色变换装置及具备其的图像显示装置的制作方法

文档序号:7651161阅读:133来源:国知局
专利名称:色变换装置及具备其的图像显示装置的制作方法
技术领域
本发明,涉及将表示色的3个输入信号输入,对根据这些输入信号而确定的色进行变换的色变换装置及具备其的图像显示装置。
背景技术
从前,在彩色打印机、彩色复印机、彩色电视机、彩色投影机等中,有如下设备为了进行相应于输入信号的图像的正确的色再现,而具备用3维查找表(以下,也称为“3D-LUT”。)的色变换装置。因为作为输入信号的R、G、B信号,通常以8比特以上的灰度等级数据,即256灰度等级以上的灰度等级值所表现,所以在3D-LUT中,对应于R、G、B信号的灰度等级的全部的组合,需要存储(256×256×256)以上的输出的值(输出色值)。为此,3D-LUT需要非常大的存储器容量。
于是,在实际构成3D-LUT的情况下,为下述构成并非对于所输入的R、G、B信号的灰度等级的全部的组合,而是对于以适当的间隔分割了R、G、B信号的各自的灰度等级的粗的灰度等级的组合,例如对于高位3比特~4比特的R、G、B信号的灰度等级的组合,将分别相对应的输出色值存储,为将需要的存储器容量削减的构成。而且,构成为基于除了上述的高位3比特~4比特的低位比特部,对根据上述3D-LUT所得到的输出色值实施内插运算(例如,参照专利文献1)。
专利文献1特公昭58-16180号公报将在上述专利文献1之中所示的内插方法的例,示于图4和下式(壹)中。
U(x,y,z)=U(xi,yi,zi)·(1-xf)
+U(xi+1,yi,zi)·(xf-yf)+U(xi+1,yi+1,zi)·(yf-zf)+U(xi+1,yi+1,zi+1)·zf...(壹)图4,表示立方体区域的分割方法,成为内插对象的立方体区域,以x=y,y=z、z=x的3个平面所分割,分割为6个四面体T1~T6。式(壹),表示第2个四面体T2中的内插方法,xi、yi、zi表示输入的高位比特部,xf、yf、zf表示输入的低位比特部,U(x,y,z)表示输入(x,y,z)中的1个输出色值。立方体区域的一边的长度为值1。在该内插方法中,顺序为研究表示打算进行内插的点的低位比特部的大小关系,对打算进行内插的点包括于哪个四面体中进行判定,并从色校正存储器调出对应于该四面体的4个顶点的输出色值,使其与由低位比特部的减法求出的4个系数进行了相乘之后,将各个相加。
在上述现有的技术中,如根据式(壹)而明了地,需要4个乘法器。因为乘法器电路规模大,所以为了装置的小型化而期望减少乘法器的个数。因此,可考虑将式(壹)变更为下式(贰),将乘法器的个数减为3个。
U(x,y,z)=U(xi,yi,zi)+[U(xi+1,yi,zi)-U(xi,yi,zi)]·xf+[U(xi+1,yi+1,zi)-U(xi+1,yi,zi)]·yf+[U(xi+1,yi+1,zi+1)-U(xi+1,yi+1,zi)]·zf...(贰)可是,在按照式(贰)进行了设计的色变换装置中,虽然能够实现小型化,但是又存在由于以下的理由而容易有损灰平衡的问题。
在立方体区域中的对角线上的色,因为R=G=B,所以相当于色空间中的灰轴上的色。本来,当必须变换为该灰轴上的色时,在色变换为从该灰轴偏离了的值的情况下,由人类的视觉容易了解到该情况。回过头来看,在按照式(贰)进行了设计的色变换装置中,即使输入信号成为R=G=B,即xf=yf=zf的灰轴上的值,若各乘法器的量化误差得到累积,则简单地变换为灰以外的颜色。即,存在容易有损灰平衡的问题。

发明内容
作为本发明的想要解决的问题,目的在于通过减少乘法器的个数而实现小型化,并谋求灰平衡的稳定化。
作为用于解决前述的问题的至少一部分的手段,采用了示于以下的构成。
