通信模式控制方法,移动通信系统,基站控制装置,基站和移动通信终端的制作方法

文档序号:7960124阅读:93来源:国知局
专利名称:通信模式控制方法,移动通信系统,基站控制装置,基站和移动通信终端的制作方法
技术领域
本发明涉及使用CDMA(Code Division Multiple Access码分多址)的移动通信系统,特别涉及根据基站和移动通信终端之间的通信状况,控制通信模式切换的通信模式控制方法、移动通信系统、基站控制装置、基站和移动通信终端。
背景技术
在现有的无线多模式数据通信方法中,存在根据数据速率等在自治收发数据的自治模式和调度模式之间进行切换的方法(例如,参考特开2002-369261),其中所谓的调度模式是根据对由基站侧许可的通信定时等数据收发的请求(调度)来收发数据。
在该通信方法中,例如在基站和无线装置之间以9.6kbps程度的低数据速率发送分组数据的情况下,以自治模式进行控制。另外,相反地在以高数据速率发送数据的情况下,以调度模式进行控制。
在此,调度模式可以频繁地发送用来从基站向无线装置通知调度的信令。因此,如果没有发送1次以上程度的数据量,那么与信令次数相比,数据的发送效率就变的很低。
在上述现有数据通信方法中,在每单位时间的数据量多的高数据速率的情况下,通过以调度模式进行控制,可以消除上述缺陷。
但是,上述现有技术文献虽然公开了对上述现有数据通信方法主要通过以数据量作为基准在自治模式或调度模式之间进行切换的思想,但是对于除此以外的通信条件的切换处理并没有充分公开。
在通信模式切换中,所谓应当作为基准的通信条件,如果考虑到编码信号的解调处理、使用要求实时性的数据时,那么可以举出例如有关基站的干扰量(以下,称作噪声增加因子(noise rise))、延迟等等。
在上述现有技术文献公开的发明中,没有充分讨论对于执行不允许有延迟的数据通信的无线装置,应当以自治模式进行操作,而对于执行允许有延迟的通信的装置,可以以调度模式进行操作那样根据通信条件进行灵活的通信模式切换。
另外,在以CDMA方式进行上行分组通信中,如果来自无线装置的发送信号的干扰超出了有关基站的噪声增加因子界限时,那么就不能解调该发送信号。
该噪声增加因子界限还随着来自其它小区(cell)的干扰和同一小区的其它无线装置的发送等而变化。因此,在CDMA方式的分组通信中,对于噪声增加因子界限的管理还需要给予足够的重视。
在此,作为噪声增加因子界限管理,如果能够充分确保噪声增加因子界限的界限,那么即使在应该发送的数据量较多的情况下,也可以使用自治模式。在此情况下,与调度模式相比,既有能够减少信令次数又有延迟较小的优点。
这样,对于基站的噪声增加因子界限,就可以根据通信业务量状况,对由变动的各种因素引起的噪声增加因子界限进行适当分配,就能够根据噪声增加因子的变化进行高效的通信。
为了解决上述技术问题,本发明的目的在于提供一种能够通过适当考虑数据量以外的因素来切换通信模式,能够根据伴随基站和移动通信终端之间的通信负荷变化的噪声增加因子的变化,进行高效的数据通信的通信模式控制方法。
另外,本发明目的还在于提供一种通过考虑延迟等QoS(服务质量Qualityof Service)参数,并分别为各个终端指定发送模式切换阈值,得到可以根据QoS在自治模式和调度模式之间进行分配的通信模式控制方法。
进一步,本发明目的在于提供一种使用上述方法,根据伴随通信负荷的变化而变化的噪声增加因子进行高效的数据通信的移动通信系统、基站控制装置、基站和移动通信终端。

发明内容
根据本发明的通信模式控制方法,当移动通信终端在相对于基站进行自治数据通信的自治模式和以基站许可的通信定时进行数据通信的调度模式之间进行切换时,基于基站小区内的各通信模式的干扰量和/或其通信特性以及用来表示由移动通信终端通知的通信数据量的信号,确定应当在移动通信终端中设定的通信模式,并从基站将该通信模式通知给移动通信终端。
由此,可以得到能够根据伴随基站和移动终端之间的通信负荷的变化而变化的噪声增加因子实现高效的数据通信的效果。


图1是概括表示根据本发明实施例1的移动通信系统结构的图;图2是表示根据实施例1的移动通信系统的信道结构图;图3A和图3B是用来说明根据实施例1在移动通信系统中的终端和基站之间的无线多数据模式通信的通信模式的图;图4是用来说明作为根据实施例1切换移动通信终端的通信模式的基准的发送数据缓冲器的阈值的图;图5是用来表示根据实施例1相对于有关至基站的上行信号的各因素引起的干扰量的容许界限的图。
图6是表示在小区内多个终端使用上行分组通信的情况下,对自治模式和调度模式分配噪声增加因子界限的例子的图;图7是表示在图6所示情况下将发送数据缓冲器的通信模式切换判断的阈值设定为低的情况的图;图8是表示在小区内使用上行分组通信的终端较少的情况下,对自治模式和调度模式分配噪声增加因子界限的例子的图;图9是在图8所示情况下将发送数据缓冲器的通信模式切换判断的阈值设定为高的情况的图;图10是表示图1中的基站内部结构的框图;图11是表示图1移动通信终端内部结构的框图;
图12是表示图1基站控制装置内部结构的框图;图13是表示根据第1个方法在通过实施例1的基站控制装置确定切换终端的发送模式切换阈值时,基站的噪声增加因子界限的分配例的图;图14是用来说明根据表示与图13所示的噪声增加因子界限的分配对应的发送模式切换阈值的变更的图;图15是表示在根据实施例1的移动通信系统中以第一方法变更发送数据缓冲器阈值的情况下的变更顺序的图;图16是用来详细说明图15中的步骤ST9的操作的流程图;图17是表示根据第2个方法在通过实施例1的基站控制装置确定切换终端的发送模式切换阈值时基站的噪声增加因子界限的分配例的图;图18是用来说明根据图17所示的噪声增加因子界限的分配来变更发送模式切换阈值的图;图19是表示在根据实施例1的移动通信系统中以第2方法变更发送数据缓冲器阈值的情况下的变更顺序的图;图20是用来详细说明图19中的步骤ST9b的操作的流程图;图21是表示在根据实施例1的基站根据第3方法确定终端的发送模式切换阈值时基站的噪声增加因子界限的分配例的图;图22是表示在根据实施例1的移动通信系统中以第3方法实施发送数据缓冲器阈值变更的变更顺序的图;图23是用来详细描述图22中的步骤ST3d的操作的流程图;图24是表示移动通信终端根据来自基站侧的指示对用于切换发送模式的结构使用第1方法的情况的操作的流程图;图25是表示移动通信终端根据来自基站的指示对切换发送模式的结构使用第2方法的情况的操作的流程图;图26是表示移动通信终端根据来自基站的指示对切换发送模式的结构使用第3方法的情况的操作的流程图。
具体实施例方式
下面,为了更详细地描述本发明,对于实施本发明的最佳形态参考附图进行描述。
实施例1图1是概括表示根据本发明实施例1的移动通信系统结构的图。移动通信系统1由用户使用的移动通信终端2、基站控制装置3和基站4a、4b构成。基站控制装置3介于公众电话网等网络侧结构和基站4a、4b之间,用于中继它们的分组通信。
这样,系统1相对于网络侧就成为基站控制装置3管理多个基站4a、4b的结构。由此,在系统1中能够进行所谓的软切换,也就是对于终端2中的一个在多个基站4a、4b之间维持无线链路。
另外,在以W-CDMA(宽带码分多址)方式实现移动通信系统1的情况下,移动通信终端2称为UE(用户设备),基站控制装置3称为RNC(无线网络控制器),基站4a、4b称为节点B。
另外,特别是在高速上行分组通信中,对于某个终端,存在特定基站担当与数据通信相关的调度的情况。为了区别也将此时的基站称作服务小区。进一步,基站包含自身执行通信处理的特定范围作为整体被称作小区。在后面的描述中,也适宜使用这些用语。
图2是表示根据实施例1的移动通信系统的信道结构的图,作为例子,示出了W-CDMA系统基站4a、4b和终端2之间的无线区间的信道结构。
其中,该图仅仅是所示出的一个例子而已,并不限于此。另外,作为实际使用的信道,可以将多个控制信道复用到1个信道上。
首先,如果对从基站4a、4b到终端2的下行方向的信道进行描述,在小区的结构中,存在用于报告所有定时基准的CPICH(公共导频信道),用于向终端2报告除此以外的报告信息的作为用于BCH(广播信道)的物理信道的P-CCPCH(主要公共控制物理信道)。
另外,在下行方向的信道上,作为上行方向分组通信中的使用,存在通过调度器分配用于发送控制信息并通知位置的DL-SACCH(下行调度分配控制信道)、用于通知基站4a、4b接收成功/失败的DL-ACK/NACK-CCH(下行Ack/Nack控制信道)。进一步,作为下行方向的共用信道,存在FACH(前向接入信道)。
下面,如果对从终端2到基站4a、4b的上行方向的信道进行描述,作为上行方向分组通信中的使用,存在用于通知终端2有无发送数据的UL-SICCH(上行调度信息控制信道)、用于向基站4a、4b通知终端2选择的调制方式和编码速率等的UL-TFRI-CCH(上行TFRI控制信道)、用于在上行分组通信中传送用户数据的EUDTCH(增强上行专用传输信道)。另外,作为上行方向的公共信道,存在RACH(随机接入信道)。
进一步,作为在上下行两个方向的通信中设定的信道,具有为与特定终端通信而分别设定的DPCH(专用物理信道),并可以用于声音和数据等通信以及上层信令。DPCH还分为用于传送数据的DPDCH(专用物理数据信道)和用于传送与控制有关的比特的DPCCH(专用物理控制信道)。
图3A和图3B是用于说明根据实施例1的移动通信系统中终端和基站之间的无线多数据模式通信的通信模式的图。如图3A所示那样,在以自治模式进行的数据发送处理中,首先可以对从基站(节点B)4a、4b到终端(UE)2事先对容许的速率进行指定。此时,UE在该容许速率的范围内在任意时间将数据发送到节点B。如果从UE接收到数据,那么节点B就向UE发送应答信号(ACK/NACK)。
在自治模式中,没必要针对每个分组发送都必须指定事先容许的速率,就基本上完成数据发送及其应答的一次往返通信处理。
因此,自治模式具有信令的浪费较少并且由于想发送时UE可以自由发送数据而使得延迟变小的优点。
相反,作为自治模式的缺点,就是为了能够在任意时间进行发送,所以对于发送数据时产生的干扰量,必须将所需的噪声增加因子界限固定。
另一方面,在调度模式的数据发送处理中,如图3B所示那样,首先,将UE缓冲器状态等信息从UE发送到节点B。一旦接收到该信息,节点B就在多个UE之间执行上行分组的调度,并向应当识别数据发送的UE分配允许发送的时间(子帧)和发送速率。在UE中,根据其分配将分组发送给节点B,并从节点B获得应答信号。
调度模式的优点在于,由于没有来自调度器未分配的UE的数据发送,所以不需要特别地设定噪声增加因子界限。
另一方面,作为其缺点,其至少需要调度所需的由通信处理和数据本身的发送处理构成的两次往返通信处理,从而不可避免地要产生延迟。
另外,由于必须事先执行用于将UE发送数据的有无通知给节点B的调度,所以存在这样的情况,即,相对于信令次数,当发送数据量较少的时候,效率就变低。
在自治模式中,由于不需要来自基站的发送定时指定,所以终端可以自治地确定发送定时。与此相反,在调度模式中,基站向终端指定发送定时,根据该发送定时,终端进行数据发送。
另外,在调度模式中,还存在由基站指定数据速率的情况。例如,在自治模式中,虽然存在基站对终端指定了数据发送中的发送数据速率的情况,但是即使在调度模式中,也存在由基站向终端指定发送定时和发送数据速率并控制来自终端的数据发送的情况。
图4是描述根据实施例1作为移动通信终端的切换通信模式的基准的发送数据缓冲器的阈值的图。在此,移动通信终端2在发送数据积存在发送数据缓冲器的阈值以下的容量的情况下,以自治模式进行操作,如果积存了超过上述阈值容量的发送数据,那么就转换到调度模式进行操作。
如此,终端2就可以以与发送数据缓冲器内所积存的发送数据有关的阈值作为基准,在自治模式和调度模式之间进行切换。对于该阈值的确定在后面进行描述。
图5是表示根据实施例1相对于由去往基站的上行信号的各因素引起的干扰量(下面,称作噪声增加因子)的容许界限的图。一般来说,在CDMA系统中,对于所接收的编码信号,可以容许达到某一程度的干扰,但是当超过噪声增加因子界限的容许界限时,干扰量变为比信号还大的值,即使通过解扩展也不能正确解调上述信号。
因此,如何将理想干扰量控制在从0状态(噪声增加因子的底限)到可以解调接收信号的干扰容许界限量的范围内就成为保证容量(基站所接纳的终端数量)的重点。
如图所示,在基站一端的噪声增加因子中,由调度模式和自治模式发送引起的噪声增加因子,通过适当切换在上行分组通信中它们的发送模式,能够控制在调度模式用界限和自治模式用界限内。
另一方面,对于由调度模式和自治模式以外的因素引起的噪声增加因子,就不能控制在上行分组通信的容许界限内。
对于这种干扰因素,例如有,来自本小区内的终端的近似于所需信号功率的总和的本小区干扰,来自于其它基站所覆盖区域的终端的信号的干扰的其它小区干扰,和由基站内的接收机产生的热噪声等。
因此,为了有效使用用于上行分组通信的无线资源,需要知道如何通过控制调度模式用界限和自治模式用界限调整噪声增加因子的范围。
图6是表示在多个终端使用小区内的上行分组通信的情况下,对自治模式和调度模式分配基站的噪声增加因子界限(干扰的容许量)的例子的图。在图示例子中,示出了与后面图8情况相比,小区内所接纳的终端数更多的情况。
