的直流电转换成交流电,并将转换得到的交流电输出到同步电机12。电池16例如由锂离子充电电池构成,使用300v左右的电压的电池。车辆控制装置(以下称为ecu)17根据油门位置传感器、刹车踏板操作或车轮速度传感器等的信息(未图示),来运算同步电机12所产生的转矩。

ecu17利用通信单元(例如can:controlareanetwork,控制局域网)与同步电机驱动控制装置15相连接,并利用通信将转矩指令传输至同步电机驱动控制装置15。此外,ecu17中,判断是否根据车辆10的状态来实施同步电机12的旋转角度校正量运算。是否实施同步电机12的旋转角度校正量运算的判断可以由ecu17来进行,也可以由同步电机驱动控制装置15来进行。驱动轴14由轮胎、驱动轴或差速齿轮等构成。变速器13的输出轴与驱动轴14机械性连结。同步电机12或发动机11所产生的转矩通过变速器13的输入轴被输入,通过齿轮(未图示)被减速,并被传输到驱动轴14。

图2是示出同步电机驱动控制装置15的详情的图。同步电机驱动控制装置15包括功率转换器即逆变器18、逆变器18的控制装置即逆变器控制装置19、以及电流传感器20。

逆变器控制装置19运算逆变器18的栅极信号,以使得能实现由ecu17所指示的转矩指令。逆变器18通常包括被称为上臂的开关元件18a至18c、以及被称为下臂的开关元件18d至18f这6个开关元件。开关元件18a至18f使用igbt或mos-fet等,并根据逆变器控制装置19运算出的栅极信号进行开关动作,来将电压施加到同步电机12。电流传感器20对被通电到同步电机12的电流进行测量。

图3是示出逆变器控制装置19的详情的图。逆变器控制装置19包括电流指令生成部19a、旋转角度校正部19b、转速运算部19c、三相二相转换部19d、电流控制部10e、二相三相转换部19f、栅极信号生成部19g和旋转角度校正量运算部19h。

电流指令生成部19a生成能实现从ecu17接收到的转矩指令的d轴电流指令值id*和q轴电流指令值iq*。旋转角度校正部19根据设置于同步电机12、并对旋转角度进行检测的旋转角度检测装置的位置传感器(未图示)所得出的检测值、即位置传感器旋转角度θp、以及旋转角度校正量运算部19h所得出的旋转角度校正量来运算旋转角度θ。例如,对位置传感器旋转角度θp加上旋转角度校正量来求出旋转角度θ。转速运算部19c通过对同步电机12的旋转角度进行微分来运算转速。具体而言,将1ms间的旋转角度变化量除以时间间隔(1ms)。

三相二相转换部19d根据作为检测三相电流的电流检测装置的电流传感器20所检测出的三相电流iu、iv、iw,来运算d轴电流id和q轴电流iq。电流控制部19e实施控制运算,以使得三相二相转换部19d运算出的d轴电流id和q轴电流iq跟随电流指令生成部19a所生成的d轴电流指令值id*和q轴电流指令值iq*,并运算d轴电压指令vd和q轴电压指令vq。该电流控制部19e中,例如应用pi控制等。

二相三相转换部19f根据电流控制部19e运算出的d轴电压指令vd和q轴电压指令vq、以及旋转角度校正部19b运算出的旋转角度θ,来运算u相电压指令vu、v相电压指令vv、w相电压指令vw。栅极信号生成部19g生成栅极信号,以使得二相三相转换部19f运算出的u相电压指令vu、v相电压指令vv、w相电压指令vw能输出。该处理中,例如应用利用了三角波的pwm调制等。此外,在旋转角度校正量运算部19h指令了三相短路的情况下,实施使逆变器18的上臂的开关元件18a至18c全部截止、并使下臂的开关元件18d至18f全部导通的三相短路。这里,设为使下臂的开关元件18d至18f导通,但也可以使上臂和下臂相反。

旋转角度校正量运算部19h根据转速运算部19c运算出的转速、或来自ecu17的校正量运算许可信号等来进行校正量运算的实施判断。此外,在判断为实施校正量运算的情况下,对栅极信号生成部19g输出三相短路指令。之后,根据实施了三相短路的状态下的d轴电流、q轴电流的相位来运算旋转角度校正量。

图4是示出旋转角度校正量运算部19h的动作的流程图。该处理例如以1ms等的固定周期来实施。

首先,在步骤s401中,旋转角度校正量运算部19h确认是否由ecu17许可了校正量运算。信息例如通过can通信等通信从ecu17进行传输。该校正量运算的许可例如在车辆10通过发动机11进行驱动的状态下被许可。这里,在校正量运算被许可的情况下前进至步骤s402,否则结束该处理。

