用于调光器电路的过零检测电路的制作方法

文档序号:12144073阅读:372来源:国知局
用于调光器电路的过零检测电路的制作方法与工艺

本发明涉及用于后沿相位控制调光器电路的过零检测电路。

具体地,但非唯一地,本发明涉及一种用于控制电容性负载的后沿相位控制调光器电路的过零检测电路,电容性负载例如是用于LED灯的驱动器。



背景技术:

调光器电路通常用于控制到诸如光源的负载的电力,特别是交流(AC)电源电力(mains power)。在一种现有方法中,可以使用相位控制调光来调光光源,由此通过改变在AC的周期期间连接负载到电源电力的开关导通的时间量(即,改变占空时间)来控制提供给负载的电力。具体地,在交流的每半个周期期间将到负载的AC电力切换为导通(ON)和关断(OFF),并且根据相对于每半个周期的关断时间的导通时间量来提供负载的调光量。

相位控制调光器电路通常操作为后沿或前沿调光器电路,并且这两个电路适合于不同的应用。在前沿电路中,在每半个周期开始时切断电力。在后沿电路中,在每半个周期后部(例如,朝向每半个周期的结束)切断电力。前沿调光器电路通常更好地适于控制到感应负载的电力,诸如小风扇电动机和铁芯低压照明变压器。另一方面,后沿调光器电路通常更好地适于控制到电容性负载的电力,电容性负载诸如用于发光二极管(LED)灯的驱动器。

然而,相位控制调光器电路可以在接通和切断到负载的电力时产生导致电磁干扰(EMI)发射的线路传导谐波,特别地,例如,在接通和切断到诸如紧凑型荧光照明(CFL)和LED灯驱动器的复杂负载的电力时。更具体地,这些调光器电路包括开关电路和开关控制电路,该开关控制电路用于通过在导通状态(导通时段)下向负载传导电力而在关断状态(非导通时段)下不向负载传导电力来控制向负载传递AC电力。在AC的每半个周期的关断状态期间,电力可用于调光器电路操作。

在一些示例性的现有技术调光器电路中,开关控制电路包括过零检测电路,其被配置为检测AC的过零点,以在理想调光器电路中限定导通时段和非导通时段。然而,实际上,许多示例性现有调光器电路(例如,2线后沿相位控制调光器电路)显示半周期导通时段开始在真的过零之前十分之几毫秒;因此,阶梯电压被施加到负载,这可以引起电流脉冲和EMI发射,特别是对于诸如LED或CFL灯驱动器的电容性电子负载类型。

首先由整流器对在非导通时段中提供给调光器电路的AC(线)电力进行整流。整流的调光器电压(例如经由全波整流器整流)是通常具有等于线频率的两倍的重复率的脉冲形式。然而,整流产生寄生电容,并且需要相对高的过零电压以减轻寄生电容的过滤效应。

因此,对于一些电容性输入和低功率因数负载类型,非零的过零电压阈值的效应可以导致导通时段开始的显著进步,特别是当示例性调光器电路在更高的工作导通角工作时。在这些情况中,这些负载类型的结果可以是在最大调光器设定下可实现的亮度的明显减小,和/或非导通时段的不对称的开始,这可能导致由负载驱动的LED灯的闪烁的非期望的效果。这两种效果都是由于:在由负载类型拓扑造成的一些情况下,与由提前的过零引起的对应线路电压相比,调光器电压的减小的幅度。

如上所述,不准确的过零检测的主要原因之一可归因于与整流的调光器电压相关联的分量寄生电容的影响。这种电容用于部分地平滑整流的调光器电压并且引起过零的一些滞后相移,其中电压最小值不达到零。因此,为了最小化这些过滤效应,示例性现有技术的后沿相位控制调光器电路需要较低(耗散)阻抗。然而,该较低的阻抗导致较高的调光器损耗,进而不是令人满意的最小化有害过滤效应的解决方案。



技术实现要素:

