使用压电体的发电方法、发电装置和电子机器的制作方法

文档序号:7307842阅读:413来源:国知局
专利名称:使用压电体的发电方法、发电装置和电子机器的制作方法
技术领域
本发明涉及使用压电体的发电方法、发电装置和利用该发电装置的电力而工作的电子机器。
使压电体发生位移、使用此时由于压电效应而产生的电力的发电装置的一般结构如

图1所示。该发电装置10使用包括PZT(商标)等的压电体1的振子2,由外部使该振子2发生位移或者由于自激振荡或位移而使压电体1发生位移,就可以将压电体1产生的电力供给电力系统20。图1中所示的振子2是包括两层压电体层1a和1b的双压电晶片型的悬臂梁状的振子。因此,使振子2沿图的上下方的振动时,各压电体层1a和1b便反复进行压缩和拉伸。这样,在压电体层1a和1b上便产生与该极化方向对应的电压。因此,将电极等回收电力的装置8设置在压电体层1a和1b上便可把压电体1产生的电力供给外部。振子的结构不限于图1所示的例子,也可以是在中央夹有金属制等支持层的夹层结构,另外,还可以是在金属制等支持梁的一部分上粘着压电体的结构。
另外,振子除图1所示的悬臂梁外,还可以是使用振子等而力在扭转方向上作用的振子、螺旋状的振子、圆形双压电晶片等那样的形状变化的振子;另外,也可以组合为音叉型的振子等,还可以是给压电体提供弹性波的振子。因为压电体的机电耦合系数(以下称作耦合系数)K非常小,所以,在提供的机械能中,一次位移转换成电能的比例非常小。因此,通过使用振子反复将机械能转换成电能便可提高发电效率。
图1所示的发电装置1通过开关输出端的开关21与电力系统20相连。本例的电力系统20包括使用二极管22的整流装置23以及使用电容24等存储整流的电力的蓄电装置。也可以将发电装置10直接与计时装置和微机等耗电的处理装置相连。然而,在使用压电体的发电装置10中,电动势随振子的位移而变化,在携带型的电子机器中,有时也不能持续地发电,因此,就蓄电并且通过可以按例如电容电压Vc的规定的电压供给的蓄电装置向用户供电。
发电装置向电力系统供电时,当发电装置10未发生到电力系统的输入侧的额定电压Ve时,例如在本例的电力系统20中就是未发生大于电容24的电压Vc与整流装置的二极管桥路的顺向电压Vd之和(Vc+Vd)的电压时,就不能充电。另一方面,由于图示的发电装置10使用了压电体的振子2,所以,电动势与振子2的位移基本上成正比。因此,为提高电动势,就希望使振子产生大的位移。但是,当振子的位移增大时,机械损失就增大,从而充电效率便降低。
对于使用压电体的发电装置,为了能够将机械能高效率地转换成电能,提出了一种改进振子的结构使振子以衰减少的振动方式振动等的方法。然而,从压电体的电动势等特性方面考虑,并没有研究提高发电装置的转换效率(发电效率或充电效率),所以,从这方面考虑,并没有提出适于高效率地发电的条件。
因此,在本发明中,从电动势等特性方面出发研究了使用压电体的发电方法和发电装置,目的在于提供发电效率高的发电方法和发电装置。另外,目的还在于通过在使用压电体的发电装置中发现可高效率发电的条件提供能够在携带型机器中实际使用的小型的高性能发电装置,从而提供搭载发电装置和处理装置的适于携带用的电子机器。
因此,本申请的发明者研究了使用压电体的发电循环,发现压电体产生位移进行发电时的开路电压是电力系统的额定电压的2倍时能够最高效率地供电,也就是说,在把使压电体发生位移而产生的电力供给电力系统的发电方法中,发现通过设置使压电体发生使不接电负载时的电压(开路电压)为电力系统的额定电压的约2倍的位移的位移施加工序,可以提高发电效率。因此,在包括压电体、使该压电体发生位移的位移施加装置和把压电体产生的电力供给电力系统的供电装置的发电装置中,通过利用位移施加装置施加可以使开路电压成为额定电压的约2倍的位移,就可以提供发电效率高的发电装置。
另外,考虑压电体供给电力的时间因素,在供电期间,高频度地反复进行使开路电压成为额定电压的2倍的位移施加工序,对于提高发电效率是重要的。因此,在利用自身重量或附加的重锤等位移施加机构进行位移的自励的压电体中,或者利用对压电体进行打击或使之发生弯曲等的位移施加装置进行位移的他励的压电体中,位移施加装置可以高频度地反复施加使开路电压成为额定电压的2倍的位移,对于提供发电效率高的发电装置是重要的。
另外,在使压电体发生初始位移并利用该初始位移和由之后的自由振动引起的反复发生的位移进行发电时,希望施加使开路电压至少成为额定电压的2倍的初始位移。在提供由压电体根据自由振动引起的反复发生的位移产生的电力的发电方法和发电装置中,由初始位移供给压电体的机械能反复转换成电能。因此,与不产生自动振动的压电体相比,能够把机械能高效率地转换成电能。这时,在压电体中激励的位移逐渐变小,与其对应的开路电压也逐渐减小。因此,为了利用由初始位移引起的一连串自由振动进一步进行高效率的发电,希望把利用碰撞等产生的初始位移所决定的开路电压(初始电动势)设置为比上述效率最高的开路电压还高。
另一方面,当为了提高初始电动势而增大初始位移时,机械损失也变大,从而效率降低,因此,只提高初始电动势并不能提高利用一连串自由振动的发电效率。因此,本申请的发明者进一步研究了伴有自由振动的发电循环,导出了图7所示的初始电动势和发电效率(充电效率η)的关系。根据该关系可知,在利用初始位移产生的无电负载即未接电负载的正负载状态时的压电体的开路电压(初始电动势)的值Vof为电力系统的额定电压Ve的约2倍到20倍大小的范围内时显示出高的充电效率。特别是,在初始电动势(开路电压的初始值)Vof为额定电压的4倍到6倍的范围内,充电效率出现峰值。因此,通过提供使初始电压Vof成为该范围中的电压的初始位移,可以高效率地进行发电,另外,通过设置提供这样的初始位移的位移施加装置,便能够提供发电效率高的发电装置。另外,通过将初始电动势Vof设定在额定电压Ve的2倍到15倍的范围内,能够提供以大于峰值时约70%的发电效率进行发电的发电装置。因此,在使用一定时间内继续进行发电的自励或他励式压电体的发电装置中,优选能够以高频度反复发生使初始电动势成为额定电压的2倍到20倍的范围内的初始位移的发电方法和发电装置,进而优选能够以高频度反复发生使初始电动势成为额定电压的2倍到15倍范围中的初始位移的发电方法和发电装置,更优选能够以高频度反复发生使初始电动势成为额定电压的4倍到6倍范围中的初始位移的发电方法和发电装置。通过在这些条件下进行发电,可以提供适用于携带用机器的小型的高性能的发电装置。
因此,本发明的发电装置通过一起搭载整流从发电装置提供的电力的整流装置、存储整流的电力的蓄电装置和可以利用整流的电力进行工作的处理装置便可提供无论何时何地没有电池也能发挥处理装置的功能的、适用于携带等的电子机器。