虽然在后面要进行详细描述,但是在根据实施例1的基站中,基站控制装置3可以将通过考虑延迟等QoS参数得到的一定范围的界限设定为图5所示的可控制的噪声增加因子界限。在该噪声增加因子界限中,在对自治模式引起的噪声增加因子取容许界限时,最好将小区内的每台终端的噪声增加因子界限设定的多一些。
此时,由于噪声增加因子界限全体被设定在一定范围内,所以如图6所示,仅仅很多地设定每一个终端的噪声增加因子界限,就必须削减相对于调度模式引起的噪声增加因子界限的容许界限(带斜线的部分)。
从而,在图6(a)所示的情况下,如果小区内以调度模式通信的终端数变多,那么就有可能将由此引起的噪声增加因子不能被控制在容许界限内。
相反,如果将相对于小区内的每台终端的上行分组通信的噪声增加因子界限设定的较小,那么如图6(b)所示那样,在基站中对由调度模式引起的噪声增加因子就能够保证容许界限更大(带斜线的部分)。
即,在小区内以调度模式通信的终端数较多的情况下,相对于由自治模式引起的噪声增加因子,需要尽可能地减小每台终端的容许界限。
在上行分组通信中,如果发送数据量一下子减少了,那么发送速率也会下降。此时,终端侧为了降低数据发送所需的发送功率,与基站接收信号相关的噪声增加因子也会减少。
从而,如图6(b)所示那样,对于由自治模式引起的噪声增加因子,为了尽可能减小每台终端的容许界限,最好减小由自治模式引起的噪声增加因子本身,即,最好通过自治模式以低数据速率进行通信那样来控制。
具体来说,在小区内所容纳的终端数较多的情况下,如图7所示那样,通过将各终端的发送数据缓冲器的通信模式切换判断的阈值设定的较低,如果超过了发送数据量较少的低数据速率的范围,那么就希望从自治模式切换到调度模式。
接着,如图8所示那样,考虑在小区内使用上行分组通信的终端较少的情况(图6中为7台,图8中为2台)。在此情况下,即使在基站中将每个终端的噪声增加因子界限设定的很大,如图8(a)所示那样,也能够充分确保相对于调度模式引起的噪声增加因子的容许界限(带斜线的部分)。
另外,如图8(b)所示,即使在基站中将每个终端的噪声增加因子界限设定的较小,相对于调度模式引起的噪声增加因子的容许界限与图8(a)的情况几乎也没有差别。
即,在小区所容纳的终端数较少的情况下,与图6的情况相比,仍然可以以自治模式执行高数据速率的通信。
具体来说,在小区可以容纳的终端数较少的情况下,如图9所示那样,通过将各终端的发送数据缓冲器的通信模式切换判定的阈值设定为高,并在自治模式中也允许高数据速率,从而也能够处理较多的数据量。
通过上面上述,根据终端和基站之间通信的业务量状况,例如小区内以调度模式工作的终端数及其工作状态,和以自治模式工作的调度器和工作状态,可以适当地变更终端内的发送数据缓冲器的上述阈值,并能够有望实现干扰较小的高质量通信。
另外,考虑到自治模式中具有传输延迟较小的通信特性,在分配噪声增加因子的容许界限内存在余量的情况下,在对延迟要求严格的终端中,希望尽可能以自治模式进行通信。
图10是表示图1中的基站内部结构的框图,并通过该图描述了基站的基本操作。其中,在图10中,为了防止叙述繁琐,对于后面叙述的各结构部分的名称以简化的名称来记载,相同的标号指代相同的结构部分。
首先,对一般CDMA调制解调中共有的处理进行描述。
如果描述发送操作,基站4a、4b内的调制单元5对各信道(P-CCPCH、下行DPDCH、FACH、CPICH、DL-SACCH、DL-ACK/NACK-CCH、下行DPCCH等)的信号倍乘在下行信道化代码发生器6中产生的信道化代码之后,对这些信号进行复用。
接着,调制单元5通过对复用过的各信道的信号倍乘下行扰码发生器7中产生的扰码进行扩频处理。
作为在调制单元5中复用的各个信道信号的基带信号被输出到频率变换单元8。频率变换单元8将上述基带信号变换到载波频率,并输出到功率放大单元9。在功率放大单元9中,将频率变换单元8输入的信号在内部功率放大器中增大到希望的功率。在功率放大单元9中所放大的信号通过天线10发射到终端2侧。
其中,导频信号发生器27如果从定时管理单元26得到作为基准的时钟信号,终端2就将用作解调处理基准的导频信号设定在CPICH中,并在整个小区内进行发送。
接着,如果对接收操作进行描述,从天线10接收的微弱信号被输入到低噪放大单元11。该低噪放大单元11通过将该信号放大并输出到频率变换单元12。在频率变换单元12中,将从低噪放大单元11输入的信号变换到上述基带信号的频率。
解扩展器15通过对频率变换单元12频率变换的基带信号倍乘扰码发生器13中产生的扰码进行解扩展处理,并取出各个终端的信号分量。解调单元30通过上行信道化代码发生器14中产生的信道化代码从解扩展器15输入的解扩展后的信号中分离处各个信道的信号。
接着,描述获得信号和干扰的功率的操作。
首先,期望电波功率测定单元16通过来自解扩展器15的上行DPCCH的导频信号获得期望电波的功率。另一方面,低噪放大单元11通过天线10得到期望电波和噪声混在一起的全部接收功率。
在干扰电波功率测定单元17中,通过从经由低噪放大单元11、频率变换单元12和解扩展器15输入的上述所有接收功率中减去期望电波功率测定单元16得到的期望电波的功率,获得作为噪声分量的干扰电波功率。
接着,期望电波和干扰电波的功率被分别从测定单元16、17发送到上行分组发送管理单元24上。如此,上行分组发送管理单元24分别获得来自本小区内的各终端的期望信号的功率。
另外,上行分组发送管理单元(通信管理单元)24从基站控制装置3获得与该上行分组通信有关的本小区干扰,其它小区干扰及由于热噪声的干扰分量(噪声增加因子)。
在此,本小区干扰分量以外的(其它小区的干扰和热噪声)的干扰因为代码不明而不能分离出噪声和信号。因此,上行分组发送管理单元24从基站控制装置3获得由其它小区干扰和热噪声等噪声混在一起作为干扰分量功率的本小区干扰分量以外的干扰分量。上述干扰分量虽然不能区别是其它小区的干扰还是热噪声,但是对于干扰量的控制处理没有特别需要进行区别。
接着,上行分组发送管理单元24从基于拥塞界限一定范围的容许界限得到其它小区的干扰,并通过对由其它小区干扰和热噪声等混合噪声的干扰分量进行容许界限补偿得到上行分组通信可以控制的噪声增加因子界限。
拥塞界限是表示可容许的最大容纳能力(终端数)的指标,其定义为有害分量功率J与信号功率S的比J/S。小区内的容纳能力(终端数)可以根据上述拥塞界限求得。
此外,上述容纳能力表示除了与某基站在此时作为通信对象的终端之外,还表示在该基站小区内是否还能容纳多少终端。
上述拥塞界限可以由后面叙述的基站控制装置3内的无线资源管理单元例如根据下面的关系式来计算。
首先,假设基站的接收信号功率为S(W)、通信数据的传送速度为R(bit/s),那么每比特信号的功率Eb可以用下面等式(1)来表示。
Eb=S/R…(1)在此,S是基站所接收的来自移动终端2的信号的功率,并假定为可以通过基于CDMA的TPC命令进行的高速功率控制功能(内环)在基站中以均衡电平进行接收。另外,在W-CDMA中,S可以通过导频信号的强度得到,R可以通过TFCI等的指示得到。
下面,来自本小区内的其它终端的干扰分量的功率Io(W)例如可以下面的等式(2)进行表示。
Io=Σi=1N-1SiRi=(N-1)SR---(2)]]>不过,N(个)是本小区内的最大终端数,可以认为是本终端以外的终端。Si是基站接收的来自从第1个到第(N-1)个终端2的信号功率,下标i是从1到(N-1)的正整数。另外,Ri是通过第1到第(N-1)个终端2的通信数据的传送速度(比特/秒)。
由此,Io可以表示为从最大终端数N减去1得到的终端数的各个信号功率的和。其中,在上述等式(2)中,各终端2的信号功率及传送速度分别假定等于S和R。
由于通过区别每个频带范围的噪声进行操作不方便,所以来自其它小区干扰和热噪声的干扰分量可以如上面那样不进行区别,可以作为换算成每1Hz的噪声能量的平均噪声功率谱密度No(W)进行操作。
如果扩频信号的频谱带宽为W(Hz),窄带有害噪声的功率为J(W),那么由本小区干扰、其它小区干扰和热噪声引起的噪声增加因子(干扰量)(No+Io)可以用下式表示。
No+Io=J/W…(3)在此,SIR(信号干扰比)可以根据每比特信号的能量Eb与由热噪声和其它小区干扰以及本小区干扰产生的噪声增加因子的和的比Eb/(No+Io)来求得。
SIR可以如下面那样使用上述等式(1)和等式(3)来表示为等式(4)。
Eb/(No+Io)=S·W/(J·R)…(4)通过对上述等式(4)进行变形,如果要计算在CDMA中可解调的界限的拥塞界限(拥塞界限)J/S,那么就成为下面的等式(5)。
J/S=(W/R)/{Eb/(No+Io)}…(5)在基站控制装置3中,通过考虑自己所管理的目标基站以外的其它小区的工作状态和目标基站小区的业务量状况,延迟等QoS参数,计算将相对于干扰的界限进一步保持在上述拥塞界限的一定范围的容许界限(考虑其它小区的工作状态和目标基站小区的业务量状况,减去延迟等QoS参数根据拥塞界限对干扰的界限的界限),并通知给目标基站。
在目标基站中,通过在由基站控制装置3通知的上述容许界限的范围内进行通信模式切换执行噪声增加因子控制。
如此,根据本站以外的其它小区的工作状态,基站会接受本身通信的影响,从而即使进行上述控制,也能够防止接收信号的干扰量超过可解调界限的拥塞界限。后面对此进行详细描述。
目标基站的上行分组发送管理单元24使用根据上述一定范围的容许界限减去由热噪声和其它小区干扰以及本小区的干扰引起的噪声增加因子的容许界限(图5所示的非控制界限)所剩余的界限作为图5所示可以控制的噪声增加因子界限。
另外,如果规定来自本小区内所以终端的信号功率为S,并假设有害功率J(W)是由目标终端以外的其它终端的干扰引起的,那么有关功率J可以如下式(6)那样来表示。
J=(N-1)S…(6)根据上述等式(5)和等式(6)可以导出下面等式(7)。
(N-1)=(W/R)/{Eb/(No+Io)}…(7)在上述等式(7)中,(N-1)相当于除了目标终端以外的本小区内可容纳的最大终端数。在此,如果通信数据的传送速度增加,那么根据等式(5)的拥塞界限就会减小,并且根据等式(7)的本小区内的终端的容纳量也变少。
另外,在目标终端与基站间的SIR增加的情况下,例如,为了确保所需要的BER(比特误码率),即使在基站以更强的发送功率要求目标终端的情况下,根据上述等式(5),拥塞界限也会减小。
返回到基站操作的描述,信道质量测定单元18使用由期望电波功率测定单元16和干扰电波功率测定单元17分别输入的期望电波和干扰波功率,和由基站控制器3获得的本小区的干扰、其它小区干扰和热噪声引起的干扰分量的功率,计算信号干扰比(SIR),并输出到质量目标比较单元19。
在W-CDMA方式中,基于目标SIR值执行称作外环的终端发送功率控制。该目标SIR值可以在质量目标比较单元19中预先设定。
基站内的编码单元22通过CRC(循环冗余校验)误差对目标终端之间的通信计数块误码率(BLER),如果不满足所需的BLER,那么就执行提高质量目标比较单元19的目标SIR值的变更设定。这称作外环功率控制。
另一方面,质量目标比较单元19比较信道质量测定单元18计算的信号干扰比(SIR)和目标信号干扰比(目标SIR值),并将比较结果通知给TPC生成单元20。
在TPC生成单元20中,在根据上述比较结果判断接收信号的期望信号功率比目标信号更弱的情况下,在下行DPCCH上设定用于提高称作内环的TPC(传输功率命令)的发送功率的指示,并输出到调制单元5。
来自TPC产生单元20的下行DPCCH信号如上面那样,被通过调制单元5、频率变换单元8、功率放大单元9和天线10发送给终端2。
相反,如果根据质量目标比较单元19的比较结果判断期望信号的功率比目标信号更强,那么TPC生成单元20就在下行DPCCH上设定用于降低发送功率的指示作为TPC输出到调制单元5。以后的处理相同。这种功率控制称作内环功率控制。
在CDMA系统中,某一信号的强度被增强肯定会对其它信号产生干扰。因此,收发信号必须执行上述处理并且要以满足足够的信号功率进行控制。
下面,对上行分组通信中所需的结构进行描述。
首先,对自治模式的操作进行描述。
在自治模式操作中,基站4a、4b事先使用DL-SACCH或相同的下行信令信道向终端2发送容许发送界限。发送容许界限是用来规定在基站中解调终端2以自治模式上行分组传送的信号所需通信条件的信息。例如,所容许的最大数据速率等。
此后,如果从终端2接收到信号,那么根据上述接收侧的操作,解调单元30从所接收的信号中分离出各信道的信号。
TFRI接收单元21在解调单元30分离的各信道信号中接收用于设定包含终端2选择的调制参数和传输格式的TFRI(传输格式资源指示器)的UL-TFRI-CCH的信号。
TFRI接收单元21从UL-TFRI-CCH信号中取出EUDTCH的解调参数,并在解调单元30和解码单元22中进行设定。解调单元30使用EUDTCH解调参数解调EUDTCH中来自终端2的数据本身,并输出到解码单元22。在解码单元22中,使用EUDTCH解调参数解调EUDTCH中来自终端2的数据本身。
应答信号产生单元23使用解码单元22的解调结果判断在基站4a、4b侧是否能够正确接收终端2发送的分组数据。
在此,在能够正确接收的情况下,应答信号产生单元23通过产生用于通知接收成功的ACK并设定在DL-ACK/NACK-CCH中,通过上述发送操作通知给终端2。与此相反,在来自终端2的数据中存在差错的情况下,应答信号产生单元23通过产生用于通知接收失败的NACK,同样通知给终端2。
接着,对调度模式的操作进行描述。