相应地,在本发明的一个方面,提供了一种用于控制到负载的交流(AC)电力的后沿相位控制调光器电路的过零检测电路,其中后沿相位控制调光器电路包括:开关电路,其用于通过在导通状态下向负载传导电力而在关断状态下不向负载传导电力来控制向负载传递AC电力,其中导通状态是导通时段,并且关断状态是非导通时段;开关控制电路,其用于在AC的每个周期控制开关电路的切断和接通,以控制开关电路的导通和关断状态的切换;以及整流器,其用于在非导通时段中对AC电力进行整流,以产生要提供给调光器电路的整流的调光器电压,其中过零检测电路包括:电流阱电路(current sink circuit),电流阱电路包括被连接到限流晶体管的集电极的串联电阻器和被连接到限流晶体管的发射极的发射极电阻器,其中电流阱电路在低瞬时AC电压下具有低阻抗,以减少与整流器相关联的寄生电容的过滤效应;以及比较器电路,其被配置为检测串联电阻器和发射极电阻器上的整流的调光器电压的第一阈值的过零点,其中比较器电路还被配置为当整流的调光器电压低于第一阈值时启动开关电路以操作并开始导通时段之一。

过零检测电路经由电流阱电路在低瞬时AC(线)电压处提供低阻抗。本领域技术人员将理解,低瞬时AC(线)电压是接近例如240V的AC(线)电压的0V的电压。例如,低瞬时AC电压约为0至10V。还应当理解,低阻抗指示约10KΩ至50KΩ的阻抗值,而高阻抗指示几百KΩ及以上。低阻抗降低过滤效果,并且使得整流的调光器电压降到接近零伏电平,以更精确地控制导通角开始。此外,应当理解,从DC电压角度(例如,整流的调光器电压),电流阱电路的特征可以为具有与施加的电压成比例的阻抗;因此在接近第一阈值的幅度的整流的调光器电压处的阻抗最低。

本领域技术人员还将理解,理想的后沿相位控制调光器理论上在AC(线)电压过零点处开始半周期导通。此外,将理解,电流阱电路(或取决于电路的动作的电流源电路)是用于与诸如240V的高电压AC电压一起使用的高电压电流阱电路。

优选地,比较器电路还包括参考阈值滞后电路,以建立大于第一阈值的第二阈值。在该实施例中,比较器电路还被配置为当整流的调光器电压高于第二阈值时,启动开关电路以开始非导通时段之一。也就是说,为了抗噪声目的,本实施例的比较器电路包括滞后,以将过零检测阈值提高到第二阈值,并产生适合于短路切断功能的较高阈值。

在实施例中,比较器电路的滞后实现双电平过零检测,以实现固有的短路切断功能。也就是说,过零检测电路的比较器电路被配置为当整流的调光器电压低于第一阈值时启动开关电路以开始导通时段之一,并且当整流的调光器电压高于第二阈值时启动开关电路以提前终止导通时段之一,以为后沿相位控制调光器电路提供短路保护。该实施例的细节通过参考名为《具有短路保护的相位控制调光器电路》(a phase control dimmer circuit with short-circuit protection)的共同待审的澳大利亚临时申请而并入本文。

在实施例中,调光器电路是2线后沿相位控制调光器电路,并且电流阱电路是高压恒定电流阱。使用电流阱电路主要是减轻归因于由寄生电容和高阻抗电阻分压导致的不利过滤效应的整流的调光器电压波形失真效应。过零检测第一(低)阈值对应于在电流阱晶体管的饱和之后的整流的调光器电压电平,其中串联电阻器(例如电流感测电阻器)上的电压低于指示第一阈值的比较器关断状态参考电压。

在实施例中,电流阱电路还包括被连接到限流晶体管的基极的控制晶体管。当比较器电路检测到整流的调光器电压低于第一阈值时,限流晶体管达到饱和模式。比较器电路然后增加对限流晶体管的驱动以禁用电流限制操作,(并且当整流的调光器电压低于第二阈值时)然后保持电流阱电路的电阻阻抗。