图1是说明包括使压电体的振子振动进行发电的发电装置的一般的概略结构的图;图2是图1所示的发电装置的输出端为开路的状态时输出电压V0与位移u的关系(a)和外力F0与位移u的关系(b)的图;图3是图1所示的发电装置开路时的外力F0与输出端短路时的外力Fs的关系的图;图4是表示图1所示的发电装置的机械效应的能量与电效应的能量的关系的曲线图;图5是表示图1所示的发电装置的位移u和电压V的变化情况的曲线图;图6是表示对图1所示的发电装置的位移u随电效应的力Fe的变化的曲线图;图7是图1的发电装置的充电效率η随开路电压的初始值(初始电动势)Vof与额定电压Ve的电压比Vk的变化的曲线图;图8是表示图1所示的发电装置的机械损失率随振幅率变化的曲线图;图9是包括可施加一定的初始位移的发电装置的手表的结构例的图;图10是图9所示的发电装置结构的剖面图;图11是放大示出图9所示振动片附近的图;图12是图11所示的振动片的侧面的图;图13是图11所示的振动片的剖面的图14是图9所示的手表的电力系统;图15是示意地示出在本发明的发电装置中传递旋转锤的动能的情况,图15(a)是给单一的振动片提供动能的模式,图15(b)是给多个振动片提供动能的模式,图15(c)是对多个振动片连续提供动能的模式;图16是表示包括利用碰撞提供初始位移的发电装置的手表的结构例;图17是表示在图16所示的发电装置中碰撞次数与此时的初始电动势的关系的曲线图;图18是表示利用重锤的作用提供初始位移的发电装置的例子的图;图19是表示振动片进行定常振动进行发电的发电装置的例子的图;图20是用剖面表示图19所示的发电装置的结构的图。
1.压电体2.振子8.供给电极等压电体产生的电力的装置10.发电装置20.电力系统21.开关22.二极管23.整流装置24.电容器25.蓄电装置30.电子机器(手表)31.振动片(振子)32.压电体层33.振动片前端34.振动片的支持端35.电极36.垫片层38.重锤51.表壳53.旋转锤55.位移施加装置。
56.施转构件57.突起58.半导体基板59.布线60.80传动系统70.螺旋状压电体71.压电体前端78.重锤82.传动盘84.传动用偏心凸轮88.发条下面参照附图进一步详细说明本发明,在图1所示的使用压电体的发电装置1 0中,电压V和外力F与开关21断开状态的振子2的位移u的关系如图2所示。在开关21断开的状态(未连接电负载的无负载状态或开路时的状态)下使振子2沿上下方向(图1的A和B的方向)发生移位时,对位移u,发电装置10无负载时(开路时)的输出端电压V0如图2(a)所示,与位移u成正比变化。同样,如图2(b)所示,外力F0也与发电装置10开路时的位移u成正比变化。
与此相反,由于发电装置的输出端电压降低,所以在开关21闭合的状态(连接负载的状态)下使振子2产生位移u的外力Fs小于开路时的外力F0。例如,当考虑发电装置10的输出端短路的情况时,因为输出端电压成为0V,所以,可以只对振子2施加产生机械变形的力。图3中用实线表示发电装置10的输出侧断开时(开路时)的外力F0与位移u的变化,用虚线表示输出侧短路时的外力Fs与位移u的变化。由图3可知,短路时的外力Fs比开路时的外力F0小,其差值成为作为电能而储存在振子2中的能量。例如,当使振子2发生位移u1时,在虚线之下的面积S0就相当于振子2因机械位移而储存的能量(下面称作由于机械效应而储存的能量)。与此相反,由虚线和实线包围的面积S1相当于振子2的电容成分以电的形式存储的能量(下面称作利用电效应储存的能量)。
另外,机械效应的力Fm与位移u成正比,电效应的力Fe与发电装置的输出端电压V成正比。进而,考虑到开路时的输出端电压V0与位移u与正比,则开路时的位移与力Fm和Fe的关系分别如图4所示。即,在图4中,利用机械效应存储的能量相当于力Fm和位移u间的面积即三角形OQR的面积S0。另外,利用电效应而存储的能量相当于力Fe和位移u间的面积即三角形OPR的面积S1。
在图3或图4所示的关系中,供给振子2的总能量都分为机械效应的能量和电效应的能量进行保存。并且,如下面的式(1)所示,此时能量之比就是振子的机电耦合系数(下面称耦合系数)K。K2=S1/(S0+S1) (1)在图5中示出了把发电装置10与图1所示的具有整流装置23和蓄电装置25的电力系统20相连时的振子2的位移u和发电装置10的输出端的电压V的变化。若认为振子2由于初始位移而自由振动,则振子2的位移u便如图5中点划线所示的那样周期性地变化。即,振子2的位移在t2时刻为A侧(正侧)的振幅u1,在t5时刻为B侧(负侧)的振幅-u2,在t8时刻为A侧(正侧)的振幅u3。以下,位移和电压的固定值都表示绝对值,只对负侧添加“-”。这些振幅u1、u2和u3由于机械效应的能量被转换成电能以及还有机械损耗引起的损失而逐渐变小。另外,由于开路时的输出端电压V0与位移u成正比,所以,与位移u的变化相同,在t2时刻为峰值V01、在t5时刻为峰值-V02、在t8时刻为峰值V03,周期性地变化并逐渐减少。
与此相反,与电源系统20相连的发电装置10的输出端电压Vs如图5的实线所示的那样变化。即,输出端电压Vs达到超过二极管桥路的顺向电压Vd与电容24的电压V0之和的输入侧的额定电压Ve时,电源系统20的电容24就开始充电,之后保持为电力系统侧的额定电压Ve。因此,在t0时刻到t1时刻之间,随着位移u的增加,电压Vs上升。在t1时刻输出端电压V0达到额定电压Ve时,电荷就从发电装置10通过整流装置22流入蓄电装置24,所以,即使位移u增加,电压Vs也不升高。因此,电压Vs保持为额定电压Ve不变。在t2时刻位移达到振幅u1、之后开始减少时,电压Vs也随之减少。由此,电压Vs便小于额定电压Ve,电压Vs也随位移u的变化而变化。电压Vs转到负侧,在t3时刻电压Vs达到负侧的额定电压-Ve时,电荷再次通过整流装置22流入蓄电装置24。因此,电压Vs保持为额定电压-Ve。在t4时刻位移u转到负侧,并且在t5时刻达到峰值的振幅u2时,与t2时刻时相同,电压Vs的绝对值开始减少。因此,由于电压Vs的绝对值小于额定电压Ve,所以电压Vs随位移u的变化而变化。电压Vs周期性地反复发生这样的变化。
图6示出了电效应的力Fe随振子2的位移而变化的情况。开路时的电效应的力Fe与机械效应的力Fm都随位移u线性变化,在t2时刻,在位移u1成为最大值Fem。同样,在t5时刻,在位移-u2成为负侧的最大值。下面,为简单起见,将t5时刻的位移记为-u1,将电效应的力Fe的负侧的最大值记为-Fe。即,相当于在振动中对振子2施加适当的力以稳定状态共振的情况。另外,在图6中不用点划线同时示出了开路时的电效应的力Fe的变化,如图所示,由于开路时的电效应的力为直线Le,所以,该力不做功。同样,由于机械效应的力也是直线,所以对外也不做功。