在步骤s402中,确认转速是否在设定值a以上。若转速在设定值a以上则前进至步骤s403,在小于设定值a的情况下结束该处理。

在步骤s403中,对栅极信号生成部19g输出三相短路指令,实施三相短路。在实施了三相短路的情况下,流过同步电机12的电流的相位与同步电机12的转速一起变化,在高速旋转下q轴电流大致为零,负的d轴电流被通电。由此,电流的相位与转速一起变化,因此能利用该特性来运算旋转角度的校正量。

在步骤s404中,根据d轴电流id和q轴电流iq来运算旋转角度校正量,并对旋转角度校正部19b输出运算得到的旋转角度校正量。旋转角度校正部19b使用运算出的旋转角度校正量来运算旋转角度θ。

另外,如图5所示的硬件的一个示例那样,旋转角度校正量运算部19由处理器19h1和储存装置19h2构成。虽然存储装置19h2未图示,但具备随机存取储存器等易失性存储装置、以及闪存等非易失性的辅助存储装置。另外,也可以具备硬盘这样的辅助存储装置以取代闪存。处理器19h1执行从存储装置19h2输入的程序。该情况下,从辅助存储装置经由易失性存储装置向处理器19h1输入程序。另外,处理器19h1可以将运算结果等数据输出至存储装置19h2的易失性存储装置,也可以经由易失性存储装置将数据保存至辅助存储装置。

如上所述,根据实施方式1所涉及的同步电机驱动控制装置,即使同步电机12高速旋转也能求出旋转角度校正量,因此具有求出校正量的定时变多的效果。此外,已知在高速旋转下因发动机转矩变动等而引起的旋转的变动变小,具有不易受到旋转变动的影响且精度较高的效果。此外,这样运算出的旋转角度校正量可以由旋转角度校正部19b来依次变更校正值。此外,在检测同步电机12的旋转角度的位置传感器未发生故障的情况下,该旋转角度校正量为规定范围的数字,因此,也能利用这点来进行旋转角度传感器的故障诊断。

实施方式2

接着,对搭载了由实施方式1所涉及的同步电机驱动控制装置进行驱动控制的同步电机的车辆的其它实施方式进行说明。图6是示出搭载了由实施方式1所涉及的同步电机驱动控制装置进行驱动控制的同步电机的车辆的其它实施方式的图。

在图6中,标号50表示车辆,是由同步电机12将电池16中所蓄电的电力转换为机械能来驱动车辆50的电动车。同步电机12与驱动轴14机械性连结。同步电机12产生的转矩以驱动轴14的齿轮比被减速并传递到轮胎。

由此,实施方式2所涉及的车辆50成为如下结构:同步电机12与驱动轴14机械性连结,外力经由轮胎施加到驱动轴14,由此,同步电机12与驱动轴14一起旋转。同步电机驱动控制装置15将电池16的直流电转换成交流电,并将转换得到的交流电提供给同步电机12。同步电机驱动控制装置15的结构与实施方式1相同,因此省略详细说明。

电池16使用锂离子电池等,使用300v左右的电压的电池。

此外,ecu17根据油门位置传感器、刹车踏板操作或车轮速度传感器等的信息(未图示),来运算同步电机12所产生的转矩,并利用通信单元(例如can:controlareanetwork)对同步电机驱动控制装置15发出指令。

在该车辆50中,从外部对驱动轴14提供驱动力,来使驱动轴14或同步电机12旋转。该来自外部的驱动力可以是底盘测功机等设备,也可以通过下坡的坡道等来施加驱动力。由此,即使在同步电机12处于利用来自外部的驱动力进行旋转的状态下也能实施三相短路,能利用此时的电流的相位来运算旋转角度校正量。通过采用上述方法,从而即使在不对车辆50设置发动机等同步电机12以外的动力源的情况下,也能运算旋转角度校正量。此外,在车辆50的制造工序中利用底盘测功机的外力来驱动同步电机12并求出旋转角度校正量的情况下,能求出旋转角度校正量直到高转速为止,因此,能实施各种检查工序,工序设计的自由度变高。

图7是实施旋转角度校正的情况下的时序图。

在图6所示的车辆50中,由同步电机12产生转矩,使同步电机12和驱动轴14旋转,之后在惰行时实施三相短路来求出旋转角度校正量。另外,旋转角度校正量利用旋转角度校正量运算部18h来求出。

图7(a)是示出同步电机12产生的转矩的时序图,图7(b)是示出同步电机12的转速的时序图,图7(c)是旋转角度校正量运算部19h的输出即三相短路指令,图7(d)是示出旋转角度校正量运算部19h运算的旋转角度校正量的时序图。

