校正装置与方法与流程

文档序号:30089132发布日期:2022-05-18 07:54阅读:112来源:国知局
校正装置与方法与流程

1.本发明申请是关于一种校正装置与方法,特别是指一种适用于滤波器电路的校正装置与方法。


背景技术:

2.一般来说,滤波器为无线通信系统内不可或缺的一环。然而,滤波器的频率响应极有可能因为制程变化而与原先设计的设定值产生偏差,进而影响信号解调的质量。
3.为解决上述问题,传统上会额外提供校正电路,该校正电路具有与待校正的滤波器电路相同的时间常数。通过调整该校正电路中电容的电容值,使该校正电路的时间常数达到目标值。最终,将与该目标值相对应的电容设定提供给该滤波器电路,以完成校正。然而,上述方法仅能补偿电容或电阻因制程变化而造成的偏差,并无法进一步地补偿其他组件(例如:运算放大器)因制程变化而造成的偏差。因此,有必要对传统的校正方法进行改善。


技术实现要素:

4.本发明申请一方面提供了一种校正装置。该校正装置包括信号产生器以及处理器。该信号产生器用以提供输入信号至滤波器电路,其中,该滤波器电路具有实际时间常数,并用以接收该输入信号以输出输出信号。该处理器用以根据该输出信号与该输入信号计算出实际增益,比对该实际增益以及目标增益,以得到比对结果,并根据该比对结果判断是否要调整该滤波器电路的该实际时间常数。本发明申请同时提供一种校正方法。
5.本发明申请另一方面提供了一种校正方法。该校正方法包括:提供输入信号至滤波器电路,其中该滤波器电路具有实际时间常数;接收来自该滤波器电路的输出信号;根据该输出信号与该输入信号计算出实际增益;比对该实际增益以及目标增益,以得到比对结果;以及根据该比对结果判断是否要调整该滤波器电路的该实际时间常数。
6.综上,本发明申请的校正装置以及校正方法,通过直接比对滤波器电路的实际增益与目标增益,对滤波器电路进行调整,来补偿滤波器电路中各种组件(例如:电阻、电容或运算放大器)因制程变化而产生的偏差。如此一来,滤波器电路便可被校正回原先设计的设定值,以利信号的解调。
附图说明
7.图1是根据本发明申请的部分实施例绘示一种校正装置的方块图。图2a是根据本发明申请的部分实施例绘示一种受制程变化影响的滤波器电路的频率响应示意图。图2b是根据本发明申请的部分实施例绘示一种受制程变化影响的滤波器电路经校正过后的频率响应示意图。图3是根据本发明申请的部分实施例绘示另一种受制程变化影响的滤波器电路的频率
响应示意图。图4是根据本发明申请的部分实施例绘示一种滤波器电路的电路图。图5是根据本发明申请的部分实施例绘示一种校正方法的流程图。
8.符号说明10:滤波器电路100:校正装置102:信号产生器104:处理器vin:输入信号vout:输出信号gmr:实际增益gm0:目标增益f1:实际中心频率f0:默认中心频率a:放大器r:电阻c:电容i
in+
:第一输入信号i
in-:第二输入信号q
in+
:第三输入信号q
in-:第四输入信号i
out+
:第一输出信号i
out-:第二输出信号q
out+
:第三输出信号q
out-:第四输出信号s210、s220、s230、s240、s250、s260:步骤
具体实施方式
9.下文是举例配合附图作详细说明,但所描述的具体实施例仅用以解释本发明,并不用来限定本发明,而结构操作的描述非用以限制其执行的顺序,任何由组件重新组合的结构,所产生具有均等功效的装置,皆为本发明申请所涵盖的范围。
10.在本公开说明书与权利要求书所使用术语(terms),除有特别注明外,通常具有每个术语在此领域中通用的含义、以及在被公开的内容中与特殊内容中的通用含义。
11.另外,关于本文中所使用的“耦接”或“连接
“”
,均可指两个或多个组件相互直接作实体或电性接触,或是相互间接作实体或电性接触,也可指两个或多个组件相互操作或动作。
12.请参阅图1,本发明申请的其中一个实施例是关于一种校正装置100。校正装置100包括信号产生器102以及处理器104,并是用以校正受制程变化影响的滤波器电路10。
13.在本实施例中,滤波器电路10可为带通滤波器,且是被设计以具有默认中心频率
f0以及与默认中心频率f0对应的预设时间常数τ0。然而,在制程变化的影响下,滤波器电路10的时间常数与原先设计的数值产生了差异,进而导致滤波器电路10的带宽与中心频率也与原先设计的数值产生了差异。举例而言,受制程变化影响的滤波器电路10具有不同于预设时间常数τ0的实际时间常数τ1以及不同于默认中心频率f0的实际中心频率f1。