另一方面,若考虑开关21闭合状态下的电效应的力,从t0时刻到t1时刻,发电装置10的输出端电压Vs与开路时相同,与位移u成正比增加。因此,电效应的力Fe也与位移u成正比增加。并且,由于在t1时刻输出端电压Vs达到电力系统的额定电压Ve时,输出端电压Vs就保持为额定电压Ve,所以,电效应的力Fe也保持恒定。在t2时刻位移u开始减少时,由于开路电压Vs也减少,所以,电效应的力Fe也减少。并且,在t3时刻输出端电压Vs达到负侧的额定电压-Ve时,由于电荷再次向电力系统传送,所以,电位Vs保持恒定。因此,电效应的力Fe也保持恒定。在t2时刻到t3时刻之间,成为与电荷不向电力系统供给的开路时相同的状态,所以,力Fe随位移u的变化与开路时的直线Le平行。另外,在t5时刻位移u的绝对值开始减少时,输出端电压Vs的绝对值减少。因此,电荷不从发电装置10供给电力系统,与从t2时刻到t3时刻的期间相同,力Fe与直线Le平行地变化,直到t6时刻输出端电压Vs达到额定电压Ve为止。在t6时刻输出端电压Vs达到额定电压Ve时,由于向电力系统供给电电荷,所以,输出端电压Vs保持为额定电压Ve。
这样,将开关21闭合时,电效应的力Fe就沿t2时刻、t3时刻、t5时刻和t6时刻的滞后环路变化。因此,电效应的力Fe对外做功,该功的大小与电滞回路包围的面积成正比。因此,如果电滞回路包围的面积Sh对同一位移u1是最大,则使发电装置10的振子2发生同一位移时,对外做功的效率最高。也就是说,电滞回路的面积Sh最大时,发电效率最高。
这里,对于开路时的力的最大值Fem,设闭合开关后使输出端电压Vs保持为额定电压Ve时的力Fe为αFem(0<=α<=1)。直线Le由下式(2)定义。
Fe=αFem×(u/u1) (2)在t2时刻和t3时刻之间,力Fe与式(2)平行地变化,t2时刻的坐标成为(u1,α Fem)。因此,在t2时刻到t3时刻之间的力Fe由下式(3)定义。
Fe=α Fem×〔u/u1+(α-1)〕(3)由此可知,把Fe=-αFem代入式(3),t3时刻的坐标便为(u1(1-2α),-αFem)。用同样的方法求出t5时刻和t6时刻的坐标,求由t2时刻、t3时刻、t5时刻和t6时刻的各个坐标包围的电滞回路的平行平边形的面积Sh时,可用下式(4)表示为Sh=(u1(1-2α)-(-u1)×(αFem-(-αFem)=4·Fem·u1·(1/4-(α-1/2)2)(4)由式(4)可知,面积Sh在α为1/2时达到最大。即,输出端电压Vs成为额定电压Ve时的力Fe(即充电中的力Fe)为开路时的力的最大值Fem的1/2时,发电效率最大。开路时的电效应的力Fe与位移u成正比,进而与电压V0成正比。因此,在额定电压Ve成为开路时的电压峰值V0m的一半的条件下,发电装置10的发电效率最大。例如,蓄电装置25中的电容24的电压Vc为1.5V、整流装置23的二极管桥路22的顺向电压Vd为0.5V的电力系统的输入侧的额定电压Ve成为2V。因此可知,使用振子2的发电装置10的开路时的电压Vom为4V时,可以最有效地发电。
根据上述结果,在使用具有压电体的振子进行发电并向电力系统馈电的发电方法和发电装置中,通过采用使不连接负载时的开路时的输出端电压(开路电压)Vom成为电力系统的输入侧的额定电压Ve的2倍的条件,可以使从发电装置向电力系统供电时的效率(发电效率、充电效率或馈电效率)为最大。由于开路电压Vom与位移u成正比,所以,通过使振子发生开路电压Vom成为额定电压Ve的2倍的位移u,便可使发电效率最大。另外,为了提供发电效率高的发电装置,希望使振子以开路电压Vom尽可能接近于额定电压Ve的2倍的大约2倍大小的位移进行振动。例如,在通过适当的手段使振子发生由于发电损耗和机械损耗而减少的位移从而能够维持以一定的位移(例如振幅)继续振动的发电装置中,通过使振子以开路电压Vom成为额定电压Ve的约2倍大小的位移振动,便可以更高的效率供电。
在本说明书中,后面使用共振型发电装置说明能使振子以基本上恒定的位移振动的装置的一例。在这样的发电装置中,虽然以开路电压Vom约为额定电压Ve的2倍大小的位移进行振动可以高效率地供电,但是不一定能稳定地获得使振子发生位移的机构动作的能量,特别是在便携式装置中搭载的发电装置中,转换成电能的原来能量的形式是各种各样的,稳定的能量很少。在为了使这样的发电装置进行发电所得到的能量不那么稳定时,在继续进行某种程度的发电的时间内高频度地使振子发生开路电压Vom约为额定电压Ve的2倍大小的位移u用以高效率地进行发电是重要的。特别地,使用由打击和弯曲等外部的力使压电体发生位移的他励式位移施加装置和由于发电装置的动作等由重锤及压电体自身的重量自发地发生位移的自励式位移施加装置使压电体反复发生位移、在下面所示的与其说是自由振动毋宁说是共振状态下根据一定的位移进行发电的发电方法或发电装置中,提高开路电压Vom成为额定电压Ve的2倍大小的位移的次数,对提高发电效率、增加发电量是重要的。
进行,研究使用压电体进行发电的情况时,与使压电体稳定地振动的机构相比,可以简单地构成开始时使振子发生某种大小的位移(初始位移)从而进行自由振动的机构。另外,在发生初始位移后进行自由振动的压电体中,通过其后的自由振动产生的位移反复把动能转换成电能并输出,也能够使转换效率比较高。在利用这样的自由振动进行发电时,由于转换成电能的能量减少和机械损耗,使振幅减少。因此,在使用通过这样的自由振动反复发电的压电体的发电装置或发电方法中,希望一定满足产生上述最大效率的条件,也就是说,使初始位移的开路电压的初始值(初始电动势)大于额定电压Ve的2倍。作为引起自由振动的发电方法或发电装置,有使用具有利用打击和弯曲等外部的力使压电体发生初始位移的位移施加装置的他励式压电体的发电方法或发电装置和使用具有由发电装置10的动作等将重锤及压电体自身的重量作为位移施加装置自发地使压电体发生初始位移的自励式压电体的发电方法或发电装置。
这里,返回到图5,按照振子2的位移u的时间变化进一步进行上述说明,例如,t2时刻的峰值时的开始电压V01是额定电压Ve的2倍时,发电效率最高。但是,在实际上,由于机械效应而存储的能量按照耦合系数K转换成电能,另外,由于还有机械损耗,所以,位移u的峰值逐渐减少。于是,由于在发生初始位移后进行自由振动的振子2的振幅逐渐减小,实际上为了进行最高效率地发电。必须将取决于初始位移的开路电压(开路电压的初始值,初始电动势)Vof设定得高。另一方面,如果初始电动势Vof太高,则每一周期或半周期等期间的发电效率将恶化,机械损失也增多,所以不希望初始电动势Vof太高。
如果研究每半周期的机械能、电能及其损耗,则可得到以下结果。首先,由于机械效应而存储的能量Um在半个周期的代表值,例如从t0时刻到t4时刻间的代表值Um可以用耦合系数K、发电装置10的静电电容C和t2时刻的峰值U01表示为Uml=1/k2×1/2·C·V011(5)另外,设损失率为Lc,在该半周期期间,因发电装置的机械损耗而消耗的能量Wc可以表示为Wcl=Uml × Lc (6)进而,在该半周期期间发电装置供给电力系统的电荷量Q1可以表示为Q1=2·C×(V01-2·Ve) (7)其中,额定电压Ve是电容的充电电压Vc与二极管的顺向电压Vd之和。