在调度模式的操作中,发送缓冲器量接收单元31从解调单元30接收UL-SICH信号,并在调度模式终端2中取得与发送数据相关的信息,然后通知到上行分组发送管理单元24。
上行分组发送管理单元24中,从定时管理单元26获得子帧的定时,并通过综合判断本小区内的各终端的发送数据缓冲器中保留的数据量和终端的发送功率界限等确定分组的发送定时。
上行分组发送管理单元24确定的分组的发送定时被通知给发送速率/定时指定信息发送单元25。在发送速率/定时指定信息发送单元25中,在DL-SACCH中设定允许发送的子帧和发送速率,并根据该发送操作发送给上述终端2。
此后,如果从上述终端2接收到信号,那么就根据上述接收侧的操作,解调单元30从接收信号分离出各个信道的信号。
TFRI接收单元21从解调单元30分离的各信道信号中接收由上述终端2设定的与指示容许发送的子帧的TFRI的UL-TFRI-CCH的信号。
接着,TFRI接收单元21从UL-TFRI-CCH信号中取出EUDTCH解调参数,并在解调单元30和解码单元22中设定。解调单元30使用EUDTCH解调参数解调与EUDTCH有关的来自终端2的数据本身,并输出到解码单元22。在解码单元22中,使用EUDTCH解调参数解调与EUDTCH有关的来自终端2的数据本身。
在基站能够正确接收上述终端2发送的分组的情况下,应答信号产生单元23如上上述那样产生ACK,在误码的情况下产生NACK,并通过在DL-ACK/NACK-CCH中对此进行设定来通知终端2。
接着,对执行用于变更与发送数据缓冲器通信模式切换相关的阈值的信令的结构进行描述。
首先,在对本小区内的终端2一起通知(信令)上述阈值变更的情况下,通过基站内的上行分组发送管理单元24考虑本小区内的业务量状况判断该变更,并将其旨意通知给基站控制装置3。
在基站控制装置3中,通过考虑进行通知时基站以外的其它基站的工作状态生成与上述阈值相关的信息(怎样变更阈值等的信息),并插入到报告信息中,发送给该基站。
在基站内的报告信息发送单元28中,从基站控制装置3接收一整套插入了与上述调度有关的信息的报告信息,并通过在P-CCPCH(BCH)中设定该报告信息,根据上述发送操作发送给终端2。其中,上述报告信息也可以在其它信道中设定。
在各个终端2指定上述阈值的情况下,小区内容纳该终端2的基站内的上行分组发送管理单元24通过考虑与终端2的通信相关的业务量状况判断该变更,并将其旨意通知给基站控制装置3。
在基站控制装置3中,通过考虑发出通知的基站以外的其它基站的工作状况,生成与上述阈值相关的信息(怎样变更阈值等的信息),并在个别信道上设定作为消息发送给该基站。
在基站内的下行信道发送单元29中,如果从各自的信道上得到与上述阈值有关的消息,那么就在下行DPDCH(DPCH)上设定该消息,并根据上述发送操作发送给应当变更阈值的终端2。在存在与此相反的应答消息的情况下,由上行各自的信道接收单元32接收。
另外,在与终端2的通信中释放个别信道的情况下,可以在公共信道上设定与上述阈值有关的信息。
在基站控制装置3中,如果根据无线资源管理信息判断各自的信道被释放,那么就在公共信道上设定与上述阈值有关的信息作为消息发送给基站。
基站内的下行公共信道发送单元34如果从公共信道得到与上述阈值相关的消息,那么就在FACH上设定该消息,并根据上述发送操作发送给应当变更阈值的终端2。在存在与此相反的应答消息的情况下,由上行公共信道接收单元33进行接收。
其中,在上述说明中,虽然以在基站侧判断上述阈值变更的结构进行了描述,但是也可以是在基站侧确定在终端2中设定的发送模式本身的结构。
该情况下,在用于上述阈值变更的信令操作中,没有与阈值相关的信息,所以需要将用于指定在终端2中应当设定的发送模式的信息发送给终端2。对于该处理的详细描述在后面进行描述。
图11是表示图1移动通信终端内部结构的框图,并通过该图对移动通信终端的基本操作进行描述。其中,在图11中,为了防止表述的繁琐,对于后述的各个构成单元的名称,以简化的名称进行记载,同时相同的标号指代相同的结构单元。
首先,对一般CDMA调制解调中公共的处理进行描述。
对发送操作进行描述,调制单元35对各信道(UL-SICCH、UL-TFRI-CCH、FACH、上行DPCH等)的信号倍乘上行信道化代码产生器36中产生的信道化代码之后,复用这些信号。接着,调制单元35对复用各信道信号的的信号倍乘由上行扰码产生器37产生的扰码进行扩频处理。
作为由调制单元5复用的各信道的信号的基带信号被输出到频率变换单元38。频率变换单元38将上述基带信号变换到传送频率,并输出到功率放大单元39。
在功率放大单元39中,从在内部功率放大器中将从频率变换单元38输入的信号放大到所需的功率。在功率放大单元39中放大的信号被通过天线40发送到基站4a、4b侧。
接着,对接收操作进行描述,通过天线40接收的微弱信号被输入到低噪放大器41。该低噪放大器41对该信号进行放大,并输出到频率变换单元42。在频率变换单元42中,将从低噪放大器41输入的信号变换到上述基带信号的频率。
解扩展解调单元46对频率变换单元42频率变换的基带信号倍乘下行扰码发生器45产生的扰码,执行解扩展处理,并通过下面信道化代码发生器44产生的信道化代码分离各信道的信号。
此后,解扩展解调器46将从基站接收的信号中的TPC命令输出到功率控制单元43。功率控制单元43根据上述TPC命令指示功率放大单元39提高或降低发送功率,并根据该指示通过功率放大单元39设定发送功率。
另外,解扩展解调单元46分离的各信道信号中的CPICH信号被公共导频信号接收单元47接收。
在公共导频信号接收单元47中,通过同步到与基站之间的解调相关的定时,作为定时信号供给定时管理单元48。在定时管理单元48中,从公共导频信号接收单元47供给的定时信号被分配给移动通信终端2内的各个处理单元,并执行与基站同步的处理。
下面,对上行分组通信所需的结构进行描述。
首先,描述自治模式的操作。
在自治模式操作中,移动通信终端2内的发送许可信息接收单元49事先使用DL-SACCH或相同的下行信令的信道从基站接收发送许可界限。该发送许可界限被从发送许可信息接收单元49通知给上行分组发送管理单元51。其中,自治模式的发送定时是任意的。
此后,如果用户设定从移动通信终端2发送到基站的数据,那么该数据就被存储在上行分组通信的发送数据缓冲器58中。
在自治模式中,为了重新开始发送,上行分组发送管理单元(通信管理单元)51通过考虑上述发送许可界限指定平衡发送数据量的TFRI,并通知给TFRI发送处理单元53。
TFRI发送处理单元53通过在UL-TFRI-CCH中设定TFRI,根据上述的发送操作发送到基站。这样,该发送操作可以将噪声增加因子抑制在由基站指定的上述发送许可界限范围内来进行控制。
另外,EUDTCH发送处理单元52在将上行分组通信的发送数据缓冲器58中积存的数据变换成由上述TFRI特定的发送格式之后,通过在EUDTCH中设定该数据本身,根据前面上述的发送操作发送到基站。
在基站中,如果接收到来自移动通信终端2的上述分组数据,那么就在DL-ACK/NACK-CCH中设定与其对应的应答信号,并进行发送。移动通信终端2内的应答信号接收单元57根据前述的接收操作从所接收的上述DL-ACK/NACK-CCH中进行ACK/NACK的判断。
如果应答信号接收单元57判断为ACK,那么该判断结果就被通知给上行发送分组管理单元51。此后,上行发送分组管理单元51转移到将下面的分组数据发送给基站的处理。
另一方面,在判断为NACK的情况下,上行发送分组管理单元51转移到重新发送判断为NACK的分组数据的处理。在此,EUDTCH发送处理单元52根据上述重新发送的需要对具有增量冗余等冗长性的数据进行重新发送。
下面,对调度模式的操作进行描述。
在调度模式操作中,如果设定了用户从移动通信终端2发送给基站的数据,那么该发送数据就被积存在上行分组通信的发送数据缓冲器58中。
此后,从上行分组发送管理单元51接收到指示的缓冲器状态发送单元55将发送给基站的数据的数据量和终端2的发送功率等界限设定在UL-SICCH中,并根据前述的发送操作发送到基站。
基站如果接收到UL-SICCH信号,就通过考虑本小区所容纳的各终端2的发送数据缓冲器58的状态,确定对来自各终端2的信号干扰最小的适当定时。这样,基站通过以该定时在DL-SACCH中设定对各终端2的发送许可指示,能够根据前述发送操作进行发送。
移动通信终端2内的发送许可信息接收单元49接收在DL-SACCH中设定的基站许可的发送速率和子帧定时等信号。该信息被从发送许可信息接收单元49传送到定时管理单元48和上述分组发送管理单元51。
在上行分组发送管理单元51中,指定在发送数据量中均衡的TFRI,并通知给TFRI发送处理单元53。TFRI发送处理单元53通过在UL-TFRI-CCH中设定TFRI,根据前述发送操作发送到基站。
EUDTCH发送处理单元52读出积存在上行分组通信发送数据缓冲器58中的数据,并在以TFRI发送处理单元53发送的上述TFRI变换成特定的发送格式之后,通过将该数据本身设定在EUDTCH中,根据前述发送操作发送给基站。
在基站,如果接收到来自移动通信终端2的上述分组数据,那么就通过在DL-ACK/NACK-CCH中设定与其对应的应答信号来进行发送。移动通信终端2内的应答信号接收单元57根据前述的接收操作从所接收的上述DL-ACK/NACK-CCH进行ACK/NACK的判断。
如果应答信号接收单元57判断为ACK,该判断结果就被通知给上行发送分组管理单元51。此后,上行发送分组管理单元51转移到向基站发送下一分组数据的处理。
另一方面,在判断为NACK的情况下,上行发送分组管理单元51转移到对判断为NACK的分组数据进行重新发送的处理。
在此,EUDTCH发送处理单元52根据上述重新发送的需要对具有增量冗余等冗余性的数据进行重新发送。
接着,对用于变更发送模式的必要结构进行描述。
首先,上行分组发送管理单元51比较由阈值变更单元50提供的阈值和上行分组通信发送数据缓冲器58中滞留的数据量进行比较。
此时,如果滞留量比阈值多,那么上行分组发送管理单元51就将发送模式切换结束的情况通知给发送模式切换单元54。
在发送模式切换单元54的发送模式切换结束的情况下,缓冲器状态发送单元55将表示发送模式切换结束的信息设定在UL-SICCH中,并根据前述的发送操作发送给基站。
另外,TFRI发送处理单元53可以将代表发送模式切换结束的信息设定在UL-TFRU-CCH中并发送到基站。进一步,从发送模式切换单元54接收到表示发送模式切换的信息的协议处理单元56将该信息通知给各自的信道发送单元60。
这样,上行各信道发送单元60可以将表示发送模式切换的信息作为消息设定在DPCH中,并发送给基站。这样,移动通信终端2使用任何一个的信道向基站通知发送模式的切换。
接着,对用于变更与发送模式切换相关的阈值所需的结构的进行描述。
首先,在中基站通知一起变更终端2的阈值的情况下,在从基站到移动通信终端2的报告信息(BCH)中插入与阈值相关的信息。
移动通信终端2内的报告信息单元61根据前述接收操作从基站侧接收一整套报告信息并通知给协议处理单元56。在协议处理单元56,对报告信息的内容进行解释。
此时,协议处理单元56如果将上述报告信息解释为用于变更上行分组通信发送数据缓冲器58的上述阈值的指示,那么就通过该指示在阈值变更单元50中设定应当变更的阈值。
此后,阈值变更单元50将变更后的阈值通知给上行分组发送管理单元51。这样,在该移动通信终端2中,可以以变更后的阈值为基准进行切换发送模式。
下面,对在层3消息中切换上述阈值的情况进行描述。
在此情况下,作为使用的信道,可以考虑各自的信道和公共信道两种信道。
首先,对使用个别信道进行阈值变更的情况进行描述。
个别信道是在为每个终端指定阈值的情况使用的信道。
与由基站内的下行个别信道发送单元29发送的上述阈值相关的消息所设定的各个信道(下行DPCH)由终端2内的下行各个信道接收单元63接收,并通知给协议处理单元56。协议处理单元56对该个别信道的内容进行解释。
此时,协议处理单元56如果将上述个别信道中设定的消息解释为变更上述阈值的指示,那么就根据该消息在阈值变更单元50中设定应该变更的阈值。此后,阈值变更单元50将变更后的阈值通知给上行分组发送管理单元51。
进一步,上行个别信道发送单元60将用来表示发送模式切换的信息作为消息设定在上行DPCH中,并发送到基站。
通过使用公共信道,对切换上述阈值的情况进行描述。
公共信道是在预先释放个别信道对每个终端2指定上述阈值的情况下使用的信道。特别是,在为了降低功耗暂时释放个别信道的情况,这种情况下可以使用公共信道。
在来自基站的公共信道(FACH)中设定的消息根据前述接收操作可以由下行公共信道接收单元62接收。此后,该消息被从下行公共信道接收单元62发送到协议处理单元56。在协议处理单元56中,对上述消息的内容进行解释。
此时,协议处理单元56如果将上述公共信道设定的消息解释为用于变更上述阈值的指示,那么就通过该消息在阈值变更单元50中设定应该变更的阈值。此后,阈值变更单元50将变更后的阈值通知给上行分组发送管理单元51。
进一步,上行公共信道发送单元59将表示发送模式变更的信息作为消息设定在RACH中。
接着,对使用物理层信令切换上述阈值的情况进行描述。所谓物理层信令,即在与用于设定移动通信终端2和基站之间的物理层通信条件的物理层信息相关的某个比特上分配与上述阈值相关的信息。该物理层信息例如可以设定在DL-SACCH中。
物理层信令可以在用于为每个终端2指定上述阈值的情况中使用,并可以根据上述情况进行高速指定。