在实施例中,比较器电路包括用以实现确定整流的调光器电压是否低于第一阈值的比较器功能的晶体管对,以及用以输出过零检测电路的状态的输出晶体管。具体地,当整流的调光器电压低于第一阈值时,比较器电路输出导通状态,当整流的调光器电压最初高于第一阈值时,比较器电路输出关断状态。一旦处于导通状态,比较器电路维持该状况,直到整流的调光器电压超过第二阈值。比较器电路导通状态表示导通时段的开始(和持续时间),并且关断状态表示当整流的调光器电压在幅度上减小时(即,接近AC零点)的非导通时段的开始(和持续时间)。

在实施例中,比较器电路包括具有选择的电阻的分压器电阻器,以提供比较器参考电压,其中晶体管对将整流的调光器电压与比较器参考电压进行比较,以确定整流的调光器电压是否低于第一阈值。也就是说,比较器参考电压是上述比较器关断状态参考电压。例如,比较器关断状态参考电压为0.7V,并且过零第一(低)阈值为4.5V。

此外,串联电阻器具有选择的电阻,使得当限流晶体管达到饱和模式时,到晶体管Q3的基极的输入电压下降,导致比较器电路的输出使到控制晶体管和输出晶体管Q5的驱动停止,其增加到限流晶体管的驱动。例如,串联电阻器是10KΩ电阻器。也就是说,作为比较器电路改变到导通状态的结果,电流阱同时保持在饱和状态;因此,串联电阻器确定晶体管集电极电流。电流阱结合相对较低的串联电阻以限定最低阻抗,然后结合分压器电阻器,建立绝对过零检测阈值。在过零检测时,比较器输出同时向电流阱晶体管提供额外的偏置以禁用电流限制操作;因此,保持在低整流的调光器电压电平处的电阻性阻抗。因此,在调光器半周期导通时段,过零检测电路中的电流与整流的调光器电压成比例地上升。

本领域技术人员将理解,过零检测电路的部件是被配置为承受例如240V的AC电压的高电压部件。例如,上述电流阱电路、限流晶体管、控制晶体管和串联电阻器是高压部件。

在另一实施例中,比较器电路包括具有选择的电阻的另外的分压器电阻器以提供另一比较器参考电压。在该实施例中,由另一比较器参考电压确定从控制晶体管的基极到发射极的控制晶体管的偏置电压,由此检测到的偏置电压的下降指示整流的调光器电压低于第一阈值。

附图说明

现在将参考附图仅通过示例的方式描述本发明的实施例,在附图中:

图1是示出包括根据本发明实施例的过零检测电路的后沿相位控制调光器电路的一些电路的框图;

图2示出根据本发明实施例的用于后沿相位控制调光器电路的过零检测电路;以及

图3示出根据本发明另一实施例的用于后沿相位控制调光器电路的过零检测电路。

具体实施方式

图1示出了根据本发明实施例的2线后沿相位控制调光器电路10的一些电路,其被配置为控制到负载的电力。更具体地,图1示出了被配置为与过零检测电路12相关联地操作的那些电路。本领域技术人员将理解,调光器电路10的许多电路不影响过零检测电路12的操作,因此本文不再详细讨论。

如上所述,图1的实施例中所示的调光器电路10包括AC开关电路18,其用于通过在导通状态下向负载传导电力而在关断状态下不向负载传导电力来控制向负载传递AC电力。本领域技术人员应当理解,导通状态是导通时段,并且关断状态是非导通时段,它们被配置为持续时间以在负载是LED灯驱动器的情况下控制例如LED灯的调光。AC开关电路18被连接到栅极驱动电路16,栅极驱动电路16具有用于在AC的每半个周期控制AC开关电路18的切断和接通的多个电路,以控制开关电路18的导通和关断状态的切换。此外,调光器电路10包括用于在非导通时段中整流AC电力的整流器20,以产生要提供给调光器电路10的整流的调光器电压。

如上所述,过零检测电路12被配置为检测AC的过零,并且检测整流的调光器电压的第一阈值以及在具有滞后的实施例中第二阈值的相交。过零检测电路12被连接到导通时段定时电路14,导通时段定时电路14被配置为基于过零检测电路12的输出来确定导通时段和改变导通时段。此外,导通时段定时电路14被连接到栅极驱动电路16以接通和切断AC开关电路12,从而提供导通和非导通时段。