另外,电荷Q1对电力系统即二极管和电容做的功Wq1可以表示为Wq1=Q1×Ve(8)因此,在该半周期期间由于机械效应而存储的能量Um1的减少是由机械损耗损失的Wc1和由供给电力系统的电荷量Q1所作的功Wq1之和。因此,在下一个半周期(从t4时刻到t7时刻)由机械效应而存储的能量-Um2可以表示为Um2=Um1-Wc1-Wq1 (9)这样,便可计算出各个半周期的机械效应的能量及其损失和电效应的能量。因此,按照同样的办法求出各期间的能量直至第i周期的开路时的电压Voi小于额定电压Ve为止,通过求和便可求得发电量和发电效率。
图7对电容的充电电压Vc为1.5V、二极管顺向电压Vd为0.5V、输入侧的额定电压Ve合计为2V的电力系统20示出了使用压电体的充电装置10充电时的充电效率η和初始电动势Vof与额定电压Ve之比Vk(Vof/Ve)的关系曲线。叠层压电体的振子的Q值为100(损失率Lc约0.06)、耦合系数K2为4%的发电装置的充电效率η的变化用点划线表示,Q值为400(损失率Lc约0.015)、耦合系数K2为8%的发电装置的充电效率η的变化用实线表示。另外,在图8中示出了机械的损失率Lc的测量值的例子。
从图7的充电效率η的变化情况可知,初始电动势和额定电压的电压比Vk为4到6时可以获得最高的充电效率η。另外,由本图还可知道,可以获得最高充电效率的范围与耦合系数K及机械的损失率Lc关系不大,取决于电压比Vk。另外,还可以知道,电压比Vk为2到15时,不论在哪种情况下,都可以以峰值的约70%以上的充电效率进行充电。另外,还可以知道,即使电压比VK大于15、特别是在耦合系数和Q值高的发电系统中也可以获得相当高的充电效率η。然而,因为开路时的输出端电压与振幅成正比,所以当电压比VK大于20时,振幅率就变成20倍。因此,例如对图8所示的振幅率0.01就变成0.2,所以,损失率便约为5倍。与此相同,由于使振子发生的初始位移大,所以,机械负载增加,从而易产生故障等。因此,希望电压比VK在20之下。
如对发生稳定的位移进行发电的情况所说明的那样,在使用通过打击等外部的力发生自由振动的初始位移的他励式压电体和由于发电装置10的动作等而自发地产生自由振动的初始位移的自励式压电体的发电方法或装置中,不限于总是利用一定的能量发生初始位移。特别是在用于将自然界的能量及使用者的动作等作为能源而使用的便携型电子仪器等的发电装置或发电方法中,发电时可用的能量密度和持续时间不均匀。为了使用这样的能量进行发电,在进行发电的期间使压电体高频度地发生使初始电动势Vof成为额定电压Ve的2倍到20倍的初始位移、利用其后的自由振动进行发电对于提供效率高的发电装置是很重要的。另外,希望使压电体高频度地发生使初始电动势Vof成为额定电压Ve的2倍到15倍的初始位移,进一步提高发电效率。此外,希望提高使初始电动势Vof成为额定电压Ve的4倍到6倍的初始位移的发生概率、进一步提高发电效率。
下面,根据使用压电体的发电装置的具体例子进一步详细说明本发明。图9作为具有本发明的发电装置的电子机器例子示出了手表的概略图。另外,图10放大示出了本例的手表30的发电装置部分的剖面。本例的手表30包括大致为圆形的、腕式的薄表壳51,使用压电体的发电装置10和接收该发电装置10提供的电力的电力系统20装在该表壳51内。在本例的电力系统20中设有具有整流功能等的半导体基片58和具有用于储存整流的电力的大容量电容24的蓄电电路25;另外,利用整流的电力而工作的处理装置6与蓄电电路25相连。本例的处理装置6包括进行计时显示的机构,即使没有电池也可以利用发电装置1的电力继续显示时间。此外,在本例中,没有使用二极管91的逆流防止单元90用来抑制蓄电单元25向振动片31一侧流的泄漏电流。
如图10所示,本例的手表30的表壳51包括与使用者的腕相接触一侧的背面表壳52、计时装置6的字符板(显示单元)7和覆盖该显示单元7的透明罩(未图示),在背面表壳52和显示单元7之间的空间配置包括由压电体构成的多个振动片31的发电装置10、对这些振动片31提供能量的旋转锤53等传动系统、构成蓄电电路的大型的电容器24以及使作为电子表的功能的秒针41、分针42和时针43动作的双轴齿轮48和中心齿轮49等各种装置。
旋转锤53是为了捕捉使用者的手腕的动作从而以表壳51的大致中心的位置作为旋转中心53a进行旋转而设置的,并安装了与该旋转锤53一起旋转的旋转构件56。在旋转构件56的外周部形成多个向外侧突出的突起57,在沿旋转构件56的周围以放射状配置在表壳51上的多个振动片31的前端33与旋转构件56的突起57相碰撞。另外,以环形体式配置薄半导体基片58,使其包围这些放射状配置的振动片31,振动片31的前端33和相反一侧的基端(支持端34)安装在半导体基片58上。因此,在本例的发民装置10中,旋转锤53旋转时,旋转部件56和突起57就成为位移施加装置(加振装置)55,使振动片31发生初始位移,从而利用该初始位移激励自由振动。并且,利用该自由振动在振动片31压电体层32中产生的电力通过作为供电装置的半导体基片58供给电源系统20。
下面,进一步详细说明。在本例的手表30中,如图9和图10所示,将外周方向重从而失衡的旋转锺53配置为包围装在表壳51中的计时装置等机构。因此,加到手表30上的加速度根据使用者的手腕的运动等而变化时,旋围锤53就围绕中心53a旋转,从而能够捕捉使用者的运动等作为旋转锤53的旋转能量。因此,该旋转锤53进行旋转运动时,安装在旋转锤53的背面表壳52一侧的旋转构件56就与旋转锤53一起旋转,从而设在其外周部的多个突起57便与各个振动片31的前端33碰撞。当旋转构件56进一步旋转时,相对于振动片31的前端33,发生指定的位移(初始位移)后,突起57就与振动片31脱开,从而振动片31开始振动。因此,对各振动片31便激励起以前端33作为自由端的指定振幅的自由振动。由于本例的振动片31是用PZT等压电体层32形成的,所以,当电压体层32发生振动引起的位移时,就在其中产生电动势。由各振动片31产生的电力通过在半导体基片58上形成的配线等集中到一处的输出电极58a和58b上,从这些输出电极58a和58b输出到电力系统,就能够使计时装置6工作。
图11,图12和图13放大示出在本例的发电装置10中设置的多个振动片中的一个振动片31及其附近的情况。图11是从下侧观察安装在半导体基片58上的振动片31的情况,图12是从侧面观察振动片31的情况,图13是振动片31的剖面图。本例的振动体31如图12、图13所示,由沿图面的上下方向极化的PZT构成的薄压电体层32构成。振动片31是从固定在半导体基片58上的支持端(基端)34向进行自由振动前端33宽度逐渐变窄的板状振动片,电极35叠层在其上下的面上。本例的振动片31在旋转构件56的突起57动作时,其前端33被强制地向图11的左右方向X弯曲或扭转指定的量后脱开。因此,就对振动片31激励起X方向的自由振动,从而在振动片31的左右的压电体层32的上下面上就产生反方向的电动势。本例的振动片31在振动片31的一个面31a的整个面上设置电极35a,将振动片31的左右串连连接,在另一个面31b上设置左右分开的两个电极35b和35c。因此,通过将振动片31的电极35b和35c与设置在半导体基片58上的整流单元23相连,便可将振动片31的左右产生的电动势以串连连接的状态取出电力。