在图7(a)至图7(d)中,从时刻t0到时刻t1,处于将转矩设为零并进行待机的状态。从时刻t1到时刻t2,使同步电机12产生转矩,并使同步电机12的转速上升。在时刻t2,在确认到转速为设定值b以上的时刻将转矩设为0来使同步电机12惰行。此外,在时刻t2的定时实施三相短路指令,并开始旋转角度校正量的运算。关于设定值b,将运算惰行时间与旋转角度校正量的时间考虑在内来设定。在时刻t3,确认运算出旋转角度校正量的情况并停止三相短路指令。

如上所述,根据实施方式2,同步电机12能高速旋转地实施学习,由此,能确保同步电机12惰行的时间(时刻t2以后),能在惰行中进行校正量运算。此外,除了无需发动机等同步电机12以外的动力,也不需要从底盘测功机等外部来提供驱动力的设备,因此,即使是车辆50的销售公司等也能进行旋转角度校正量的运算。例如,若在利用千斤顶使驱动轴14悬浮的状态下实施图6的内容,则能在车辆50处于停车的状态下求出旋转角度校正量,能节省空间地求出校正量。

实施方式3

接着,对搭载了由实施方式1所涉及的同步电机驱动控制装置进行驱动控制的同步电机的车辆的其它实施方式进行说明。图8是示出搭载了由实施方式1所涉及的同步电机驱动控制装置进行驱动控制的同步电机的车辆的其它实施方式的图。

在图8中,标号70表示车辆,是搭载有发动机11、同步电机12、变速器13和电池16的混合动力汽车。同步电机12与变速器13机械性连结。此外,同步电机12是经由离合器71与发动机11机械性连结的结构。

同步电机驱动控制装置15将电池16的直流电转换成交流电,并将转换得到的交流电提供给同步电机12。同步电机驱动控制装置15的结构与实施方式1相同,因此省略详细说明。

电池16使用锂离子电池等,使用300v左右的电压的电池。ecu17根据油门位置传感器、刹车踏板操作或车轮速度传感器等的信息(未图示),来运算同步电机12所产生的转矩,并利用通信单元(例如can:controlareanetwork)对同步电机驱动控制装置15发出指令。

驱动轴14由轮胎、驱动轴或差速齿轮等构成。变速器13的输出轴与驱动轴14机械性连结。同步电机12或发动机11所产生的转矩通过变速器13的输入轴被输入,通过齿轮(未图示)被减速,并被传输到驱动轴14。一般情况下,变速器13内置有离合器,该离合器能断开输入轴与输出轴的机械性连结。此外,发动机11经由离合器71与同步电机12机械性连结。离合器71对释放与连接进行切换。离合器71的释放与连接通过变速器控制器(未图示)等来实施。

这样的结构中,将变速器13中所内置的离合器与离合器71设为释放,并使同步电机12产生转矩来将同步电机12设为旋转状态。能在该状态下实施三相短路来求出旋转角度校正量。由此,在同步电机12产生转矩之前,将变速器13中所内置的离合器或离合器71设为释放,由此,即使在车辆70处于停车的状态下也能使同步电机12旋转,能求出旋转角度校正量。因此,能在有限的空间中求出旋转角度校正量。

实施方式4

接着,对搭载了由实施方式1所涉及的同步电机驱动控制装置进行驱动控制的同步电机的车辆的其它实施方式进行说明。图9是示出搭载了由实施方式1所涉及的同步电机驱动控制装置进行驱动控制的同步电机的车辆的其它实施方式的图。

在图9中,标号80表示车辆,是包括与驱动轴14相连结的第1同步电机12a、以及与发动机11相连结的第2同步电机12b的混合动力汽车。第1同步电机12a与驱动轴14机械性连结。第1同步电机12a产生的转矩以驱动轴14的齿轮比被减速并传递到轮胎。

第1同步电机驱动控制装置15a将电池16的直流电转换成交流电,并将转换得到的交流电提供给同步电机12。第1同步电机驱动控制装置15a的结构与实施方式1中所说明的同步电机驱动控制装置15相同,因此省略详细说明。

电池16使用锂离子电池等,使用300v左右的电压的电池。ecu17根据油门位置传感器、刹车踏板操作或车轮速度传感器等的信息(未图示),来运算第1同步电机12a所产生的转矩,并利用通信单元(例如can:controlareanetwork)对第1同步电机驱动控制装置15a发出指令。此外,ecu17决定第2同步电机12b的发电量,并指令第2同步电机12b产生的转矩。