发送许可信息接收单元49从基站获得与插入DL-SACCH中的物理层相关的信息指示,并通知给协议处理单元56。协议处理单元56对发送许可信息接收单元49接收的信息内容进行解释。
在协议处理单元56中,在将上述信息解释为变更上述阈值的指示的情况下,通过上述信息在阈值变更单元50中设定应该变更的阈值。此后,阈值变更单元50将通过上述信息变更后的阈值通知给上行分组发送管理单元51。
图12是表示图1中的基站控制装置的内部结构的框图,使用该图对基站控制装置3的基本操作进行描述。其中,图12中为了防止表述的繁琐,对后述的各个结构单元的名称以简化的名称进行记载,同时相同的标号指代相同的结构单元。
QoS参数映射单元64选择用来满足对移动通信终端2和基站4a、4b之间的通信指定的QoS(服务质量)(例如,容许的延迟等)的无线资源及与此关联的参数。在与该通信关联的参数中,例如有与RLC(无线链路控制)层相关的模式、与物理层相关的传输块大小数、CRC(循环冗余校验)比特数等。
拥塞控制单元65用于预防在移动通信终端2和基站之间的通信中产生拥塞,以及执行呼叫限制等。无线资源管理单元66管理与无线资源(例如,信道、功率、码等)有关的信息和测定数据,并根据移动通信终端2和基站之间通信时的需要将管理信息通知给各基站。上述拥塞界限可以通过该无线资源管理单元66计算出。
另外,无线资源管理单元(通信资源管理单元)66通过考虑延迟等QoS参数在基站中设定相对于上述拥塞界限具有富余的容许界限。在基站中,如果噪声增加因子处于该容许界限内,那么就执行指示切换本小区内的终端2的通信模式。
在现有移动通信系统中,如果噪声增加因子处于拥塞界限内,那么就预先根据基站控制自治确定基站和终端之间的通信条件,并根据由基站控制装置通知的通信条件控制基站和终端之间的通信。
但是,在该结构中,由于基站控制装置和基站之间存在通信延迟,所以还存在基站和终端间的通信质量受到限制的不可避免的问题。
因此,在本发明的移动通信系统中,基站控制装置应当考虑来自目标小区以外的工作状态和延迟等QoS参数的要求在基站中相对于拥塞界限设定还具有相对干扰的冗余的容许界限。
即,上述容许界限仅仅应该是考虑了除了目标小区以外的工作状态和延迟等的QoS参数的要求的干扰分量,并且比拥塞界限能够容许的干扰量范围更小。
从而,基站执行一部分用于确定噪声增加因子处于上述容许界限内时的通信条件的处理。例如,基站根据当前的通信状况等对与上述容许界限相关的各模式的噪声增加因子适当执行界限分配。
由此,基站可以不完全依赖于基站控制装置通知的通信条件,就能够根据终端之间的通信QoS迅速确定通信条件,从而可以根据随通信负荷的变化的噪声增加因子的变化有效进行数据通信。
核心网络协议处理器67处理与网络侧的通信有关的协议。无线网络协议处理单元68处理与基站侧的通信有关的协议。
下面,对实施例1的移动通信系统的操作进行描述。
如上上述那样,如果上次发送数据有积存,那么通过将与移动通信终端2内的发送数据缓冲器相关的通信模式切换阈值置为调度模式,可以在下次切换到自治模式。下面,对执行用于变更该阈值的信令的3种方法进行描述。
第1种方法是通过在报告信息中设定上述阈值变更信息对小区内的终端2一起通知变更的方法。另外,第2种方法是通过在个别信道或公共信道上设定上述阈值的变更信息分别通知终端2变更的方法。进一步,第3种方法是通过物理层信令通知各终端2上述阈值变更信息进行变更的方法。
首先,对第1种方法进行描述。
该方法能够根据当前小区内以调度模式进行操作的终端数、以自治模式进行操作的终端数、他们的工作状态和各个信道的工作状况变更阈值,并能够适当地调节本小区内的噪声增加因子的分配。
图13是表示在根据第1种方法实施例1的基站控制自治确定终端发送模式切换阈值时分配基站的噪声增加因子界限的例子的图。图14是用于描述根据图13所示噪声增加因子界限分配变更发送模式切换阈值的图。使用这些图对第1种方法的基本思想进行描述。
首先,作为变更发送模式切换阈值前的状态,假设小区内容纳了多个移动通信终端2。另外,在基站的噪声增加因子界限中,对由自治模式和调度模式引起的噪声增加因子的容许界限和对由个别信道等的发送引起的噪声增加因子的容许界限(图中个别信道的其它范围)可以如图13(a)所示那样进行分配。
在此,基站的上述噪声增加因子界限是应当基于其它小区的工作状态和QoS对上述拥塞界限进行考虑还具有相对于干扰的富余的容许界限。
另外,此时,移动终端2的发送数据缓冲器的上述阈值相对于缓冲器内的发送数据具有图14(a)所示的关系。
在个别信道内的数据发送可以假定为是一定量的数据发送。此时,由基站控制自治3通过确保所需的容许界限对个别信道的发送引起的噪声增加因子进行管理。
因此,如果通过终端2和基站之间的个别信道的数据发送频率增加,那么基站控制自治3就指示基站增加由个别信道进行数据发送所需的容许界限。
另外,通过个别信道进行的数据发送是以各个终端2来进行的。因此,如果个别信道的数据发送频率增加,那么在基站的噪声增加因子界限中,根据分配给各个终端2的容许界限就可以确保个别信道的容许界限。
由此,如图13(b)所示那样,基站噪声增加因子界限中对由自治模式引起的噪声增加因子分配的容许界限可以仅仅降低个别信道的容许界限增加的分量。此时,在终端数相同的情况下就能够减小每台终端的噪声增加因子界限。
在此情况下,对发送数据缓冲器来说,如果将发送模式切换阈值设定为图14(a)所示那样比较小的值,那么就可以执行超过自治模式容许界限的数据发送。
即,如果仍然是图14(a)所示那样的阈值,那么对于在基站中执行数据量较多的发送的终端2来说,就不容许该数据发送中的噪声增加因子。
因此,在图13(b)所示噪声增加因子界限的分配结构的情况下,如图14(b)所示那样,能够根据第1种方法的报告信息一起降低小区内容纳的终端2的发送数据缓冲器的阈值,并能够将执行数据量较多的数据发送的终端2从自治模式变更到调度模式。
此时,在执行数据量较少的数据发送的终端2中,如果发送数据量没有超过变更后的阈值,那么仍然维持在自治模式。
其中,如果每次降低太多阈值,则打破自治模式和调度模式的终端数的平衡,因此希望慢慢降低阈值。
图15是表示在根据实施例1的移动通信系统中以第1种方法实施发送数据阈值变更的情况下的变更顺序的图。基站测定当前基站端的噪声增加因子(步骤ST1)。具体来说,如使用图10所示那样,通过基站内的所需电波测定单元16和干扰电波功率测定单元17测定当前基站端的噪声增加因子(干扰量)。
此后,基站将在步骤ST1中测定的噪声增加因子通知给基站控制装置3(步骤ST2)。进一步,基站将本小区内以自治模式和调度模式工作的终端数分别通知给基站控制装置3(步骤ST3)。
接着,基站控制装置3内的无线资源管理单元66获得目标基站周围基站(以下,称为周围基站)的工作状况(例如,也包含周围基站小区内的容纳终端数)(步骤ST4)。
在周围基站的多个终端2处于工作状态的情况下,终端2可能移动到执行切换的区域。此时,基站控制装置3内的无线资源管理单元66作为通知给基站的容许界限,在拥塞界限中还可以具有考虑了由切换引起的噪声增加因子。
接着,无线资源管理单元66获得该基站的个别信道的工作状况(步骤ST5)。通常,由于个别信道可以在软切换时用于从基站到终端2进行数据发送,所以基站控制装置3需要知道其工作状况。
无线资源管理单元66对从步骤ST1到步骤ST5获得的当前噪声增加因子判断基站噪声增加因子界限是否存在富余的情况和相反地该界限是否存在不足(步骤ST6),根据该判断结果,无线资源管理单元66转移到变更自治模式和调度模式的噪声增加因子的处理。
在此,所谓噪声增加因子界限被作为由基站控制装置3向基站指定的上述容许界限进行分配,指定在各种模式下分配的噪声增加因子界限的分配量。图13中,例如作为调度模式用界限带斜线的部分表示对于调度模式的噪声增加因子界限。
对于当前噪声增加因子,如果无线资源管理单元66预先产生过小的基站噪声增加因子界限,并判断需要在基站分配的噪声界限中进行变更,那么就指示基站变更自治模式和/或调度模式的噪声增加因子界限(步骤ST7)。
另一方面,对于当前噪声增加因子,如果无线资源管理单元66不是预先产生过小基站的噪声增加因子界限,并且判断不需要进行噪声增加因子界限的变更,那么就不指示变更上述噪声增加因子界限。
基站如果从基站控制装置3接收到噪声增加因子界限的变更指示,那么就根据该指示变更噪声增加因子界限(步骤ST18)。例如,如使用图13进行描述的那样,在使用个别信道进行数据发送的频率增加的情况下,基站控制装置3可以在基站的噪声增加因子界限中增加个别信道的噪声增加因子界限,并指示仅针对所增加量削减自治模式使用的噪声增加因子界限。
接着,如果存在来自基站的用于指示应该变更终端2的发送模式切换阈值的通知,那么无线资源管理单元66就通过考虑现在的业务量、该基站的噪声增加因子及其容许界限,判断是否应当因为该基站和终端2之间的通信中的适当干扰量而将上述阈值变更某一值(步骤ST9)。
此后,无线资源管理单元66将与包含上述判断结果阈值的上述阈值的变更相关的信息报告指示给上述基站(步骤ST10)。
从基站控制装置3接收到与上述阈值变更相关的信息的基站将包含上述阈值的信息设定在报告信息(BCH)中,并对各终端2一起进行发送(步骤ST11)。
接收到该报告信息的终端2执行与图11所描述的操作相同的操作,并通过从报告信息中读出发送模式切换阈值来变更上述阈值(步骤ST12)。
使用图16所示流程图,对实施例1的移动通信系统的图15中的步骤ST9的操作进行详细描述。
首先,基站内的上行分组发送管理单元24通过比较由本小区内的终端2报告的发送数据缓冲器的数据量和在上述终端2中设定的上述阈值,判断是否应当变更上述阈值。这样,如果判断应当变更上述阈值,那么基站就可以根据前述的发送操作将该指示通知给基站控制装置3。
在步骤ST1a中,从基站接收到指示应当变更阈值的基站控制装置3内的无线资源管理单元66基于该基站的个别信道的工作状况估算由个别信道的数据发送引起的噪声增加因子。
接着,无线资源管理单元66根据上述基站以外的其它基站的当前工作状态估算相对噪声增加因子的容许界限(步骤ST2a)。例如,在周围基站的终端数较多的情况下,终端2可能在执行切换的区域内移动。此情况下,无线资源管理单元66估算考虑由切换引起的噪声增加因子的界限。
这样,如果求得考虑了周围基站的工作状态的界限(例如,考虑周围基站的终端数较多情况下的界限等等),那么无线资源管理单元66就对在基站中设定的相对于噪声增加因子的容许界限进一步设定该界限。
即,将从上述容许界限中减去考虑周围基站的工作状态的界限而得到的界限,作为在基站中应当设定的新的容许界限。
接着,无线资源管理单元66得到上述基站小区内的调度模式的噪声增加因子及其终端数(步骤ST3a)。此后,无线资源管理单元66分别对在步骤ST1a中求得的由个别信道的数据发送引起的噪声增加因子和在步骤ST3a中求得的上述基站小区内的调度模式的噪声增加因子估算容许界限。
在步骤ST4a中,无线资源管理单元66通过从在步骤ST2a中根据周围基站的工作状态估计的上述基站的容许阈值全体中减去对个别信道的界限以及对调度模式的界限,求得相对上述基站的自治模式的噪声增加因子的容许界限(噪声增加因子界限)。
接着,无线资源管理单元66判断相对于在步骤ST4a中求得的上述基站自治模式的噪声增加因子界限上述基站小区内自治模式工作的终端数是否适当(步骤ST5a)。
基站被告知来自本小区内的各终端2的发送数据缓冲器的发送数据量。进一步,基站控制装置3接收来自基站的上述发送数据量通知。基站控制装置3内的无线资源管理单元66预先对由基站通知的终端2的发送数据量计算规定周期内的平均值。
另外,如果相对于终端2发送数据量的平均值存在一点基站自治模式噪声增加因子界限,那么无线资源管理单元66就可以预先统计求得执行由于超过相对该基站的噪声增加因子界限而不能解调的数据发送的终端数相对所有终端数的百分比,等。
在此,例如,将自治模式终端数过多的状态作为由于超过自治模式噪声增加因子界限而不能解调的数据发送的终端数相对所有终端数超过规定比例的情况,与此相反,将自治模式终端数过少的状态作为低于规定比例的情况,将除此以外的情况定义威自治模式终端数适当的状态。
在步骤ST5a中,无线资源管理单元66调查相对于上述平均值当前基站自治模式的噪声增加因子界限有多少,并基于该结果判断自治模式终端数是否适当。
在步骤ST5a中,如果判断自治模式终端数过多,那么无线资源管理单元66就下调当前终端2所设定的切换阈值(步骤ST6a)。分配给自治模式终端2的噪声增加因子界限可以根据基站自治模式噪声增加因子界限内的终端数来进行分配。
因此,如果自治模式终端数较多,那么由于基站自治模式的噪声增加因子界限是一定的,所以分配给自治模式各终端2的噪声增加因子界限会减小。
因此,如果分配给各终端2的噪声增加因子界限减小,那么如果以平衡发送数据量的数据速率进行发送,那么终端2就会发生超出可解调范围的噪声增加因子的情况。将这种超过可解调范围容许界限所赋予的终端数的状态规定为小区内的自治模式终端数较多的状态。
如果在步骤ST6a中阈值被降低,那么无线资源管理单元66就转移到图15步骤ST10的处理,并将变更后的阈值作为与阈值变更有关的信息报告指示给上述基站。
另外,如果在步骤ST5a中判定自治模式的终端数适当,那么无线资源管理单元66就维持在当前切换阈值(步骤ST7a)。该阈值在图15步骤ST10中作为与阈值变更相关的信息报告指示为基站。