这样,本例的发电装置10利用旋转构件56的突起57便可使振动片31发生指定量的初始位移。因此,为了使利用初始位移在振动片31的压电体层32上产生的开路电压(初始电动势)Vof成为大容量电容24的规定的充电电压和整流电路23的二极管22的顺向电压之和即电力系统20的额定电压Ve的约2~20倍,进而优选是额定电压Ve的约2~15倍,最好是约4~6倍,可以设定旋转构件56的突起57和振动片31的前端33的配置及形状。并且,对于额定电压Ve,通过可以输出上述那样的初始电动势Vof,便可从发电装置10向电力系统20高效率地提供电力。因此,可以把从使用者的手腕的运动获得动能高效率地转换成电能,从而可以提供即使没有电池不论何时何地都可以使具有计时功能的处理装置6工作的手表30。
下面,进一步详细说明本例的手表30,在本例的半导体基片58上,在各振动片34的支持端34的附近用利用光刻技术和扩散技术这一众所周知的制造集成电路基片的技术形成的PN结形成整流电路23。整流电路23的输入端93a和93b利用引线94分别与振动片31的电极35b和35c相连,在各振动片31中产生的交流电由整流电路23进行整流,从而可从输出端95a和95b提供直流电流。另外,在本例的半导体基片58上,形成用于回收由各个整流电路23整流的直流电的两根电线58c和58d,这两根电线分别与整流电路23的输出端95a和95b相连。因此,通过这两根电线58c和58d把用多个整流电路23整流的各个振动片31的电力集中到输出电极58a和58b上,便可供给蓄电单元25。
图14中示出了本例的发电装置10和电力系统20的概略的电路结构。如上所述,在本例的发电装置10中,在旋转构件56的周围放射状他配置了多个振动片3.1~3.1n。因此,伴随旋转锤53的旋转,旋转构件56旋转,由该旋转构件56的突起57使各个振动片31.1~31.n顺序发生指定大小的位移。于是,便对各个振动片31.1~31.n激励起指定大小的振动。伴随这些振动,便从振动片31.1~31.n输出交流电。并且,由于与各个振动片31.1~31.n对应地设置了整流电路23.1~23.n,所以,可以把交流电整流为直流电输出到电线58c和58d。因此,在本例的发电装置10中,能够对发电装置10连续地输入旋转锤53的动能,从而能够将旋转锤53的动能非常有效地用于发电中。
例如,也可以有与本例的发电装置10不同、利用旋转构件56使单一的振动片31发生指定位移进行发电的装置。在作为与本例进行对比的比较例的发电装置中,利用旋转锤13的运动只断续地对一个振动片31激励振动,所以,旋转锤13的动能中只有微小部分可以用于发电。与此相反,本例的发电装置10分别使多个振动片37.1~3.n接连不断地发生位移。因此,利用多个振动片31.1~31.n可以有效地把旋转锤13的动能转换成电能。
下面,参照图15进一步说明在本例的发电装置20中有效地利用旋转锤13的动能的情况。首先,在图15(a)中示出了在上述比较例的发电装置中伴随旋转锤的运动激励振动片31进行发电时所得到的电能。设旋转锤53产生的总转矩为At(N·m),作为用于使振动片发生位移所用的转矩T是使用总转矩At的一部分,例如使用约1/3。当为了使振动片产生位移需要旋转锤产生的总转矩At时,旋转锤的动作就归于停止。另外,当为了产生位移所用的转矩T太大时,由于旋转锤利用手腕的动作等而使动作的机会减少,所以,就不能从使用者的动作等有效地获得能量。因此,希望把为了使一个振动片产生位移所需的转矩T设定为全部转矩At的约1/3(T=At/3)。
为使振动片产生振动进行发电,需要使振动片产生位移的时间和利用自由振动进行发电的时间。因为这些时间与旋转锤的旋转角度成正比,所以,在图15中,利用旋转角度θ1和θ2表示上述时间。为了使一次振动的发电增多,希望将进行发电的角度(时间)θ2设定得尽可能大。但是,当增大进行自由振动的角度θ2时,从旋转锤向振动片输入动能的机会便减少,所以,不能将旋转锤的能量向振动片有效地输入。因此,假定是将使振动片产生位移所需的角度θ1设定为与利用自由振动进行发电的角度θ2相等的发电装置(图15(a)),则在这样的发电装置中,通过一次打击从旋转锤输入振动片的能量e可以表示为e=1/2×At/3×θ1(10)
另外,在旋转锤旋转180度(π)的期间能够向振动片输入能量的次数可以表示为n=π/(θ1+θ2)=π/(2θ1) (11)因此,在旋转锤在旋转π的期间能够向振动片输入的能量E1可以表示为E1=θ×n=π·At/12 (12)与此相对应,在旋转锤旋转π的期间所得的动能E2可以表示为E2=∫At·sinθdθ(θ=0~π)=2At (13)因此,旋转锤所得的动能E2中能够输入到振动片的能量E1的比例(能量传递效率ξ)可以表示为ξ=E1/E2=0.13(14)这样,在使用作为比较例所示的单一振动片的模型中,旋转锤所得的动能中只有约13%输入到振动片。因此,旋转锤便利用剩余的动能继续而继续旋转、把动能传递给同一振动片。因此,为了将旋转锤的全部动能传递给振动片,需要很长时间,在此期间,旋转锤的动能的大部分将成为机械能损失掉。另外,虽然手腕的动作等使用者的连续动作是旋转锤的能量输入源,但是当从旋转锤向振动片传递能量需要时间时,则有与旋转锤的动作相反的输入的可能性很大,这样,旋转锤的转动便停止,从而旋转锤所得的动能就不能用于发电。因此,为将旋转锤的动能有效地用于发电,希望在短时间内进行能量传递。
另一方面,为了将振动片所得的输入能量有效地转换成电能,希望将进行自由振动的期间确保达到一定程度。因此,多数情况是使可以进行自由振动的角度θ2用于发生位移的角度θ1。因此,在使用单一振动片的模型中,为缩短从旋转锤向振动片传递动能的时间即当旋转锤增加使振动片发生位移的机会时,由于对振动片的转换效率减少,所以,总的能量传递效率ξ有进一步降低的倾向。
与此相反,在图14所示的使多个振动片依次发生振动的本例的发电装置中,不缩短振动片转换成电能的期间便可迅速提高旋转锤能够向振动片输入能量的次数,从而可以缩短向振动片的能量传递时间。例如,如图15(b)所示,在使多个振动片依次发生振动的模型中,能够输入到设在发电装置上的振动片的能量是上述模型的2倍。因此,能量传递效率ξ提高为26%。另外,对于各个振动片,由于可将利用自由振动进行发电的时间设定得长,因此能够有效地把输入能量转换成电能。
另外,如图9所示,在与旋转锤53连动的旋转构件56上设置多个突起57,利用这些突起57使多个振动片振动时,如图15(c)所示,几乎可以连续地向作为发电装置而设的振动片输入旋转锤的动能。这时,设在发电装置中的振动片全体在旋转锤旋转π的期间所得的能量E1’可以表示为E1’=At/3×π (15)因此,能量传递效率ξ为ξ=At/3×π (16)可以将旋转锤所得的动能的大约一半向振动片输入用于发电。
当然,通过增大使振动片产生位移的转矩T,也可以进一步提高能量传递效率ξ。但是,当增大输入转矩T时,旋转锤转动的机会就减少,所以,不能有效地捕捉用户的动作等。因此,希望预先设定突起57和振动片31的位置关系以使旋转锤以适当的转矩动作。