14.结构上,信号产生器102耦接于滤波器电路10,而处理器104耦接于信号产生器102与滤波器电路10。在本实施例中,信号产生器102可包括晶体振荡器(图中未示)以及低通滤波器(图中未示),而处理器104可为中央处理单元或计算器芯片。
15.为能更好地理解本发明,将在以下段落中结合附图讨论校正装置100的操作。如图1所示,信号产生器102根据来自于处理器104的指令(图中未示)提供输入信号v
in
至滤波器电路10,其中,输入信号v
in
的频率等同于滤波器电路10原先设计的默认中心频率f0。
16.滤波器电路10接收输入信号v
in
,以输出输出信号v
out
至处理器104。处理器104接收输出信号v
out
,并根据输出信号v
out
与输入信号v
in
计算出实际增益gmr。具体而言,处理器104将输出信号v
out
除以输入信号v
in
以产生比值,并将该比值的绝对值作为实际增益gmr。
17.在本实施例中,滤波器电路10在原先设计的默认中心频率f0处具有目标增益gm0。可以理解的是,目标增益gm0即为滤波器电路10在原先设计的默认中心频率f0处所应当具有的最大增益值。举一个实际应用的例子来说,滤波器电路10被设计在300mhz(即默认中心频率f0)处的增益值为1.5(即目标增益gm0)。也就是说,当输入信号v
in
的该频率为300mhz时,理想情况下输出信号v
out
在300mhz处的强度应为输入信号v
in
的1.5倍。
18.然而,受制程变化影响的滤波器电路10具有不同于默认中心频率f0的实际中心频率f1。也就是说,滤波器电路10的最大增益值变更为发生在实际中心频率f1处。此时,若将具有默认中心频率f0的输入信号v
in
输入至滤波器电路10,处理器104所计算出的实际增益gmr将不会是滤波器电路10原先设计的最大增益值。以上述实际应用的例子来说,输出信号v
out
在300mhz处的强度将未达输入信号v
in
的1.5倍,换言之,实际增益gmr小于1.5(即目标增益gm0)。
19.在实际增益gmr计算出来之后,处理器104可用以比对实际增益gmr以及目标增益gm0,以得到比对结果。在理想情况下,处理器104通过比对实际增益gmr与目标增益gm0,得到在默认中心频率f0处的实际增益gmr等于目标增益gm0的结果。然而,若滤波器电路10受制程变化影响,处理器104通过比对实际增益gmr与目标增益gm0,将得到在默认中心频率f0处的实际增益gmr不等于目标增益gm0的结果。
20.据此,处理器104更可用以根据该比对结果判断是否要调整滤波器电路10的时间常数,以将滤波器电路10的频率响应校正至原先设计的数值。
21.具体而言,请参阅图2a,在本实施例中,滤波器电路10的频率响应(以虚线示意)受制程变化影响,使得实际中心频率f1小于默认中心频率f0。如图2a所示,处理器104比对实际增益gmr与目标增益gm0,并得到实际增益gmr小于目标增益gm0的结果。以上述实际应用的例子来说,实际中心频率f1可为小于300mhz的100mhz,而实际增益gmr可为小于1.5的0.75。当实际增益gmr小于目标增益gm0时,处理器104可用以调整滤波器电路10中至少一个电容(图中未示)的电容值(或者滤波器电路10中至少一个电阻(图中未示)的电阻值),以调整滤波器电路10的实际时间常数τ1,进而改变滤波器电路10的实际中心频率f1与实际增益gmr。
22.经过数次比对与调整后,实际增益gmr将愈来愈接近目标增益gm0。举例来说,处理
器104可以数字的方式将该至少一个电容的电容值由64法拉(farad)开始依序调整为32法拉、16法拉、8法拉与4法拉。随着该至少一个电容的电容值逐渐变小,滤波器电路10的实际中心频率f1与实际增益gmr也会逐渐变大。以上述实际应用的例子来说,随着该至少一个电容的电容值逐渐变小,实际中心频率f1可从100mhz逐渐增加至300mhz,而在默认中心频率f0处的实际增益gmr可从0.75逐渐增加至1.5。
23.接着,请参阅图2b,当处理器104比对实际增益gmr与目标增益gm0,并得到实际增益gmr等于目标增益gm0的结果时,处理器104便不再调整滤波器电路10的实际时间常数τ1。此时,经过校正的滤波器电路10的实际时间常数τ1与实际中心频率f1刚好等同于原先设计时的预设时间常数τ0与默认中心频率f0。以上述实际应用的例子来说,在滤波器电路10经过校正后,实际中心频率f1可为300mhz,而在默认中心频率f0处的实际增益gmr可为1.5。值得注意的是,该至少一个电容的电容值即为受制程变化影响的滤波器电路10所需的设定值。