如果在步骤ST5a中判定自治模式终端数过少,那么无线资源管理单元66就上调当前终端2中设定的切换阈值(步骤ST8a)。这里,所谓自治模式终端数过少的状态,是即使以平衡发送数据量的数据速率进行发送,相对于在各终端2中所分配的噪声增加因子界限,也要产生所需以上的富余的状态。
在这种情况下,如果由于上调阈值而使得小区内自治模式终端数增加,那么能够有效使用分配给各个终端2的噪声增加因子界限。
如此,如果在步骤ST8a中阈值被增加,那么无线资源管理单元66就转移到图15的步骤ST10的处理,并将变更后的阈值作为与阈值变更相关的信息报告指示给基站。
其中,在步骤ST6a和步骤ST8a中,如果每次执行阈值上下调整的幅度过大,那么有可能过多的终端2会切换到发送模式。
因此,考虑了小区内自治模式的终端数,需要将每次执行阈值上下调整的幅度抑制在一定的值,并希望上述阈值可以慢慢变化。
如上上述那样,在第1种方法中,在小区内可以一起通知发送模式切换阈值变更。从而,能够减少用于通知上述阈值变更的信令的发生次数。
在使用上述报告信息的信令中,存在不能针对每个终端2进行设定的缺点。因此,对于小区内的终端2,例如通过进行基于QoS级别的分组,可以针对每组来设定上述阈值。
对具体的分组方法进行描述。
在W-CDMA方式中,规定了4种QoS级别(会话级、流级别、中断级、背景级别)。例如,基于对这种QoS级别的通信延迟的容许量将小区内的终端2分为下面所示的3个组。
第1组属于会话级别和流级别,是使用处理最不容许延迟的声音和视频等数据的通信业务的组。
第2组属于中断级别,是使用容许一定程度延迟的通信业务的组。例如,可以用于处理通过WWW(万维网)等提供的静态图像和文本文件。在发送这些数据的情况下,虽然允许一定程度的通信延迟,但是如果仅仅因为不是完全容许而带来延迟也会给用户带来不舒适感。
第3组属于背景级别,是使用容许延迟的通信业务的组。例如,使用容许在与通信有关的调度中所需的延迟的FTP(文件传输协议)的数据传送等。
小区内各终端2的分组可以由掌握与基站通信的QoS级别的基站控制装置3内的QoS参数映射单元64来执行。另外,该分组结果也可以保存在QoS参数映射单元64中。
下面,对如上上述那样进行分组的终端2的阈值变更处理进行描述。
从基站接收到指示应当变更阈值的通知的基站控制装置3内的无线资源管理单元66基于在QoS参数映射单元64内保存的分组结果判断应当变更上述阈值的终端2属于哪个组。
无线资源管理单元66基于分组的判断结果确定上下调整每组的阈值的幅度。例如,对于最不容许延迟的第1组的终端2,可以设定最大的阈值来进行控制。另外,对于容许延迟的第3组的终端2,可以设定最小的阈值来进行控制。
由此,例如,在最不容许延迟的第1组中,可以如以最不产生延迟的自治模式那样进行模式切换。
另外,在第1组中,在由于自治模式终端数增加而调度模式的噪声增加因子界限不足的情况下,可以通过慢慢下调阈值将发送数据量较多的终端2切换到调度模式来进行控制。
另外,对于容许延迟的第2组和第3组,因为可以通切换到调度模式,所以与第1组相比,可以设定较低的阈值。
但是,由于小区内属于第1组的终端数较少,所以在基站容许界限具有富余的情况下,为了有效利用该容许界限,可以通过上调在第2组和第3组中设定的阈值来进行控制。
进一步,在小区内终端2几乎都属于第1组的情况下,可以基于表示终端2的处理数据的延迟容许程度进一步执行细分组。
下面,对第二种方法进行描述。
在该方法中,能够在个别信道和公共信道等的层3消息中设定发送数据切换阈值变更信息,并能够切换到最适合各个终端的发送模式。
图17是表示实施例1基站控制装置在确定终端发送模式切换阈值时以第2种方法分配基站噪声增加因子界限的例子的图。图18是用来描述根据图17所示噪声增加因子界限的分配变更发送模式切换阈值的图。使用这些图对第2方法的基本方面进行描述。
首先,将发送模式切换阈值作为变更前的状态,并假设小区内容纳了多个移动通信终端2。另外,在基站噪声增加因子界限中,假设由自治模式和调度模式引起的噪声增加因子的容许界限以及由个别信道发送引起的噪声增加因子的容许界限(图中个别信道的其它区域)可以如图17(a)所示那样进行分配。
在此,基站的上述噪声增加因子界限是在上述拥塞阈值中进一步具有对应当根据其它小区的工作状态和QoS考虑的富余的容许阈值。
此时,移动通信终端2的发送数据缓冲器的上述阈值相对于缓冲器内的发送数据具有图18(a)所示的关系。
个别信道的数据发送被假定为是一定量数据的发送。此时,为了确保由个别信道的发送所引起的噪声增加因子所需的容许界限,可以由基站控制装置3进行管理。
因此,如果终端2和基站之间的个别信道的数据发送频率增加,基站控制装置3就指示基站增加通过个别信道进行数据发送所需的容许界限。
另外,个别信道的数据发送是针对每个终端2来进行的。因此,如果个别信道的数据发送频率增加,那么在基站的噪声增加因子界限中,就需要根据为各个终端2所分配的容许界限确保容许各个信道所容许的界限。
这样,如图17(b)所示那样,在基站的噪声增加因子界限中,对由自治模式引起的噪声增加因子的容许界限,可以通过分别增加个别信道的容许界限来进行减少。
另外,在此情况下,对于发送数据缓冲器,仍然可以设定图18(a)所示发送模式切换阈值,并且可以进行超过自治模式的容许界限的数据发送。
即,仍然是图18(a)所示那样的阈值,对于向基站执行数据量较多发送的终端2,不容许该数据发送中的噪声增加因子。
因此,如图18(b)和图18(c)所示那样,需要下调切换阈值。但是,党下调切换阈值时,应当考虑针对每个终端2的通信质量的要求。例如,根据各个终端2所处理数据的性质的不同,是否允许延迟也不同。
在W-CDMA方式的通信业务QoS级别分类中,处理声音等数据的会话型级别和处理动画等数据的流级别,为了防止延迟对用户产生不自然的感觉,要求具有实时性。因此,在这些QoS级别中需要尽可能减少延迟。
另一方面,在处理Web数据等的交互型级别和以FTP等进行数据传输的背景级别中,虽然要求发送数据的准确性,但是延迟不会被用户感觉到。因此,这些数据发送以尽最大能力进行处理,存在延迟的问题是很小的。
因此,通过使用第2种方法对各个终端2进行阈值变更,对于处理不容许延迟的数据的终端2,如图18(b)所示那样,减小了下调发送数据缓冲器阈值的幅度,并而不是仅仅下调上行阈值。
与此相反,对于处理允许延迟的数据的终端2,如图18(c)所示那样,通过增大下调发送数据缓冲器的阈值的幅度,可以使阈值比图18(b)的情况更低。
如此,处理不容许延迟数据的终端2维持在具有很难产生延迟通信特性的自治模式,并仅仅将处理容许延迟数据的终端2从自治模式引导入调度模式。
此时,如图17(b)所示那样,在基站自治模式的容许界限中,将处理不容许延迟数据的终端2的容许界限(分给不容许延迟的终端1的噪声界限)的富余减小,将处理容许延迟数据的终端2的容许界限(分配给容许延迟终端1的噪声界限)的富余增大。
另外,由于如果一次降低阈值过多会导致自治模式和调度模式终端总数剧增,所以希望慢慢下调阈值。
图19是表示实施例1的移动通信系统以第2方法实施发送数据缓冲器阈值变更情况下的变更顺序的图。基站测定当前基站的噪声增加因子(步骤ST1b)。具体来说,如使用图10所示那样,可以通过基站内的所需电波功率测定单元16和干扰电波功率测定单元17测定当前基站的噪声增加因子(干扰量)。
此后,基站将在步骤ST1b中测定的噪声增加因子通知给基站控制装置3(步骤ST2b)。进一步,基站分别将以本小区内的自治模式和调度模式进行工作的终端数通知给基站控制装置3(步骤ST3b)。
接着,基站控制装置3内的无线资源管理单元66获得周围基站的工作状况(例如,还包括周围基站小区内所容纳的终端数等)(步骤ST4b)。
在周围基站的多个终端2处于工作的情况下,存在终端2在执行切换的区域内移动的可能性。在此情况下,基站控制装置3内的无线资源管理单元66在作为基站通知的容许界限的拥塞界限中进一步具有考虑到由切换引起的噪声增加因子。
接着,无线资源管理单元66获得该基站的个别信道的工作状况(步骤ST5b)。通常,个别信道可以用于在软切换时从周围基站到终端2发送数据,所以基站控制装置3掌握了其工作状况。
无线资源管理单元66对从步骤ST1b到步骤ST5b确定的当前噪声增加因子判断基站的噪声增加因子界限中是否存在富余的情况和与此相反该界限不足的情况(步骤ST6b)。根据该判断结果,无线资源管理单元66转移到变更自治模式和调度模式的噪声增加因子界限的处理。
无线资源管理单元66如果相对于当前噪声增加因子在基站噪声增加因子界限中预先产生过少,并且判定需要对在基站中分配的噪声增加因子界限进行变更,那么就对基站指示变更自治模式和/或调度模式的噪声增加因子界限(步骤ST7b)。
另一方面,无线资源管理单元66如果相对于当前的噪声增加因子在基站的噪声增加因子界限中没有预先产生过小,并判定不需要变更噪声增加因子界限,那么就不指示变更上述噪声增加因子界限。
基站如果从基站控制装置3接收到噪声增加因子界限变更指示,那么就根据该当前指示变更噪声增加因子界限(步骤ST8b)。例如,在如使用图17进行描述那样通过个别信道进行数据发送的频率增加的情况下,基站控制装置3可以增加基站噪声增加因子界限中的个别信道的噪声增加因子界限,并指示削减该增加分量中自治模式使用的噪声增加因子界限。
接着,如果具有来自基站指示应该变更终端2的发送模式切换阈值的通知,那么无线资源管理单元66就通过考虑当前业务量状况和该基站噪声增加因子及其容许界限,判断是否应该将各个终端2的切换阈值变更到某一值(步骤ST9b)。
此后,无线资源管理单元66将与包含上述判断结果阈值的上述阈值变更相关的信息作为层3消息发送到上述基站(步骤ST10b)。
从基站控制装置3接收到与上述阈值变更相关的信息的基站在确立阈值设定对象终端2和个别信道(DPCH)之间的通信的情况下,使用个别信道(DPCH),如果确定不以个别信道进行通信,那么就使用公共信道(FACH)将上述信息发送到对象终端2(步骤ST11b)。
接收到该信息的终端2通过使用图11所描述的相同操作,从在个别信道或公共信道中设定的信息中读出发送模式切换阈值,从而变更上述阈值(步骤ST12b)。
此后,该终端2内的上行个别信道发送单元60将用于指示变更切换阈值的信息作为消息设定在上行DPCH或RACH中,并发送到基站(步骤ST13b)。接收到该消息的基站将上述变更结束的指示通知给基站控制装置3(步骤ST14b)。
使用图20所示的流程图详细描述根据实施例1的移动通信系统图19中的步骤ST9b的操作。
首先,基站内的上行分组发送管理单元24通过比较由本小区内的终端2报告的发送数据缓冲器数据量和在上述终端2内设定的上述阈值,判断是否应该变更上述阈值。从而,如果判断为应该变更上述阈值,那么基站就根据上述发送操作将该指示通知给基站控制装置3。
在步骤ST1c中,从基站接收到指示应当变更阈值的通知的基站控制装置3内的无线资源管理单元66基于该基站的个别信道工作状况估算在个别信道中由数据发送引起的噪声增加因子。
接着,无线资源管理单元66根据上述基站以外的其它基站的当前工作状态估算相对噪声增加因子的容许界限(步骤ST2c)。例如,在周围基站的终端数较多的情况下,存在终端2在执行切换的区域内移动的可能性。在此情况下,无线资源管理单元66估算考虑了由切换引起的噪声增加因子的界限。
由此如果求得考虑周围基站工作状态的界限(例如,考虑周围基站的终端数较多情况下的界限),那么无线资源管理单元66就对相对于在基站中设定的噪声增加因子的容许界限进一步具有该界限。
即,将通过从上述容许界限中减去考虑周围基站工作状态等的界限得到的界限作为应该在基站中设定的新容许界限。
接着,无线资源管理单元66获得在上述基站小区内的调度模式噪声增加因子和终端数(步骤ST3c)。此后,无线资源管理单元66分别对在步骤ST1c中求得的由个别信道的数据发送引起的噪声增加因子和在步骤ST3c中求得的在上述基站小区内的调度模式噪声增加因子的容许界限。
在步骤ST4c中,无线资源管理单元66从在步骤ST2c中根据周围基站工作状态估计的上述基站的全部容许界限中减去针对个别信道的富余以及针对调度模式的富余,从而求得相对在上述基站自治模式噪声增加因子的容许界限(噪声增加因子界限)。
此时,在从各终端2接收到希望的发送数据速率的情况,无线资源管理单元66通过考虑这些希望的发送数据速率来调整针对调度模式的容许界限(容许界限)(步骤ST5c)。
终端2在与基站之间以调度模式进行数据发送时,将自己希望的发送数据速率通知给基站。基站内的上行分组发送管理单元24管理由终端2所希望的发送数据速率及该数据通信的调度。
另外,上行分组发送管理单元24还将该终端2所希望的发送数据速率通知给基站控制装置3内的无线资源管理单元66。
在无线资源管理单元66中,在根据在小区内以调度模式操作的终端2的发送数据速率估算噪声增加因子的同时,通过求得相应于该噪声增加因子的容许界限,调整针对调度模式的容许界限。
此后,无线资源管理单元66使用针对如上面那样调整过的调度模式的容许界限,对在步骤ST4c中求得的自治模式的容许界限进行调整。
接着,无线资源管理单元66相对于如上面那样求得的上述基站的自治模式的噪声界限判断在上述基站小区内以自治模式进行工作的终端数是否适当(步骤ST6c)。
本小区内的各个终端2将发送数据缓冲器内的发送数据量报告给基站。进一步,基站控制装置3从基站接收上述发送数据量通知。基站控制装置3内的无线资源管理单元66事先对由基站通知的终端2的发送数据量计算出规定期间内的平均值。