如上所述,本例的发电装置10利用旋转构件56的突起57可以使振动片31发生指定量的初始位移,这样便能够在振动片31的压电体层32中产生可以获得得高充电效率η的初始电动势Vof。并且,通过沿旋转构件56设置多个振动片31,也可以提高能量变换效率ξ。因此,在本例的发电装置中,可以将旋转锤所得的动能有效地输入到振动片,从而可以用由该输入能量所得的电能对蓄电单元有效地充电。因此,能够实现效率非常高、发电能力非常高的发电装置。
另外,本例的发电装置是依次使多个振动片发生振动进行发电的。因此,如图14所示,由于本例的发电装置10的振动片31.1~31.n分别在不同的时间被激励振动,所以在某一时刻从各振动片31.1~31.n输出的电压(电动势)也不同。因此,在本例的发电装置10中,与各个振动片31.1~31.n对应地设置整流电路23.1~23.n,防止电流在电动势不同的在振动片之间有流过而使实际所得的电压减小。特别是当将电压相位相反的振动片直接连接时,由于能获得电力,所以,希望,希望如本例的发电装置10那样,对各振动片31.1~31.n设置整流电路23.1~23.n,在防止逆流的同时,可以从各个振动片获得指定电动势的电力。
进而,在本例的发电装置10中,通过整流电路23.1~23.n用电线58c和58d把多个振动片31.1~31.n并联连接,可以获得大的电流。使用压电体的发电装置可以获得比较高的电压,但从各个压电体所得的电流密度非常小。因此,如本例那样,通过把使用多个压电体的振动片并联连接,就能够获得大的电流。
另外,在本例的发电装置10中,在构成蓄电单元25的电容24一侧设有二极管91等防止逆流的元件,也用以防止来自蓄电单元25的泄漏电流。也就是说,在用于整流电路23的PN结中存在微小的逆向泄漏电流。因此,如果将多个整流电路23并联连接,与其数量相应的逆向泄漏电流便增大,可以认为是蓄电单元25存储的电力损失的一个原因。在本例的手表30中,在构成蓄电单元25的电容24的一侧设有采用了防逆流元件的逆电流防止单元90,可以防止在采用把多个整流电路23并联连接的电路系统中成为问题的逆向泄漏电流的增加。
另外,本例的手表30通过形成利用与旋转锤一起动作的旋转构件56使振动片31振动的加振装置55、便可省略复杂的传递机构和轴承。另外,因为能够沿旋转构件56的周围配置多个振动片31,所以,容易确保振动片在表壳中的配置空间,例如,如本例那样,与旋转锤53相比,可以将振动片31和旋转构件56装在时钟的显示单元7的相反侧的面向背面表壳52的非常薄的空间中。另外,通过在旋转构件56的周围放射状地配置振动片,与前端33相比,容易配置支持端34一侧宽度大的、本例那样的振动片31。通过采用支持端34一侧宽度大的振动片,可以在振动引起的位移量大的部分设置宽阔的发电体层,因此,能够实现机电耦合系数高且发电效率高的发电装置。
本例沿圆周部配置多个振动片的发电装置不限于上述构成,也可以是使导体基片58的内周部以梳齿状向内侧延伸作为支持层、并将多个压电体层叠层在其两侧作为振动片。这样把半导体基片58和振动片31一体化制造可以利用制造CVD等集成电路的众所周知的技术来完成。另外,突起57的方向也与本例不同,可以通过向与旋转构件垂直的方向延伸,使振动片产生与旋转构件56的旋转面垂直方向的位移。另外,还可以实现利用齿轮的振动等取代旋转锤56而加振的装置沿上下方向动作的发电装置,此时,通过在加振装置动作路径的两侧或一侧并排配置多个振动片,可以得到与上述相同的效果。
图16中示出了包括与上述不同的发电装置的电子仪器的例子。在本例的电子机器在电力系统20中也包括具有计时功能7的处理装置6,利用发电装置10提供的电力可以使处理装置6动作。在电力系统20中,进而还具有使用二极管22进行全波整流的整流电路23和对整流的电力进行蓄电的蓄电电路25,对于与上述例相同的部分标以相同的符号,并省略其说明。
本例的手表30使用的发电装置10包括以悬臂梁状固定在表壳(地板)51上的振动片31。在振动片31的两侧设有压电体层32,在这些压电体层32上产生的电力可以通过表面的电极35和布线59供给电力系统20。重锤38安装在振动片31的前端33。通过该重锤35随位移施加装置即传动系统60而动作,使振动片31发生位移。另外,由于振动片31是悬臂梁,所以,通过传动系统60加振之后,振动片31的前端就成为自由端33,用螺钉37固定在地板51上的一侧就成为支持端34,从而进行自由振动,这样,在压电体层32上产生的电力便供给电力系统20。
本例的传动系统60与上述发电装置相同,包括在表壳51的内部进行旋转运动的旋转锤53,作为手表带在手腕上时该旋转锤53就随使用者的手腕和身体的等动作等一起运动、旋转,从而可以利用该力进行发电。旋转锤53的转动通过旋转锤齿轮61传递到中间齿轮62,进行增速。中间齿轮62的转动传递给凸轮传动齿轮63,利用该凸轮传动齿轮63沿左右方向传动凸轮64,从而使装在振动片的重锤38的内部的凸轮64连动的碰撞单元65动作。因此,使用者的手腕和身体动作时,旋转锤53旋转,凸轮61便利用该力在纸面内平行地反复动作,因此,凸轮64的碰撞单元65就与振动片的重锤38碰撞,以适当的间隔连续打击重锤38。通过碰撞单元65的各次打击,使振动片31产生指定的初始位移,当凸轮64离开振动片时,就在振动片31上激励起自由振动。因为通过该自由振动在压电体层32上产生电动势,所以,可以通过电极35和布线59将其供给电力系统20。
在本例的发电装置中,碰撞单元65使振动片31产生的位移(初始位移)随旋转锤53的旋转速度和旋转范围而变化。如果旋转锤的旋转速增大,那么碰撞单元65的加速度也增大,所以振动片31的初始位移也增大,结果,利用初始变位而产生的开路电压的初始值(初始电动势)Vof也升高。如果旋转锤53的旋转范围(角度)增大,那么碰撞单元65与振动片31碰撞的次数也增加,所以旋转锤53旋转1次可以发电的期间变长。图17中示出了模拟在旋转锤53的旋转轴与铅直方向的倾角φ为30°、旋转锤53的旋转角为30°的情况1和倾角为30°、旋转角θ为90°的情况2的两种旋转锤35的落下条件下碰撞单元65与振动片31碰撞的次数和各次碰撞时产生的初始电动势Vof的例子。由图可知,发明者根据旋转锤的动作测量所求的旋转锤53的落下条件相当于在进行模拟的情况1和情况2中利用旋转锤53捕捉的动能的大小的中心值的±25%。另外,进行模拟的发电装置的电力系统侧的额定电压Ve包括电容的充电电压和进行全波整流的二极管的顺向电压设定为2.0V。