驱动轴14由第1同步电机12a来驱动。第2同步电机驱动控制装置15b的结构与第1同步电机驱动控制装置15a相同,是为了控制第2同步电机12b的转矩而设置的。此外,发动机11与第2同步电机12b机械性连结。

上述结构中,利用未图示的发动机控制装置将发动机11的转速设定为规定转速。此时,机械性连结的第2同步电机12b成为旋转状态。能在该旋转状态下实施第2同步电机12b的三相短路,来求出旋转角度校正量。

此外,根据本实施方式,能在高速旋转下求出第2同步电机12b的旋转角度校正量。在高速旋转的情况下,因发动机11的转矩变动而引起的转速的变动变小,因此具有精度变高的效果。此外,通过对发动机11的转速进行控制,从而能限定所调整的转速的范围,旋转角度校正量的重现性也较好,并且能高精度地得到旋转角度校正量。

实施方式5

接着,对搭载了由实施方式1所涉及的同步电机驱动控制装置进行驱动控制的同步电机的车辆的其它实施方式进行说明。图10是示出搭载了由实施方式1所涉及的同步电机驱动控制装置进行驱动控制的同步电机的车辆的其它实施方式的图。

在图10中,标号90表示车辆,是包括前轮用的第1驱动轴14a和后轮用的第2驱动轴14b、以及第1同步电机12a和第2同步电机12b的四轮驱动方式的电动车。

第1同步电机12a与第1驱动轴14a机械性连结,第2同步电机12b与第2驱动轴14b机械性连结。此外,第1驱动轴14a由第1同步电机12a驱动,第2驱动轴14b由第2同步电机12b驱动。

第1同步电机驱动控制装置15a将电池16的直流电转换成交流电并提供给第1同步电机12a,第2同步电机驱动控制装置15b将电池16的直流电转换成交流电并提供给第2同步电机12b。第1同步电机驱动控制装置15a与第2同步电机驱动控制装置15b的结构分别与实施方式1的同步电机驱动控制装置15相同,省略详细说明。

电池16使用锂离子电池等,使用300v左右的电压的电池。ecu17根据油门位置传感器、刹车踏板操作或车轮速度传感器等的信息(未图示),来运算第1同步电机12a所产生的转矩和第2同步电机12b所产生的转矩,并利用通信单元(例如can:controlareanetwork)分别对第1同步电机驱动控制装置15a和第2同步电机驱动控制装置15b发出指令。

在上述结构中,在仅由第1同步电机12a来驱动的情况下,第2同步电机12b成为旋转状态。能在该状态下实施第2同步电机12b的三相短路来求出旋转角度校正量。

此外,根据本实施方式,能在高速旋转下求出第2同步电机12b的旋转角度校正量,因此,即使是较高的车速也能求出旋转角度校正量。此外,通过求出较高车速下的旋转角度校正量,从而能提高求出旋转角度校正量的频度,能以较高频度实施旋转角度的校正或故障诊断等。

另外,本实施方式中,在由第1同步电机12a驱动电动车的情况下进行了说明,但在由第2同步电机12b驱动电动车的情况下也能得到同样的效果。此外,对四轮驱动方式的电动车进行了说明,但在混联式混合动力方式的车辆等、设有2个以上的用于对驱动轴进行驱动的同步电机的情况下也能得到同样的效果。此外,三相短路可以将上臂或下臂的开关元件均设为导通,也可以利用开关生成零矢量来得到同样的效果。

本申请虽然记载了各种示例性的实施方式以及实施例,但是1个或多个实施方式所记载的各种特征、方式及功能并不仅限于适用特定的实施方式,也可以单独适用于实施方式,或者进行各种组合来适用于实施方式。

因此,可以想到未例示的无数变形例也包含在本申请所公开的技术范围内。例如,设为也包含对至少1个结构要素进行变形、追加或者省略的情况、以及提取至少1个结构要素并与其它实施方式的结构要素进行组合的情况。

标号说明

10、50、70、80、90车辆,

11发动机,

12同步电机,

12a第1同步电机,

12b第2同步电机,

13变速器,

14驱动轴,

14a第1驱动轴,

14b第2驱动轴,

15同步电机驱动控制装置,

15a第1同步电机驱动控制装置,

15b第2同步电机驱动控制装置,

16电池,

17车辆控制装置(ecu),

18逆变器,

18a至18f开关元件,

19控制装置(逆变器控制装置),

19a电流指令生成部,

19b旋转角度校正部,

19c转速运算部,

19d三相二相转换部,

19e电流控制部,

19f二相三相转换部,

19g栅极信号生成部,

19h旋转角度校正量运算部,

19h1处理器,

19h2存储装置,

20电流传感器,

71离合器。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1