另外,如果相对终端2的发送数据量的上述平均值存在一些基站自治模式的噪声增加因子界限,那么无线资源管理单元66就预先统计求得执行由于超过相对该基站的噪声增加因子界限而不能解调的数据发送的终端数相对全部终端数的百分比。
在此,预先将例如执行由于超过自治模式的噪声增加因子界限而不能解调的数据发送的终端数相对于全部终端数超过规定比例的情况作为自治模式终端数过多的状态,相反,将处于规定比例以下的情况作为自治模式终端过少的状况,将除此之外的情况定义为自治模式终端数适合的状态。
在步骤ST6c中,无线资源管理单元66调查相对于上述平均值,当前基站自治模式的噪声增加因子界限是多少,基于该结果判断自治模式终端数是否适合。
在此,如果无线资源管理单元66判断自治模式终端数过多,那么基站控制装置3内的QoS参数映射单元64就探测在自治模式终端2中是否允许延迟(步骤ST7c)。
所谓小区内自治模式终端数过多的状态是指将超过相对上述自治模式中的噪声增加因子可解调范围的容许界限可以给予的终端数的状态规定为小区内自治模式终端数过多的状态。
另外,QoS参数映射单元64基于对以自治模式进行工作的终端2的QoS级别,判断在这些终端2中是否正在处理容许延迟的数据。例如,判断在上述QoS的4中级别中是容许延迟还是不容许延迟。另外,在W-CDMA方式的会话型级别和流级别中,由于以ms为单位来规定延迟量(传输延迟),所以可以通过判断没单位能够容许的延迟来构成。
接着,无线资源管理单元66对在步骤ST7c中由QoS参数映射单元64判断为不容许延迟的终端2设定为维持当前切换阈值或者设定为与容许延迟的情况相比减小下调幅度的阈值(步骤ST10c)。
在此,无线资源管理单元66对属于不容许延迟的QoS级别的终端2的QoS参数中延迟量较大(容许延迟缓慢)终端的切换阈值下调幅度增大。例如,对于切换阈值的下调幅度,可以将相应于自治模式终端2小区内的混合程度设定为系数k。
在存在延迟量被设定为20ms和80ms的QoS参数的终端2的情况下,如果假设系数k=1,那么切换阈值的下调幅度可以如下述那样进行表示。
延迟量20ms的终端2的下调幅度为k·20/(20+80)=1/5=20%。
延迟量80ms的终端2的下调幅度为k·80/(20+80)=4/5=80%。
另外,通过将多个自治模式终端2的切换阈值下调,如果消除了为了确保基站调度模式容许界限中自治模式的容许界限而强加的分量,那么无线管理单元66就通过将上述系数k设定为0而维持当前的阈值。
另外,无线资源管理单元66对在步骤ST7c中由QoS参数映射单元64判定为容许延迟的终端2,将切换值下调为比步骤ST10c的情况更大的下调幅度进行设定(步骤ST11c)。如此,无线资源管理单元66通过从过剩的自治模式转移到调度模式来设定切换阈值。
另外,在步骤ST6c中,如果判定为自治模式的终端数适合,那么无线资源管理单元66就维持当前切换阈值(步骤ST8c)。
进一步,如果在步骤ST6c中判定自治模式的终端数过少,那么无线资源管理单元66就上调当前在终端2中设定的切换阈值(步骤ST9c)。
在此,所谓自治模式终端过少的状态,是指即使以平衡发送数据量的数据速率进行数据发送,也需要对分配给各个终端2的噪声增加因子界限产生所需以上的富余的状态。
在此情况下,如果通过上调阈值使得小区内自治模式的终端增加,那么就能够有效使用分配给各个终端2的噪声增加因子界限。
这样,无线资源管理单元66就可以基于发送数据速率、自治模式终端数、调度模式的噪声增加因子界限、以及应当容许的延迟量确定切换阈值的变更幅度。
如果在步骤ST8c到步骤ST11c的任何一个步骤中确定切换阈值,那么无线资源管理单元66就转移到图19的步骤ST10b的处理,生成包含变更后的阈值的层3消息,并发送给上述基站。
从基站控制自治3接收到阈值变更消息的基站,在图19的步骤ST11b中,在确立作为阈值设定对象的终端2和个别信道(DPCH)的通信的情况下,使用个别信道(DPCH),如果没有确立在个别信道上进行通信那么就使用公共信道(FACH),将上述信息发送给目标终端2。
此后,在图19步骤ST12b到步骤ST14b的处理中,移动通信终端2变更本身发送数据缓冲器的切换阈值。
另外,在步骤ST9c中,QoS参数映射单元64基于QoS参数判断是否容许延迟,并基于该判定结果,无线资源管理单元66具体可以通过将对不容许延迟的终端2的切换阈值上调幅度设定的比容许延迟更多来进行构成。由此,可以将各个终端切换到最适合的发送模式。
另外,在步骤ST9c、步骤ST10c和步骤ST11c中,如果一次执行阈值上下调整幅度过大,那么有可能会将超过所需的终端2切换到发送模式。因此,考虑到小区内自治模式终端数,希望将每次执行阈值上下调整的幅度抑制在一定的值,并希望该阈值可以慢慢变化。
如上上述那样,在第2种方法中,由于对小区内的终端2分别设置切换阈值,所以可以设定相应于每个终端2所需的通信条件的通信模式。具体来说,通过根据各个终端2所处理的数据是否容许延迟来在自治模式和调度模式之间进行切换,可以保证在各终端2之间的数据通信中设定的QoS。
另外,在第1种和第2种方法中,基站控制装置3内的无线资源管理单元66虽然描述为确定通信模式切换阈值的结构,但是本发明并不局限于此。
例如,通过基站从基站控制装置3得到QoS信息等,基站内的上行分组通信管理单元24可以如确定通信模式切换阈值那样来构成。
另外,在基站控制装置3侧确定的上述阈值也可以根据基站侧当前的业务量状况通知终端2增加变更。即,基站和基站控制装置3共同确定上述阈值的结构也包含在本发明中。
在此情况下,作为用于变更由基站控制装置3通知的阈值的基站侧结构,可以想到上行分组通信管理单元24。
下面,对第3种方法进行描述。
在该方法中,通过使用物理层信令(L1信令)分别向终端传送发送模式切换阈值变更信息,可以将各个终端切换到最适合的发送模式。另外,在第3方法中,由于使用了比第2中方法更高的物理层信令,所以可以跟踪分组业务量的变化来变更切换阈值。
所谓物理层信令(以后,称作L1信令),是指在用于设定移动通信终端2和基站之间的物理层通信条件的物理量层比特中分配与上述阈值相关的信息的信令。
例如,通过导入新的信道及其时隙格式来执行物理层信令。在此,作为时隙格式是指用于规定在传输分组数据在每个时隙中分配比特的方法。
即,在通过物理层信令切换阈值变更中,在时隙格式中定义了传输分组数据中切换阈值变更信息的设定比特。
作为一个具体的例子,将UL-SICCH等定义为用于物理层信令的新信道,并在该时隙格式中定义用于设定2个用于指示切换阈值指上下调整的命令的比特。
另外,其它情况下,存在使用打孔的方法。这种方法是将在当前所使用个别信道(DPCH)中设定的数据的某一部分消除,并在该部分中插入用于指定切换阈值。由每个数据单元中预先具有强大的误码纠错功能,所以可以实现修正数据单元的一定程度的误码。
其中,在该方法中,由于针对每个数据的比特误码率增加,所以用于设定切换阈值的比特数不能太多。
图21是表示实施例1的基站确定终端发送模式切换阈值时,根据第3方法分配基站的噪声增加因子界限的例子的图。使用该图对第3方面的基本思想进行描述。
作为变更发送模式切换阈值前的状态,假设小区内容纳了多个移动通信终端2。另外,如图21(a)所示那样,假设在基站的噪声增加因子界限中分配了对由自治模式和调度模式引起的噪声增加因子的容许界限和对由个别信道等的发送引起的噪声增加因子的容许界限(图中的个别信道的其它区域)。
在此,基站的上述噪声增加因子界限是相对于上述拥塞界限进一步具有对应该根据其它小区的工作状态和QoS考虑的干扰的富余的容许界限。
一般来说,在分组通信中很容易成为间歇式的发送。即,在上传任何大小的数据时,虽然通信负荷增大,但是如果停止该发送,那么上述负荷就会减少很多。
在小区内终端数较多,各个终端2处理完全不同的通信业务的情况下,业务量的时间变化作为统计可见的程度是可以被吸收的。但是,在小区内较多的终端2处理相同通信业务的情况下,业务量的时间变动或过负荷或闲散。
例如,如果调度模式终端2的分组通信频率增加(变得活跃),那么如图21(b)所示那样,在基站的容许界限中,必须分配更多的调度模式所使用的界限,从而可以削减其它部分自治模式使用的界限。
相反,如果在调度模式终端的分组通信频率降低(变得不活跃),那么图21(c)所示那样,希望通过减少基站容许界限中的调度模式所使用的界限,增加其它部分自治模式所使用的界限来进行控制。
如上上述,在减少自治模式界限的情况下,一部分终端2最好从自治模式切换到调度模式,与此相反,在自治模式界限增加的情况下,一部分终端可以从调度模式切换到自治模式。
在此,为了跟踪高速变化的各发送模式的业务量,在执行切换上述发送模式时,需要尽可能快地变化切换阈值。因此,在第3种方法中,使用了比层3消息更高的物理层信令。
图22是表示在依据实施例1的移动通信系统中,以第3种方法变更发送数据缓冲器的阈值的情况下的变更顺序的图。基站内的上行分组发送管理单元24被基站控制装置3事先指定上行链路增强用的噪声增加因子界限(步骤ST1d)。
具体来说,基站控制装置3内的无线资源管理单元66通过考虑QoS参数映射单元64所管理的QoS参数和对象基站以外的其它小区的工作状态和对象基站的小区内的业务量状态,求得对于对象基站的一定范围的容许界限,并通知给对象基站。
所谓通知给基站的容许界限,是指可以作为在图5中可控制的界限的调度模式用界限和自治模式用的界限和由于本小区干扰和其它小区干扰等的图5中的非控制界限进行分配的界限。
在此,基站控制装置3通过将上述容许界限整体确定在一定范围内来设定在基站中。另一方面,对于该容许界限的各发送模式的容许界限的分配比例,可以由基站内的上行分组发送管理单元24确定。
接着,基站内的上行分组发送管理单元24接受来自本小区内终端2的以调度模式进行数据发送的发送数据速率的要求(步骤ST2d)。
上行分组发送管理单元24除了确定自治模式中的容许数据速率之外,还具有作为用于管理以调度模式进行数据发送的调度器的功能。来自上述终端2的发送数据速率作为以调度模式进行数据发送调度的内容,可以记录在上行分组发送管理单元24中。
此后,上行分组发送管理单元24判断相对基站控制装置3分配的容许阈值的调度模式的业务量的负荷状况是否适当,并根据该判断结果确定是否可以如切换各发送模式那样切换阈值(步骤ST3d)。对于该处理,使用图23在后面进行详细描述。
如果在步骤ST3d中确定了切换的阈值,那么上行分组发送管理单元24对阈值变更对象终端2指示根据使用图10上述的发送操作以L1信令变更后的阈值(步骤ST4d)。
另外,如上上述那样,在将L1信令的切换阈值变更指示作为仅仅指定阈值上调或下调的2个命令的情况下,存在由于传送误差等而导致不能正确向终端2发送上述变更指示的可能性。
因此,基站为了能够正确接收对于终端2的切换阈值变更指示,连续多次发送L1层命令(步骤ST5d)。
如上上述那样,在第3种方法中,在切换阈值变更处理中,基站控制装置3所参与的处理被限定在最小限度内。因此,能够省略基站和基站控制装置3之间的通信,并能够快速执行终端2的切换阈值变更。
使用图23所示的流程图,详细对实施例1移动通信系统的第22图中的步骤ST3d的操作进行描述。
首先,基站内的上行分组发送管理单元24调查在本小区内以调度模式进行数据发送的调度状况(步骤ST1e)。
接着,上行分组发送管理单元24基于步骤ST1e中调查的调度状况,判断相对于基站控制装置3所分配的容许界限,调度模式的业务量负荷是否合适(步骤ST2e)。
具体来说,上行分组发送管理单元24根据通知以调度模式进行数据发送的终端数和在数据通信中应该发送的数据量判断调度模式的业务量负荷是否合适。
上行分组发送管理单元24例如将本小区内调度模式的终端数及在该数据通信中应该发送的数据量较多并且不满足对该调度模式的数据发送的QoS指定的通信条件(延迟要求等)的情况判断为调度模式业务量负荷过多的状态。
相反,将虽然本小区内调度模式终端数及该数据通信中应当发送的数据量较少,并且非常满足对于该调度模式的数据发送的QoS指定的通信条件(延迟要求等),但是几乎不能使用调度模式用的容许界限的情况判断为调度模式业务量负荷过少的状态。
在调度模式中,只利用由上行分组发送管理单元24分配的无线资源,通过反复进行操作可以设定调度模式的终端2。
但是,如果设定调度模式的终端2的数量较多,那么为了仅仅以调度器的顺序进行数据发送,不可避免会产生延迟。
因此,在上述判定方法中,根据对调度模式终端2所处理的数据是否允许延迟的程度判断调度模式业务量负荷是否合适。
另外,作为上述之外的判定方法,可以着眼于自治模式的处理为例子。具体来说,上行分组发送管理单元24通过假定本小区内自治模式终端2以事先通知的容许数据速率范围的最大值进行数据发送的情况来估算器噪声增加因子。
从而,在设定根据该噪声增加因子的自治模式容许界限的情况下,将必须削减当前调度模式容许界限的状态判断为调度模式业务量负荷过多的状态。
与此相反,即使设定根据上述噪声增加因子的自治模式容许界限,也将可以增加当前调度模式容许界限的状态判断为调度模式业务量负荷过少的状态。
另外,在上述两种判定方法中,将上述调度模式业务量负荷较多的情况和较少的情况以外的状态判断为业务量负荷合适的状态。
如果在步骤ST2e中判定为业务量负荷合适的状态,那么上行分组发送管理单元24就结束图23所示的处理,并且也不通知给终端2。