从图17可知,在情况1的情况下,初始电动势Vof接近于缓慢的抛物线变化,在旋转锤53旋转一个旋转角θ的一连串的发电期间内,除了旋转锤53即将停止之前,可以获得大于相当于额定电压Ve的2倍4V的初始电动势,另外,初始电动势Vof的最高值小于相当于额定电压Ve的5倍的10V。情况2也呈现同样的变化,在旋转锤53旋转一个旋转角θ的一连串的发电期间内,除了旋转锤53即将停止之前,可以获得大于相当于额定电压Ve的2倍的4V的初始电动势,初始电动势Vof的最高值小于相当于额定电压Ve的9倍的18V。因此,不论情况1和还是情况2,在旋转锤53旋转一个旋转角θ的一连串的发电期间内都可以高频度地反复获得大于相当于额定电压Ve的2倍的4V的初始电动势Vof。另外,在两个种情况下,初始电动势Vof除了在旋转锤53即将停止之前的碰撞外,在几乎所有的碰撞中都处在相当于额定电压Ve的2~20倍的4~40V的范围内。另外,在几乎所有的碰撞中,初始电动势Vof都处在效率相当高的额定电压Ve的2~15倍的4~30V的范围内。另外,也可以反复获得相当于效率更高的额定电压Ve的4~6倍的8~12V的范围内的初始起电力Vof。在利用旋转锤53的旋转使碰撞单元65与振动片31反复碰撞、从而使振动片31激励起自由振动的本例的发电装置中,也可以如图17所示的那样,在情况1和情况2的落下条件下获得可以按本发明的高效率进行发电的初始起电力Vof,能够捕获使用者的动作等高效率地进行发电,从而能够提供可以向处理装置6供给能使其工作的电力的发电装置。
在本例的发电装置10中,使用在金属制的支持层(垫片层)36的两侧形成2层压电体层32的双压电晶片型的振动片31,但是也可以是叠层3层以上的压电体层的振动片,当然也可以使用单压电晶片型的振动片。
图18中示出与使用进行自由振动可以进行发电的压电体的上述发电装置,不同的发电装置。本例的发电装置10设置在车内等的在上下方向上加速度变化的位置、可以利用上下振动进行发电的装置。因此,具有以螺旋状延伸并为了确保左右方向的稳定性成形为上方尖的圆锥状的压电体70。重锤78安装在该螺旋状的压电体70的上方的前端71,该锤78利用上下方向的加速度变化作为位移施加装置起作用,使压电体70发生初始位移。因此,压电体70随该初始位移产生电动势,并且即使上下方向的加速度变化停止,也可以利用压电体70的弹性和重锤78反复发生自由振动,继续获得电力。压电体70产生的电力从支持压电体70下侧的基端72的基板73取出,可以通过整流电路23供给具有电容器等的电力系统。另外也可以使用该基板73将本例的发电装置10安装到车内的仪表板等上。
本例的发电装置10,压电体70在加到重锤78上的加速度的方向即在上下方向振动的车内沿铅直方向伸缩,支持压电体70的重锤78也在上下方向上运动。因此,由于锤78在与发生频率最高的上下方向的加速度相同的方向上运动,所以,重锤78可以以良好的响应性跟踪上下方向的振动,从而可以使用压电体70进行稳定的发电。另外,由于压电体70成形为细长的螺旋状,所以,利用重锤78的运动产生的位移增大,从而可以确保足够的发电量。另外,与上述发电装置相同,通过设定锤78以便利用发生频度最高的上下方向的加速度产生电力系统额定电压Ve的约2~20倍、进而优选约为2~15倍、最好是约4~6倍的初始电动势,便可提高发电效率。
本例的发电装置10通过将重锤78平衡在上述范围,可以高效率地进行发电,从而能够提供足够的电力。因此,例如极适于作为车内设置的附属品部件和电子机器的电源,若通过2次电池把电力供给电子温度计等,则不与点烟器等车内电源连接也可以利用电子温度计。进而,若在重锤78上设置电子温度计等功能,则只要在车内预先设置电子温度计,就能够利用其功能。另外,通过把大容量的电容与二次电池同时并用,即使是要求继续动作的电子机器,也可以将使用本发明的压电体的发电装置作为电源使用。另外,使用只作为RAN等的后备电源的电池,对于其他功能也可以构成将使用压电体的发电装置作为电源的系统等各种各样的系统。
图19和图20中示出了可以以稳定的位移(振幅)使压电体振动从而进行发电的共振型发电装置的例子。从本例的发电装置10也可以向包括处理装置和蓄电装置的电力系统20提供电力,当然就可以利用发电装置10供给的电力使处理装置6工作。作为电源系统,可以采用与根据上述手表等电子机器30说明的结构相同的系统,在本例中省略其说明。
本例的发电装置10具有使用叠层两层压电体层32的双压电晶片形成悬臂梁状的振动片31,在其前端33安装重锤38。对于振动片31,在与前端33相反一侧的支持端34一侧所设的传动系统80成为位移施加装置,可以激励振动片31以固有振动频率振动,并以一定的振幅继续振动,传动系统80包括可以以大致中央的旋转中心81为中心旋转的传动板82,振动片31的支持端34固定在该传动板82的一端。另外,受动窗83设在相反一侧,与支持端34将旋转中心81夹在中间,在该受动窗83的内部,在偏心的位置具有旋转中心85的圆柱状传动凸轮84若与受动窗83接触就旋转。因此,传动凸轮84旋转时,传动板82就以旋转中心81为中心双向反复旋转,从而向两个方向传动振动片31的支持端34。这样,振动片31跟踪支持端34来回运动,并且,因为前端33的重锤38动作,所以,振动片31便强制地振动。因此,通过以与振动片31的固有振动数相同的周期使传动板82动作而使支持端34往复运动,振动片31就成为共振状态,从而发生机械损失少的稳定的振动。
在本例的传动机构80中,将发条88存储的动力通过齿轮组86增速后传递给传动凸轮84,从而传动凸轮84可以以与固有振动数相同的旋转速度旋转。在本例的发电装置10中,由于振动片31的共振状态振动,所以,为了对传动板82进行传动所需的能量只要有由压电体层32转换成电能后损失的部分和由于机械损耗而损失的部分就够了。在共振状态下,由于机械损耗非常少,所以,可以将发条88存储的大部分能量转换成电能。由于发条88可以在长时间内继续输出一定的转矩,所以适合于使振动片31在长时间内以一定的振幅振动。为使发条88积蓄动力,当然可以使用旋转锤拧紧发条,使用者也可以用于拧紧发条。另外,一旦将温差和风力等自然能量存储在发条88中,也可以进行发电。
另外,如上所述,在振动片31以定常状态进行振动时,通过将其振幅设定为使开路电压Vom成为电力系统20的额定电压Ve的约2倍,便可使振动片31的发电效率为最大。因此,通过使用本例的发电装置10,便可将发条88存储的能量非常有效地转换能电能,供给电力系统。
使具有压电体层的振动片31以定常状态振动的方法当然不限于本例,也可以采用将本例的振动片31固定在以共振频率上下振动的物体上使其强制地振动的方法等。这时,通过将振动片31的共振时的振幅设定为可以输出电力系统的额定电压的约2倍的开路电压即无负载状态下的电动势成为额定电压的2倍,便可将振动能量有效地转换成电能,供给电力系统。当然,即使在本例的发电装置10中,根据将振动片设置在铅直方向或水平方向等状况的变化,开路电压也不一定总是能够保持为额定电压的约2倍。在这种情况下,考虑到在开路电压是额定电压的2倍的条件下可以获得最大的发电效率,通过尽可能以高频度获得可以得到成为额定电压的约2倍的开路电压的振幅(位移),就可以把振动能量高效率地转换为电能。