当在半周期的两个极性之间AC线电压等于零时,发生AC的过零。如上所述,实践中,导通和非导通时段之间的交叉通常不会正好发生在AC线路电压过零处。例如,第一阈值被选择为4.5V的低阈值电压,以及第二阈值是6.5V的高阈值。

在图2和图3中更详细地示出了调光器电路10的过零检测电路12的实施例。具体地,图2示出了过零检测电路12的一个实施例,并且图3示出了过零检测电路12'的替代实施例。

在图2中,调光器电路10的过零检测电路12包括以高压电流阱(或源)形式的电流阱电路22,其包括高压限流晶体管Q2和控制晶体管Q1。过零检测电路12还包括比较器电路24,其具有用于提供第二阈值的迟滞电路部件,包括晶体管差分对Q3和Q4,以及输出晶体管Q5、Q6和Q7。

比较器电路24包括提供比较器电压参考的分压器电阻器R7和R8。在示例中,比较器电压参考被设定为约0.7V,R7是1MΩ电阻器,以及R8是47KΩ电阻器。如所讨论的,比较器电路24将参考电压与整流的调光器电压进行比较,以确定整流的调光器电压是否已经低于第一阈值。在高整流的调光器电压条件下,由于控制晶体管Q1的作用,该参考电压连同限流晶体管Q2的发射极电阻器R3一起,限定高压电流阱晶体管Q2中的恒定电流量约0.37mA。在示例中,R3是1.8KΩ电阻器。此外,在这些高整流的调光电压条件下,输出晶体管Q5被驱动以将过零检测电路12的过零输出ZC保持在低状态或关断状态。本领域技术人员将理解,过零检测电路12的输出ZC类似于过零检测电路12的比较器电路24的输出。

上述高压电流阱串联电阻器R2具有在本实施例中设定在约4.5V处的过零第一(低)阈值处的初始效应,其中限流晶体管Q2达到饱和模式。例如,R2是10KΩ电阻器。这允许比较器输入电压在晶体管Q3基极处下降,导致比较器电路24输出同时停止对控制晶体管Q1和输出晶体管Q5的驱动。该动作导致对高压电流阱晶体管Q2的驱动增加;因此,保持和增强饱和状态。另外,ZC输出的高状态的改变将比较器参考电压增加到约1.0V,其然后确定约6.5V的过零高阈值。由于这种比较器电路滞后,整流的调光器电压必须超过过零第二(高)阈值,以便ZC输出再次返回到低(关断)状态。

在图3中,调光器电路10的过零检测电路12'包括具有另一高电压电流阱形式的电流阱电路22',电流阱电路22'包括高电压限流晶体管Q1'和另一控制晶体管Q2'。过零检测电路12'还包括也具有所述迟滞电路的比较器电路24'。图3的过零检测电路12'通过消除差分对比较器电路(Q3和Q4)简化了图2所示的过零检测电路12的实施例。在图3的实施例中,使用另一电流阱控制晶体管Q2'来实现比较器功能。电阻器R3'为另一限流晶体管Q1'提供基极偏置电流,其中在高整流的调光器电压条件下,过量的可用驱动电流经由另一控制晶体管Q2'被传导到另一输出晶体管Q3',以保持ZC输出信号在低状态或关断状态。

通过另外的干线(rail)分压器电阻器R5'和R6'并结合限流晶体管Q1'发射极电阻器R2'一起建立另一控制晶体管Q2'的约0.7V的偏置电压,以确定约0.37mA的标称阱电流。在该示例中,发射极电阻器R2'是1.8KΩ电阻器。过零第一(低)阈值再次对应于小于约4.5V的整流的调光器电压,其中另一限流晶体管Q1'进入饱和模式,这导致另一控制晶体管Q2'发射极电压的下降和对另一输出晶体管Q3'的驱动的损失,从而使ZC输出信号呈现高状态。具有电阻器R8'的ZC输出缓冲晶体管Q4'被用于提供参考电压滞后,因此产生用于除所述短路切断阈值功能之外的抗噪声目的的过零导通状态第二(高)阈值。

应当理解,本文描述的配置也可以有其它变形和修改,其也在本发明的范围内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1