如果在步骤ST2e中判定为业务量负荷过多的状态,那么上行分组发送管理单元24就在本小区内寻找自治模式发送频率较多的终端2(步骤ST3e)。例如,将执行自治模式容许数据速率事先通知的次数超过规定值的终端2判定为以自治模式进行发送的频率较多的终端。
接着,上行分组发送管理单元24判断在步骤ST3e中以自治模式发送频率过多的终端2是否容许延迟(步骤ST4e)。该判定是基于根据该终端2处理的数据的QoS指定的延迟量实施的。此时,如果判断为不容许延迟的终端2,那么上行分组发送管理单元24就结束图23所示的处理,也不执行至终端2的通知。
另一方面,如果判断为容许延迟的终端2,那么上行分组发送管理单元24就下调对于该终端2的切换阈值,并转移到图22的步骤ST4d的处理(步骤ST5e)。
如此,如果通过L1信令通知了上述变更后的切换阈值,那么终端2就根据该阈值切换发送模式,并向基站应答该指示。
基站内的上行分组发送管理单元24根据来自上述终端2的发送模式切换应答判断该终端2是否切换到调度模式(步骤ST6e)。
此时,如果判断为切换到调度模式,那么上行分组发送管理单元24就对新调度模式估算噪声增加因子,并在基站控制装置3设定的容许界限范围内增加调度模式的噪声增加因子界限(噪声增加因子界限)(步骤ST7e)。
另一方面,另一方面,如果在步骤ST6e中判断为没有来自终端2的发送模式切换指示的应答,并没有转换到调度模式,那么上行分组发送管理单元24就转移到图22的步骤ST5d的处理,并通过继续上述变更后的切换阈值设定的L1信令命令来发送给对象终端2(步骤ST8e)。此后,如果存在来自终端2的发送模式切换指示的应答,那么就回到步骤ST6e的处理。
另外,上行分组发送管理单元24如果在步骤ST2e中判断调度模式的业务量负荷较少,那么就在本小区所容纳的终端2中寻找调度模式发送频率较少的终端2或处理不容许延迟数据的终端2(步骤ST9e)。
在步骤ST9e中,在抽出调度模式发送频率较少的终端2或处理不容许延迟数据的终端2情况下,上行分组发送管理单元24上调该终端2的切换阈值,并转移到图22的步骤ST4d的处理(步骤ST10e)。
如上上述那样,终端2如果被通过L1信令通知上述变更后的切换阈值,那么根据根据该阈值切换通信模式,并向基站应答该指示。
上行分组发送管理单元24根据来自上述终端2的发送模式切换应答,判断终端2是否切换到自治模式(步骤ST11e)。
此时,如果判断切换到了自治模式,那么上行分组发送管理单元24就对新的自治模式估算噪声增加因子,并在基站控制装置3设定的容许界限范围内增加自治模式噪声增加因子界限(噪声增加因子界限)(步骤ST12e)。
另一方面,如果在步骤ST11e中判断没有来自终端2的指示切换发送模式的应答,并且没有转换成自治模式,那么上行分组发送管理单元24就转移到图22的步骤ST5d处理,并通过继续上述变更后切换阈值设定的L1信令命令,发送给对象终端2(步骤ST13e)。此后,如果存在来自终端2的切换发送模式的指示的应答,那么就返回到来自步骤ST11e的处理。
如上上述那样,根据第3种方法,由于根据比层3消息情况速度更高的物理层信令将切换阈值的变更信息通知给终端2,所以能够跟踪基站和终端2之间的分组通信的业务量变化来变更切换阈值。另外,根据第3种方法,还可以根据业务量的变化适当分配对各发送模式的噪声增加因子的容许界限。
另外,在上述第3种方法中,基站上行分组发送管理单元24虽然描述成确定通信模式切换阈值的结构,但是本发明并不限定于此。
例如,基站控制装置3内的无线资源管理单元66可以是基于从自己所掌握的QoS信息和基站得到的当前业务量状况确定通信模式切换阈值的结构。
在此情况下,指定通信模式切换阈值的信息可以从基站控制装置3通知给基站,并从基站以第3种方法通知给终端2。
另外,在上述实施例中,虽然描述了包含基站控制装置3的基站侧结构确定终端2的切换阈值,并且终端2根据由基站指定的阈值切换发送模式的处理,但是,本发明并不限定为上述结构。
例如,在包含基站控制装置3的基站侧结构可以基于终端2的切换阈值确定应该切换的发送模式,并且终端2可以基于来自基站侧的指示切换发送模式。
下面,对于该结构,针对分别适用于上述第1到第3方法的情况的实施例进行描述。
首先,使用图24所示流程图,对基站侧确定应该切换的发送模式,和终端2根据来自基站侧的指示切换发送模式的结构在使用第1种方法的情况的操作进行详细描述。
从步骤ST1a到步骤ST8a的处理由于与图16相同,所以省略描述。在从步骤ST6a到步骤ST8a的任何一个步骤中,基站控制装置3内的无线资源管理单元66如果确定了切换阈值,那么就将该阈值通知给基站。
在基站的上行分组发送管理单元24中,通过比较由基站控制装置3通知的上述阈值和由本小区内的各终端2事先通知的发送数据量,确定在该终端2中应当设定的发送模式(步骤ST9a)。
例如,在事先通知的发送数据量超过上述阈值的情况下,确定应该设定为调度模式,与此相反,选择自治模式。
如果在步骤ST9a中确定发送模式,那么上行分组发送管理单元24指示报告信息发送单元28使用报告信息对各终端2执行指示切换到该发送模式的信令(步骤ST10a)。
具体来说,在图15的步骤ST11的处理中,不是包含变更后的切换阈值的信息,而是发送用于指定在基站侧确定的发送模式的信息。
这样,不仅能够确定切换阈值,而且还能够确定应该切换的发送模式,终端2能够知道切换到哪种发送模式。
因此,终端2根据基站指定的阈值在需要切换发送模式时,终端2能够省略用于向基站通知切换发送模式的应答信令。
接着,使用图25所示的流程图,对用于基站侧确定应该切换的发送模式,终端2根据来自基站侧的指示切换发送模式的结构适用于第2种方法的情况的操作进行详细描述。
从步骤ST1c到步骤ST11c的处理由于与图20相同,所以省略其描述。基站控制装置3内的无线资源管理单元66在步骤ST8c、步骤ST9c、步骤ST10c和步骤ST11c中的任何一个步骤中,如果确定了切换阈值,那么就将该阈值通知给基站。
基站内的上行分组发送管理单元24通过比较由基站控制装置3通知的上述阈值和由发送模式切换对象终端2事先通知的发送数据量,确定在该终端2中应该设定的发送模式(步骤ST12c)。
一旦在步骤ST12c中确定了发送模式,上行分组发送管理单元24就在下行个别信道发送单元29或下行公共信道发送单元34上指示,使用个别信道或公共信道对上述对象终端2执行用于切换发送模式的信令(步骤ST13a)。
具体来说,在图19的步骤ST11b的处理中,不仅可以发送包含变更后切换阈值的信息,而且可以发送用于指定在基站侧确定的发送模式的信息。另外,在这种情况下,可以省略图19中步骤ST13b和步骤ST14b的处理。
这样,基站侧就不仅能够确定切换阈值,而且能够确定应该切换的发送模式,并且终端2能够知道切换到哪一种发送模式。
因此,终端2在需要根据基站侧指定的阈值切换发送模式时,能够省略用于终端2通知基站切换的发送模式的应答信令。
另外,在上述描述中,基站控制装置3内的无线资源管理单元66虽然以确定通信模式切换阈值的结构进行了描述,但是,本发明并不局限于此。
例如,由于基站从基站控制装置3得到QoS信息等,所以基站内的上行分组通信管理单元24可以是确定通信模式切换阈值的结构。
通过这样,在确定通信模式切换阈值的处理中,能够减少基站控制装置3所参与的处理,并能够抑制基站和基站控制装置3之间的信令次数的增加。
另外,基站可以是在基站控制装置3侧确定的上述阈值上加上相应于当前业务量状况的变更,并通过比较变更后的阈值和事先通知的终端2的发送数据量来确定发送模式的结构。
即,本发明还包含基站和基站控制装置3共同确定上述阈值的结构。这种情况下,作为用于变更基站控制装置3通知的阈值的基站侧结构,可以考虑上述分组通信管理单元24。
接着,使用图26所示流程图,对基站侧确定应该切换的发送模式,并且终端2根据基站侧的指示切换发送模式的结构,在使用第3种方法的情况的操作进行详细描述。
首先,从步骤ST1e到步骤ST4e的处理由于与图23相同,所以省略描述。如果在步骤ST4e中判断为容许延迟的终端2,那么上行分组发送管理单元24就对该终端2下调切换阈值(步骤ST5e-1)。
接着,如果上行分组发送管理单元24通过比较在步骤ST5e-1确定的阈值和由在步骤ST4e中寻找到的终端2事先通知的发送数据量,确定在该终端2中应当设定的通信模式(步骤ST5e-2)。
接着,上行分组发送管理单元24将用于指定在该终端2中应当设定的发送模式的信息作为前述的L1信令,并转移到图22的步骤ST4d的处理(步骤ST5e-3)。
以下从步骤ST6e到步骤ST8e的处理由于与图23相同,所以省略其描述。
另外,在步骤ST9e中,在抽出以调度模式发送频率较少的终端2或用于处理不容许延迟的数据的终端2的情况下,上行分组发送管理单元24对该终端2上调切换马阈值(步骤ST10e-1)。
接着,上行分组发送管理单元24通过比较在步骤ST10e-1中确定的阈值和由在步骤ST9e中寻找到的终端2事先通知的发送数据量,确定在终端2中应当设定的发送模式(步骤ST10e-2)。
接着,上行分组发送管理单元24将用于指定在该终端2中应当设定的发送模式的信息作为前述的L1信令,并转移到图22的步骤ST4d的处理(步骤ST10e-3)。
以下从步骤ST11e到步骤ST13e的处理由于与图23相同,所以省略其描述。
另外,在上述第3种方法中,虽然描述了基站内的上行分组发送管理单元24确定通信模式切换阈值的结构,但是,本发明并不局限于此。
例如,基站控制装置3内的无线资源管理单元66可以是基于自己掌握的QoS信息和从基站得到的当前业务量状况确定通信模式切换的结构。
在这种情况下,用于指定通信模式切换阈值的信息被从基站控制装置3通知给基站,并从基站以第3种方法通知给终端2。
进一步,在上述描述中,基站内的上行分组发送管理单元24虽然描述为确定通信模式的结构,但是本发明并不局限于此。
例如,基站控制装置3内的无线资源管理单元66可以是通过自己掌握的QoS信息和终端2通过基站执行的数据通信的发送数据量等,确定在该终端2中应当设定的发送模式的结构。
在这种情况下,在图15步骤ST10和步骤ST11、图19中的步骤ST10b和步骤ST11b的处理中,不是发送包含变更后的切换阈值的信息,而是发送用于指定在基站侧确定的发送模式的信息。
另外,无线资源管理单元66确定的发送模式在被基站控制装置3通知基站之后,基站以上述各方法通知给终端2。
如上上述那样,根据该实施例1,在能够根据基站的工作状况设定适合终端2的发送模式的同时,还能够对在基站中设定的噪声增加因子的容许界限中适当分配对于各种发送模式的容许界限。
另外,在对各个终端2设定切换阈值的情况下,通过考虑终端2处理的数据的QoS,可以均衡各种发送模式,并可以通过反映各个终端的数据发送需求来有效利用无线资源。
另外,在上述实施例中,通过终端2对基站进行信令,基站的结构描述为指示获得用于判断终端2的发送模式切换的发送缓冲器信息。
在此,如果根据终端2处理数据的延迟容许程度不改变其频率,那么就存在终端2对基站的发送缓冲器信息的信令不能够满足也作为发送模式切换的延迟请求的可能性。
例如,如果从终端2到达基站的发送缓冲器信息的信令频率较少,那么基站侧的结构在掌握终端2的当前发送数据缓冲器状态方面就变慢。
在这种情况下,将终端2切换到调度模式或自治模式的处理变慢,甚至,存在不能满足该终端2数据通信的延迟要求的可能。
因此,移动通信终端2可以根据在自己处理的数据通信中设定的延迟要求变更对基站的发送缓冲器信息信令的频率。
例如,对终端2到基站以预定周期执行上述信令的情况下,对于执行延迟要求比较严格的数据通信的终端2,可以较短的周期执行上述信令,对处理延迟要求较慢的数据通信的终端2,以较长周期进行信令。这些信令周期的设定可以根据所执行数据通信的延迟容许量针对每个终端分别执行。
如果描述上述信令周期的产生处理,那么在P-CCPCH(BCH)中,可以设定称作发送定时基本SFN(系统帧序号)的控制信息。基站内的上行分组发送管理单元24基于从基站控制装置3得到的QoS参数等确定通过终端2的发送缓冲器信息的信令周期。
所谓在终端2设定该信令周期的方法与前述切换阈值的信令相同,可以考虑使用第1种方法的报告信息(至终端2组的共同指定),使用第2种方法的个别或公共信道(至终端2的个别指定),和第3种方法的物理层信令。
在移动通信终端2中,如果从基站接收到与上述信令周期相关的信息,那么就如使用图11所描述的那样,由逆扩展解调单元46解调在各个数据信道中设定的信号。协议处理单元56从逆扩展解调单元46解调的信号中获得与上述信令周期相关的信息。
接着,协议处理单元56将从与上述信令周期相关的信息中得到的周期作为在用于向基站通知发送数据缓冲器58的状态的UL-SICCH的发送周期设定在缓冲器状态发送单元55中。进一步,在移动通信终端2中,根据在P-CCPCH(BCH)中设定的SFN值,将应该发送数据的定时的同步取在与基站之间。
作为更有效指定上述信令周期的方法,可以进行分组。具体来说,例如使用QoS级别,属于会话型级别和流级别的终端2根据该QoS级别能够容许的最大延迟量进行分组,并确定上述信令周期。
另一方面,对于属于上述QoS级别之外的终端2,可以设定比属于例如会话型级别和流级别的终端2更长的周期。在该方法中,存在所谓对于各个组的终端2能够根据QoS级别管理通信模式干扰量的优点。
接着,对于不是如上上述那样周期性地执行信令,而是在移动通信终端2状态达到预定条件时执行上述发送缓冲器信息的信令的情况的应用例进行描述。
作为上述预定条件,在终端2的上行分组通信发送数据缓冲器58中积存到一定量发送数据的时候,终端2考虑执行对基站的上述发送缓冲器信息信令。