如以上的说明那样,通过将使压电体发生位移进行发电时的开路电压设定为供给电力的电力系统的额定电压的约2倍或者使用发生位移后产生的自由振动进一步继续发电时成为2~20倍、进而优选为约2~15倍、并且最好是约4~6倍,就可以把电力高效率地供给电力系统。通过使用这种本发明的发电方法和发电装置,从而能够向电力系统提供充够的电力,能够使连接的处理装置工作。另外,通过给电力系统附加整流装置和大容量电容等需电装置,还可以暂时存储发电装置供给的电力作为处理装置的电源,从而能够稳定地发挥处理装置的功能。特别是,通过使用具有压电体的振动片等,可以把自然界的能量和基于使用者的动作的能量转换成电能,所以,通过将发电装置和处理装置以及蓄电装置装配成一体,便可提供不论何时何地都可使用的便携型电子机器。作为处理装置,当然在上例说明的可带在手腕上的手表就是一例,此外例如可以采用寻呼电话接收机、电话机、无线机、助听器、计步器、计算器、电子记事薄等信息终端、IC卡、无线电接收机等功能的各种各样的装置。这些便携型机器可以小型化,从而可以装在口袋中,或者利用带子等带在手腕上及身体的其他部位,从而可以利用身体的动作等继续有效地发电,利用该电力可以发挥各种功能。因此,使用者可以不必担心电池耗尽而使用这些便携型的电子机器,从而可以预先防止发生由于电池耗尽而丢失存储器存储的内容等故障。另外,在不容易得到电池和充电装置的地域和场所或由于灾害等电池补充困难的情况下,也可以发挥携带用电子机器的功能。另外,还可以解决伴随电池废弃等所带来的环境问题。
另外,上面列举了具有压电体层的几种发电装置,但本发明不限于上述示例,例如,也可以适用于使用图形双压电晶体和膜状压电体以及使在扭转方向发生位移的压电体等各种形成的压电体发电方法和发电装置。另外,构成压电体的材料也不限于PZT,也可以是用钛酸钡类和钛酸铅类等陶瓷材料、水晶等单结晶压电体以及PVDF等高分子材料。
如上所说明的那样,根据本发明,使用压电体进行发电时,发现无负载状态的开放电压成为供给电力的电力系统侧的额定电压的约2倍时,发电效率最高。因此,通过在包含该状态的条件下进行发电,可以有效地向电力系统供电。因此,在具有压电体的振子基本上以定常状态即大致的共振状态进行振动继续进行发电的发电方法和发电装置中,希望将振子的位移(振幅)设定为使开路电压成为额定电压的约2倍的大小。
另外,在使振子发生初始位移后反复进行自由振动从而继续进行发电的发电方法和发电装置中,本发明根据初始位移的开路电压(初始电动势)与额定电压之比研究发电效率的变化时,得出若该比值是在约2到20的范围内,就可以获得非常高的发电效率。另外,还发现初始电动势与额定电压之比约为2到15时比较好。进而当初始电动势与额定电压之比约为4到6时可以获得最大的发电效率。因此,通过在这些条件下使用压电体进行发电,可以提供可以实际作为便携式电子机器等发电装置使用的小型的高效率的发电装置,通过把本发明的发电装置和处理装置等一起装配,可以提供不论在何时何地都能发挥功能的电子仪器。
权利要求
1.一种使压电体发生位移、把产生的电力供给电力系统的发电方法,该使用压电体的发电方法的特征在于具有使上述压电体发生使未接电负载时的电压即开路电压成为上述电力系统的额定电压的约2倍的位移的位移施加工序。
2.权利要求1的使用压电体的发电方法,其特征在于在上述压电体提供电力的期间,高频度地反复进行上述位移施加工序
3.一种把通过使压电体发生位移而产生的电力供给电力系统的发电方法,该使用压电体的发电方法的特征在于具有使上述压电体发生使未接电负载时的电压即开路电压成为上述电力系统的额定电压的至少2倍的初始位移的位移施加工序和将利用该初始位移和之后的自由振动在上述压电体上产生的电力供给上述电力系统的电力供给工序。
4.权利要求3的使用压电体的发电方法,其特征在于由上述初始位移决定的上述开路电压是在上述额定电压的约2倍到20倍的范围内。
5.权利要求3的使用压电体的发电方法,其特征在于由上述初始位移决定的上述开路电压是在上述额定电压的约2倍到15倍的范围内。
6.权利要求3的使用压电体的发电方法,其特征在于由上述初始位移决定的上述开路电压是在上述额定电压的约4倍到6倍的范围内。
7.权利要求3的使用压电体的发电方法,其特征在于在上述压电体提供电力的期间,高频度地反复进行上述位移施加工序和上述电力供给工序。
8.一种具有压电体、使该压电体发生位移的位移施加装置和把在上述压电体上产生的电力供给电力系统的装置的发电装置,该使用压电体的发电装置的特征在于上述位移施加装置可以使上述压电体发生使未接电负载时的电压即开路电压成为上述电力系统的额定电压的约2倍的位移。
9.权利要求8的使用压电体的发电装置,其特征在于上述位移施加装置可以高频度地使上述开路电压成为上述额定电压的约2倍的位移。
10.一种具有压电体,使该压电体发生位移的位移施加装置和把在上述压电体上产生的电力供给电力系统的装置的发电装置,该使用压电体的发电装置的特征在于上述位移施加装置可以使上述压电体发生使未接电负载时的电压即开路电压成为上述电力系统的额定电压的至少2倍的初始位移;上述压电体根据上述初始复位来激励自由振动。
11.权利要求10的使用压电体的发电装置,其特征在于上述位移施加装置可以使上述压电体发生使上述开路电压成为上述额定电压的约2倍到20倍的上述初始位移。
12.权利要求10的使用压电体的发电装置,其特征在于上述位移施加装置可以施加使上述开路电压成为上述额定电压的约2倍到15倍的上述初始位移。
13.权利要求10的使用压电体的发电装置,其特征在于上述位移施加装置可以施加使上述开路电压成为上述额定电压约4到6倍的上述初始位移。
14.权利要求10的使用压电体的发电装置,其特征在于上述位移施加装置可以高频度地反复施加使上述开路电压成为上述额定电压的至少约2倍的上述初始位移。
15.一种电子机器,其特征在于,包括权利要求8记载的、使用压电体的发电装置;对由该发电装置供给的上述电力进行整流的整流装置;存储整流过的上述电力的蓄电装置;可以利用整流过的上述电力进行工作的处理装置。
16.一种电子机器,其特征在于,包括权利要求10记载的、使用压电体的发电装置;对由该发电装置供给的上述电力进行整流的整流装置;存储整流过的上述电力的蓄电装置;可以利用整流过的上述电力进行工作的处理装置。
全文摘要
发现了使用压电体的发电装置可高效率进行发电的条件,提供了可在携带用机器等中实际使用的发电装置。利用具有压电体的振子的自动振动行充电时,充电效率η随发电装置的开路电压初始值Vof与电力系统的输入一侧的额定电压Ve的电压比Vk如图所示的那样变化。Vk在约2到20时可获得高的发电效率,特别是在约4至6的范围内时可获得最大的发电效率。利用满足这一条件的发电装置可以提供可在携带用机器等中实际使用的小型的高效率的发电装置。
文档编号H02N2/18GK1165407SQ96123128
公开日1997年11月19日 申请日期1996年12月17日 优先权日1995年12月18日
发明者桥本泰治, 高桥理, 宫崎肇, 舩板司, 古畑诚 申请人:精工爱普生株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1