聚光式太阳能光伏-热电-余热一体化系统的制作方法

文档序号:8683993阅读:342来源:国知局
聚光式太阳能光伏-热电-余热一体化系统的制作方法
【技术领域】
[0001 ] 本实用新型的一种太阳能发电装置,尤其涉及一种光伏发电和温差发电复合发电系统。
【背景技术】
[0002]近年来,随着经济的发展,人类对于能源的需求不断增加,环境受到不断的破坏,要求我们开发新能源,改善能源结构。太阳能作为一种取之不尽用之不竭的绿色能源,其利用越来越引起人们的关注。太阳能的利用主要包括了光热利用和发电利用,由于传统的发电利用由于成本远大于寿命,且制造过程中产生严重的污染,导致太阳能光电利用推广缓慢。本实用新型的聚光式太阳能光伏-热电-余热一体化系统,采用聚光式发电,有效减低光伏材料的成本;利用砷化镓电池有效提高光利用效率和耐温性。同时有效利用砷化镓电池无法利用的红外光热效应作为热源,利用基于塞贝克效应的温差发电芯片进行二次发电利用;并通过相变储能装置作为温差发电冷源散热并将品味较低的热能存储,供生活用水使用。因此,本实用新型提出了一种具有光利用效率高,安全可靠,无运动,寿命长的光电-热电和余热一体化系统。

【发明内容】

[0003]针对现有技术的不足,本实用新型要解决的技术问题是提供一种太阳能高效利用、结构简单紧凑、使用寿命长的太阳能光伏-热电和余热一体化系统。
[0004]为了解决上述技术问题,本实用新型所采用的技术方案是:本实用新型的聚光式太阳能光伏-热电-余热一体化系统,包括聚光菲涅耳透镜、容纳有机相变材料的相变储能换热装置、太阳能砷化镓电池、温差发电芯片,其中相变储能换热装置装设在螺杆的下端,聚光菲涅耳透镜装设在螺杆的上端,太阳能砷化镓电池装设在菲涅尔透镜的光路聚焦处,温差发电芯片放置于砷化镓电池和相变储能装置之间,并通过耐高温粘结剂进行粘结,保证彼此之间接触,温差发电芯片通过以砷化镓电池作为热端和相变储能装置作为冷端,形成稳定的温差,再通过半导体塞贝克效应将热能转化为电能,温差发电芯片所发出的电压送入蓄电池存储,安装在螺杆上的聚光菲涅耳透镜、相变储能换热装置、太阳能砷化镓电池通过螺母固定并通过固定支架安置于地面。
[0005]本实用新型的有益效果是:聚光式太阳能光伏-热电-余热一体化系统能通过能源的分级利用,将高品位能源用于发电,低品位能源用于热利用。改过程相比传统太阳能利用装置有以下优点:首先,本实用新型的聚光式太阳能光伏-热电-余热一体化系统采用聚光式,有效减少了光伏电池制造成本,提高材料的利用效率,装置小巧紧凑。其次,由于采用光电和热电耦合,合理利用光谱能量,发电效率超过纯光电转化效率理论值。再次,由于温差发电芯片冷源采用相变储能装置,将余热采用相变材料存储并通过换热蛇型管加热生活用水,供生产生活需要。
【附图说明】
[0006]图1为本实用新型聚光式太阳能光伏-热电-余热一体化系统实施例的分解状态侧向结构示意图。
[0007]图2为图1所示聚光式太阳能光伏-热电-余热一体化系统的分解状态立体结构示意图。
[0008]图3为图1所示聚光式太阳能光伏-热电-余热一体化系统的立体结构示意图。
[0009]图4为图1所示聚光式太阳能光伏-热电-余热一体化系统的侧向结构示意图。
[0010]图5为图4中A区域的局部放大图。
[0011]图6为图4中B区域的局部放大图。
【具体实施方式】
[0012]下面对本实用新型的实施方式进行具体描述。
[0013]如图1~5所示,本实用新型的聚光式太阳能光伏-热电-余热一体化系统,其特征在于包括聚光菲涅耳透镜11、容纳有机相变材料的相变储能换热装置22、太阳能砷化镓电池14、温差发电芯片15,其中相变储能换热装置22装设在螺杆16的下端,聚光菲涅耳透镜11装设在螺杆16的上端,太阳能砷化镓电池14装设在菲涅尔透镜11的光路聚焦处,温差发电芯片15放置于砷化镓电池14和相变储能装置22之间,并通过耐高温粘结剂进行粘结,保证彼此之间接触,温差发电芯片15通过以砷化镓电池14作为热端和相变储能装置22作为冷端,形成稳定的温差,再通过半导体塞贝克效应将热能转化为电能,温差发电芯片15所发出的电压送入蓄电池18存储,安装在螺杆16上的聚光菲涅耳透镜11、相变储能换热装置22、太阳能砷化镓电池14通过螺母12固定并通过固定支架25安置于地面。
[0014]上述菲尼尔透镜11由钢化玻璃作为基板,透镜表面透明镜体上有多圈圆形齿槽,保证足够强度、高折光率和低光损伤。所述的菲尼尔透镜11聚焦区域为所述的砷化镓电池14受光产生光生伏特效应区域,其聚焦倍率可通过调节螺杆16和螺母12机构来控制菲尼尔透镜与砷化镓电池14受光区域的距离。
[0015]太阳能砷化镓电池14的结构示意图见图5的局部放大图所示,为图4中的A区域局部放大,其结构包括聚光透镜13、陶瓷基底砷化镓电池143、控制器142和与所述蓄电池18相连导线。其中聚光透镜13由钢化玻璃制成,保证足够的强度和耐温性能,表面经过高精度抛光处理,大大减少了光损伤。实施例采用陶瓷基底砷化镓电池143作为光伏发电电池在于砷化镓电池发电效率较硅电池高,转换效率可高达40%,更重要的是耐热性能好,可作为温差发电芯片15热源。所述控制器142用于对光伏发电和温差发电输入电压进行稳压调节,并能自动防止蓄电池过充电电作用。
[0016]温差发电芯片15放置于砷化镓电池14和相变储能装置22之间,并通过耐高温粘结剂进行粘结,保证之间紧密接触。所述的温差发电芯片15通过以砷化镓电池14作为热端和相变储能装置22作为冷端,形成稳定的温差,再通过半导体塞贝克效应将热能转化为电能,其中温差发电芯片15所发出的电压先通过控制器142进行稳压后送入蓄电池18存储。
[0017]上述相变储能装置22包括相变储能容器20和相变换热器23,其中相变储能容器20内装有有机相变材料,并在相变材料中添加有泡沫金属,或导热石墨,或翅片,相变换热器23与相变储能容器20中的泡沫金属,或导热石墨,或翅片连接。泡沫金属、导热石墨或翅片能提高材料的导热性能。
[0018]上述相变储能容器20是钢制容器。上述有机相变材料为石蜡、脂肪酸类、多元醇类等材料,相变熔点于60°C -80°C之间。
[0019]上述相变换热器23是蛇形管,蛇形管为铜制管,蛇形管通过钎焊方式与相变储能容器20中的泡沫金属,或导热石墨,或翅片连接,蛇型管内的换热流体为待加热的冷水,通过相变储能装置22的加热,使蛇型管内的水温提高,供生活生产使用。
[0020]图4中B处的局部放大图如图6所示,上述固定支架25为可移动三角脚架,在固定支架25上设置有入射角调节机构24。其中入射角调节机构24是通过调节支撑架相对长度来改变太阳光入射角。
[0021]上述入射角调节机构
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1