在此情况下,在发送数据缓冲器58中的积存到一定量的发送数据之前,不执行上述发送缓冲器信息的信令。但是,根据终端2处理的数据,如果没有等到在发送数据缓冲器58中发送数据积存到一定量,那么就存在应该执行上述信令的情况。
例如,来自终端2通过因特网执行的应用程序的应答信号虽然其数据量比较少,但是其所存在的本身应该尽可能早地通知给基站。
因此,对于终端2,可以是通过设定用于指定上述信令周期的时间,在处理延迟要求较严格的数据时,等到在发送数据缓冲器中积存的数据达到一定量,和如果时间经过一定时间,那么就执行上述信令的结构。
上述时间指定可以考虑为由基站侧的结构明示的信令的情况和终端2自身设定的情况。
首先,使用图10和图11,对通过基站侧结构明示的信令指定上述时间的情况的操作进行描述。在此,终端2内的上行分组发送管理单元51具有上述计时功能。
基站控制装置3使用与通过作为时间设定对象的终端2的数据通信相关的QoS参数,生成用于指定相应于该QoS参数的周期。
接着,基站从基站控制装置3获得上述定时信息,并通过下行个别信道发送单元29作为个别信道的信息发送到上述终端2。
在上述终端2中,下行个别信道接收单元63接收上述个别信道的信息,并发送给协议处理单元56。在协议处理单元56中,从上述个别信道的信息中读出定时信息,并发送给上行分组发送管理单元51。
上行分组发送管理单元51根据上述时间信息设定时间,并通过计时指示缓冲器状态发送单元55执行上述发送缓冲器信息的信令。
下面,对在终端2侧自治管理时间的处理进行描述。
首先,上行分组发送管理单元51根据自己掌握的QoS信息和过去发送的有无来确定定时值。如果该时间达到计数值,上行分组发送管理单元51就指示缓冲器状态发送单元55执行上述发送缓冲器信息的信令。
作为用于更有效执行上述信令的时间指定方法,例如可以考虑通过基站控制装置3和上行分组发送管理单元51通过将会话型级别和流级别的容许延迟量作比较来设定时间。
另外,在交互级别和背景级别中,基站控制装置3和上行分组发送管理单元51对具有过去执行通信的历史的终端2指定比初次执行通信的终端2更短的定时时间,进而随着通信间隔的空闲慢慢加长定时的指定时间。
由此,可以通过将对基站发送数据缓冲器信息的信令次数合并到数据通信的尺寸来进行灵活设定。例如,对于执行较少业务量的数据通信的终端2,通过空出上述信令间隔可以更有效地控制信令次数。
另外,还可以同时使用以上述周期进行信令的方法和使用定时的方法。例如,对于执行延迟量需严格设定的数据通信的终端2来说,周期性地对基站执行发送数据缓冲器信息的信令,对于执行延迟量设定不严格的数据通信的终端2来说,可以在以定时指定的间隔上述执行上信令。
更具体来说,在处理属于会话型级别和流级别的数据通信的终端2中,根据该QoS级别所容许的最大延迟量来设定上述信令周期。另外,在处理属于交互级别和背景级别的数据通信的终端2中,根据自己所掌握的QoS信息和通过是否存在过去的发送设定的时间执行信令。
如此,在基站侧管理通过终端2的数据通信干扰量的同时,能够抑制来自终端2的发送数据缓冲器信息的信令增加到所需以上。这样,作为移动通信系统的整体,就能够更有效执行信令。
产业上可利用性如上上述,本发明所涉及的通信模式切换方法,能够用于支持上行分组通信的便携式电话等移动通信终端、基站和基站控制装置内。
权利要求
1.一种移动通信系统的通信模式控制方法,上述移动通信系统包括移动通信终端,该移动通信终端具有在对基站自治地进行数据通信的自治模式和以上述基站中许可的通信定时进行数据通信的调度模式之间进行切换的功能;以及基站控制装置,用于管理上述基站和上述移动通信终端之间的通信资源,该通信模式控制方法的特征在于,包括阈值确定步骤,上述基站和/或上述基站控制装置根据上述基站小区内的上述各种通信模式中的干扰量和/或其通信特性,确定与上述移动通信终端所具有的通信数据缓冲器的通信数据量相关的用于切换上述通信模式的阈值;以及通知步骤,将在上述步骤中确定的上述通信数据量的阈值,从上述基站通知给上述移动通信终端。
2.一种移动通信系统的通信模式控制方法,上述移动通信系统包括移动通信终端,该移动通信终端具有在对基站自治地进行数据通信的自治模式和以上述基站中许可的通信定时进行数据通信的调度模式之间进行切换的功能;以及基站控制装置,用于管理上述基站和上述移动通信终端之间的通信资源,该通信模式控制方法的特征在于,包括通信模式确定步骤,上述基站和/或上述基站控制装置根据上述基站小区内的上述各种通信模式中的干扰量和/或其通信特性和表示从上述移动通信终端通知的通信数据量的信号,确定在上述移动通信终端中应设定的通信模式;以及通知步骤,将在上述步骤中确定的通信模式,从上述基站通知给上述移动通信终端。
3.根据权利要求2上述的通信模式控制方法,其特征在于,在通信模式确定步骤中,基站或基站控制装置基于上述基站小区内的各通信模式中的干扰量和/或其通信特性,确定与移动通信终端所具有的通信数据缓冲器的通信数据量相关的用于切换上述通信模式的阈值,上述基站根据上述阈值和上述通信数据缓冲器的通信数据量之间的比较结果,确定在上述移动通信终端中应设定的通信模式。
4.根据权利要求3上述的通信模式控制方法,其特征在于,在通信模式确定步骤中,基站或基站控制装置基于通过移动通信终端的数据通信中设定的延迟容许量,当判断为是不容许延迟的数据通信时,在通信数据量不满足阈值的范围内,以切换到具有比调度模式更不容易产生延迟的通信特性的自治模式的方式,上调上述阈值,当判断为是容许延迟的数据通信时,通信数据量在阈值以上的范围内以切换到上述调度模式的方式,下调上述阈值。
5.根据权利要求3记载的通信模式控制方法,其特征在于,在通信模式确定步骤中,基站或基站控制装置随上述基站小区内的自治模式的移动通信终端数,根据在每台移动通信终端的自治模式中容许的干扰量的变动来确定阈值。
6.根据权利要求3上述的通信模式控制方法,其特征在于,在通信模式确定步骤中,基站或基站控制装置以切换到具有由各个移动通信终端的数据通信中设定的QoS(服务质量)参数容许的通信特性的通信模式的方式,确定上述移动通信终端的通信数据缓冲器的阈值。
7.根据权利要求3上述的通信模式控制方法,其特征在于,包括基站根据在与移动通信终端之间的数据通信中设定的QoS参数,对本小区内容纳的上述移动通信终端进行分组的步骤,在通信模式确定步骤中,上述基站或基站控制装置以切换到具有由上述每组的QoS参数容许的通信特性的通信模式的方式,确定上述移动通信终端的通信数据缓冲器的阈值,上述基站根据上述阈值和上述移动通信终端的通信数据缓冲器的通信数据量的比较结果,确定在上述移动通信终端中应设定的通信模式,在通知步骤中,上述基站将在上述步骤中确定的通信模式作为报告信息一起通知给上述各组的移动通信终端。
8.根据权利要求3上述的通信模式控制方法,其特征在于,在通信模式确定步骤中,基站或基站控制装置以切换到具有由各个移动通信终端的数据通信中设定的QoS参数容许的通信特性的通信模式的方式,确定上述移动通信终端的通信数据缓冲器的阈值,上述基站根据上述阈值和上述移动通信终端的通信数据缓冲器的通信数据量的比较结果,确定在上述移动通信终端中应设定的通信模式,在通知步骤中,上述基站通过与上述移动通信终端之间的个别数据信道,将上述步骤中确定的通信模式个别地通知给上述移动通信终端。
9.根据权利要求3上述的通信模式控制方法,其特征在于,在通信模式确定步骤中,基站或基站控制装置当从本小区内调度模式的数据通信负荷状况,判断出调度模式容许的干扰量界限比自治模式多时,以抑制向上述小区内的自治模式转换的方式,确定移动通信终端的通信数据缓冲器的阈值,当判断出上述小区内调度模式容许的干扰量界限比自治模式少时,以促使向上述小区内的自治模式转换的方式,确定上述阈值。
10.根据权利要求3上述的通信模式控制方法,其特征在于,在通信模式确定步骤中,基站或基站控制装置根据作为QoS参数而设定的数据通信的延迟容许量,以切换到具有比调度模式更难产生延迟的通信特性的自治模式的方式,确定移动通信终端的通信数据缓冲器的阈值。
11.根据权利要求3上述的通信模式控制方法,其特征在于,在通信模式确定步骤中,基站或基站控制装置以切换到具有根据作为QoS参数而设定的数据通信的通信服务质量的通信特性的通信模式的方式,确定移动通信终端的通信数据缓冲器的阈值。
12.根据权利要求3上述的通信模式控制方法,其特征在于,包括在通信模式确定步骤之前,移动通信终端以根据自己处理的数据通信的容许延迟量的周期,将包含通信数据缓冲器的通信数据量的信息通知给基站的步骤。
13.一种移动通信系统,包括移动通信终端,该移动通信终端具有在对基站自治地进行数据通信的自治模式和以上述基站中许可的通信定时进行数据通信的调度模式之间进行切换的功能;和基站控制装置,用于管理上述基站和上述移动通信终端之间的通信资源,该移动通信系统的特征在于上述基站控制装置包括通信资源管理单元,其用于设定上述基站在与上述移动通信终端之间的数据通信中能够容许的容许干扰量范围,上述基站包括通信管理单元,其向上述移动通信终端通知用于在上述容许干扰量范围内控制通信模式干扰量的与上述移动通信终端的通信模式切换相关的信息,上述移动通信终端包括通信管理单元,其根据与上述通信模式切换相关的信息,确定自己应采用的通信模式。
14.根据权利要求13上述的移动通信系统,其特征在于基站的通信管理单元和/或通信资源管理单元基于基站小区内的各通信模式干扰量和/或其通信特性,确定与移动通信终端所具有的通信数据缓冲器的通信数据量相关的用于切换到上述通信模式的阈值,同时根据上述阈值和上述通信数据缓冲器的通信数据量之间的比较结果,确定在上述移动通信终端中应设定的通信模式,上述移动通信终端的通信管理单元根据指定上述基站的通信管理单元接收的上述通信模式的信息作为与通信模式切换相关的信息,确定自己应采用的通信模式。
15.根据权利要求13上述的移动通信系统,其特征在于基站通信管理单元和/或通信资源管理单元基于基站小区内的各通信模式干扰量和/或其通信特性,确定与移动通信终端所具有的通信数据缓冲器的通信数据量相关的用于切换到上述通信模式的阈值,上述移动通信终端的通信管理单元根据从上述基站的通信管理单元作为与通信模式切换相关的信息接收的上述阈值和自己通信数据缓冲器的通信数据量的比较结果,确定自己应采用的通信模式。
16.根据权利要求13上述的移动通信系统,其特征在于,通信资源管理单元通过考虑基站和移动通信终端之间的通信状况,以及从自己所管理的其它基站的通信状况推测的干扰量,求得针对基站的容许干扰量。
17.一种基站控制装置,其利用移动通信系统管理基站和移动通信终端之间的通信资源,上述移动通信系统包括具有在对上述基站自治地进行数据通信的自治模式和以上述基站中许可的通信定时进行数据通信的调度模式之间进行切换的功能的移动通信终端,该基站控制装置的特征在于,上述包括通信资源管理单元,其基于上述基站小区内的上述各通信模式的干扰量和/或其通信特性,确定与上述移动通信终端具有的通信数据缓冲器的通信数据量相关的用于切换上述通信模式的阈值。
18.一种基站,其根据移动通信终端,以自治地进行数据通信的自治模式和以自己许可的通信定时进行数据通信的调度模式之间的各通信模式可进行数据通信,其特征在于,包括通信管理单元,其基于本小区内上述各通信模式的干扰量和/或其通信特性,确定与上述移动通信终端所具有的通信数据缓冲器的通信数据量相关的用于切换上述通信模式的阈值;以及通信单元,其将上述阈值作为与通信模式切换相关的信息,通知给上述移动通信终端。
19.一种基站,其根据移动通信终端,以自治地进行数据通信的自治模式和以自己许可的通信定时进行数据通信的调度模式之间的各通信模式可进行数据通信,其特征在于,包括通信管理单元。其基于本小区内的上述各通信模式的干扰量和/或其通信特性,确定与上述移动通信终端所具有的通信数据缓冲器的通信数据量相关的用于切换上述通信模式的阈值,同时根据上述阈值和上述移动通信终端的通信数据缓冲器的通信数据量的比较结果,确定在上述移动通信终端中应设定的通信模式;以及通信单元,将上述通信管理单元确定的通信模式作为与通信模式切换相关的信息,通知给上述移动通信终端。
20.一种移动通信终端,其具有在对基站自治地进行数据通信的自治模式和以上述基站中许可的通信定时进行数据通信的调度模式之间进行切换的功能,其特征在于,包括通信管理单元,其使用权利要求1上述的通信模式控制方法,根据由上述基站通知的通信数据量的阈值和自己发送的数据缓冲器的通信数据量之间的比较结果,上述确定自己应采用的通信模式。
21.一种移动通信终端,其具有在对基站自治地进行数据通信的自治模式和以上述基站中许可的通信定时进行数据通信的调度模式之间进行切换的功能,其特征在于,包括通信管理单元,其使用权利要求2上述的通信模式控制方法,确定上述基站通知的通信模式作为自己应采用的通信模式。
全文摘要
对于具有切换到自治模式或调度模式任何一种通信模式的功能的移动通信终端,根据基站小区内各通信模式的干扰量和/或其通信特性,和表示由移动通信终端通知的通信数据量的信号,确定在移动通信终端中应设定的通信模式,并从基站给移动通信终端通知。
文档编号H04W74/02GK101060705SQ20061007555
公开日2007年10月24日 申请日期2006年4月20日 优先权日2006年4月20日
发明者若林秀治 申请人:三菱电机株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1