24.请参阅图3,在其他部分实施例中,滤波器电路10的频率响应(以虚线示意)受制程变化影响,使得实际中心频率f1大于默认中心频率f0。此时,处理器104比对实际增益gmr与目标增益gm0,仍得到实际增益gmr小于目标增益gm0的结果。以上述实际应用的例子来说,实际中心频率f1可为大于300mhz的500mhz,而实际增益gmr可为小于1.5的0.75。类似地,处理器104可以数字的方式将该至少一个电容的电容值逐渐调大(举例来说,由4法拉开始依序调整为8法拉、16法拉、32法拉与64法拉),使滤波器电路10的实际中心频率f1逐渐变小,且滤波器电路10的实际增益gmr逐渐变大。以上述实际应用的例子来说,随着该至少一个电容的电容值逐渐变大,实际中心频率f1可从500mhz逐渐减少至300mhz,而在默认中心频率f0处的实际增益gmr可从0.75逐渐增加至1.5。接着,当处理器104得到实际增益gmr等于目标增益gm0的结果(如图2b所示)时,处理器104便不再调整滤波器电路10的实际时间常数τ1。此时,该至少一个电容的电容值即为受制程变化影响的滤波器电路10所需的设定值。
25.在其他部分实施例中,处理器104可通过数字算法(例如:二位搜寻算法)调整该至少一个电容的电容值。
26.请参阅图4,在其他部分实施例中,滤波器电路10可为复数带通滤波器(complex bandpass filter)包括复数个放大器a、复数个电阻r以及复数个电容c。针对如图4所示的滤波器电路10,信号产生器102所产生的输入信号v
in
包括第一差动输入信号(包含第一输入信号i
in+
以及第二输入信号i
in-)以及第二差动输入信号(包含第三输入信号q
in+
以及第四输入信号q
in-),其中,该第一差动输入信号的相位与该第二差动输入信号的相位相差90度。此外,滤波器电路10输出的输出信号v
out
包括第一差动输出信号(包含第一输出信号i
out+
以及第二输出信号i
out-)以及第二差动输出信号(包含第三输出信号q
out+
以及第四输出信号q
out-)。其中,校正装置100校正如图4所示的滤波器电路10的说明类似于上述实施例,所以不在此赘述。
27.请参阅图5,其绘示本发明申请的其中一个实施例的校正方法200的流程图。校正方法200可以在如图1所示的校正装置100上执行。
28.在步骤s210中,提供输入信号v
in
至受制程影响的滤波器电路10,其中,滤波器电路10具有实际时间常数τ1。在步骤s220中,接收来自滤波器电路10的输出信号v
out
。在步骤s230中,根据输入信号v
in
与输出信号v
out
计算出实际增益gmr。
29.在步骤s240~s260中,比对实际增益gmr与目标增益gm0(即滤波器电路10在原先设
计的默认中心频率f0处所具有的最大增益值),以得到比对结果,并根据该比对结果判断是否要调整滤波器电路10的实际时间常数τ1。具体而言,在步骤s240中,比对实际增益gmr是否等于目标增益gm0。若该比对结果显示为“否”,则进入步骤s250,调整滤波器电路10的实际时间常数τ1。
30.在调整过滤波器电路10的实际时间常数τ1后,程序回到步骤s210中,提供输入信号v
in
至被调整过的滤波器电路10,以再次执行步骤s220~s240。简言之,只要在步骤s240中得到实际增益gmr不等于目标增益gm0的结果,就会进入步骤s250中调整滤波器电路10的实际时间常数τ1,并再次执行步骤s210~s240。
31.若步骤s240的该比对结果显示为“是”,则进入步骤s260,不调整滤波器电路10的实际时间常数τ1(此时的实际时间常数τ1等于滤波器电路10原先设计的默认时间常数τ0),并结束校正方法200。
32.综上,本发明申请的校正装置100以及校正方法200,通过直接比对滤波器电路10的实际增益gmr与目标增益gm0,对滤波器电路10进行调整,来补偿滤波器电路10中各种组件(例如:电阻、电容或运算放大器)因制程变化而产生的偏差。如此一来,滤波器电路10便可被校正回原先设计的设定值(即,默认中心频率f0、默认时间常数τ0与目标增益gm0),以利信号的解调。
33.虽然本发明申请内容已通过具体实施方式公开如上,但是该多个实施例并非用以限定本发明申请内容,本领域普通技术人员在不脱离本发明申请内容的构思和范围,可依据本发明申请的明示或隐含的内容对本发明申请的技术方案作修改或调整,凡此种种变化均可能属于本发明申请所寻求的专利保护范畴,换言之,因此本发明申请内容的保护范围当视权利要求书所界定的范围为准。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1