本发明的第1色变换装置,具备3维查找表,其将表示颜色的3个输入信号可取得的3维色空间分割为多个立方体区域,对关于各立方体区域的顶点的输出色值进行存储,并将前述输入信号的每一个分为高位比特部和低位比特部,基于前述高位比特部的组,将前述输出色值作为基准数据输出,和内插单元,其将成为内插对象的前述立方体区域分割为以连结作为前述基准数据所存储的第1点和离该第1点最远的第2点的对角线为棱线的6个四面体,基于前述低位比特部的组而选择前述四面体中的一个,在关于该所选择的四面体的各顶点的前述输出色值之间进行内插运算,由此生成对应于前述输入信号的每一个的输出信号的组;前述内插单元,具备实现基于下式的运算处理的多个运算电路,该式为P=K+(W-K)·h/E-(W-T)·(h-n)/E-(T-S)·(h-m)/E ...(叁)其中,P,为表示前述输出信号的组的值,K,为前述基准数据的值,即,关于前述四面体的各顶点之中的前述第1点的输出色值,W,为关于前述四面体的各顶点之中的前述第2点的输出色值,S,为关于前述四面体的各顶点之中的除了前述第1及第2点的剩余的2点之中的、为接近于前述第1点的一方的点的第3点的输出色值,T,为关于前述四面体的各顶点之中的除了前述第1、第2及第3点的剩余的第4点的输出色值,
E,为前述立方体区域的一边的长度,h、m、n,为表示成为前述内插对象的立方体区域中的通过前述低位比特部的组而确定的坐标位置的xf、yf、zf之中的任一个,基于表示根据前述低位比特部的组而到底选择哪个四面体的xf、yf、zf的大小关系如下地确定xf≥zf≥yf时,h=xf,m=zf,n=yfxf≥yf>zf时,h=xf,m=yf,n=zfyf>xf≥zf时,h=yf,m=xf,n=zfyf>zf>xf时,h=yf,m=zf,n=xfzf≥yf>xf时,h=zf,m=yf,n=xfzf>xf≥yf时,h=zf,m=xf,n=yf。
若依照于前述构成的色变换装置,则可执行基于前述式(叁)的内插的运算处理,而式(叁)的意义则如下。
若看一下在“背景技术”部分说明过的式(壹),则因为U(xi,yi,zi)相当于前述K,U(xi+1,yi,zi)相当于前述S,U(xi+1,yi+1,zi)相当于前述T,U(xi+1,yi+1,zi+1)相当于前述W,所以式(壹)能够代换为下式(肆)。
U(x,y,z)=K·(1-xf)+S·(xf-yf)+T·(yf-zf)+W·zf...(肆)式(肆),通过进行变形能够为下式(伍)。
U(x,y,z)=K+(W-K)·xf-(W-T)·(xf-zf)-(T-S)·(xf-yf) ...(伍)另一方面,本发明中的式(叁),因为当xf≥yf>zf时,h=xf,m=yf,n=zf,所以在基于低位比特部的组而选择了满足该xf≥yf>zf条件的四面体的情况下,成为下式(陆)。在此,将立方体区域的一边的长度E作为值1进行计算。
P=K+(W-K)·xf-(W-T)·(xf-zf)-(T-S)·(xf-yf) ...(陆)
该式(陆)与式(伍)相同。从而,本发明的第1色变换装置,能够与记载于特公昭58-16180号公报中的现有技术的色变换电路同样地通过内插处理进行色变换。并且,从式(叁)来看,因为能够将乘法器以3个进行设计,所以能够谋求装置的小型化。进而,当3个输入信号位于灰轴上时,即xf=yf=zf时(h=m=n时),式(叁)中的第2项和第3项,必定成为0。即使在负责第2项、第3项的乘法器中发生量化误差也必定成为0。因此,因为仅有可能仅在负责第1项的乘法器中发生量化误差,所以相比较于现有技术,能够谋求灰平衡的稳定化。即,本发明的第1色变换装置,起到以下效果能够通过减少乘法器的个数而实现小型化,并谋求灰平衡的稳定化。
本发明的第2色变换装置,具备3维查找表,其将表示颜色的3个输入信号可取得的3维色空间分割为多个立方体区域,对关于各立方体区域的顶点的输出色值进行存储,并将前述输入信号的每一个分为高位比特部和低位比特部,基于前述高位比特部的组,将前述输出色值作为基准数据输出,和内插单元,其将成为内插对象的前述立方体区域分割为以连结作为前述基准数据所存储的第1点和离该第1点最远的第2点的对角线为棱线的6个四面体,基于前述低位比特部的组而选择前述四面体中的一个,在关于该所选择的四面体的各顶点的前述输出色值之间进行内插运算,由此生成对应于前述输入信号的每一个的输出信号的组;具备在基于前述低位比特部的组而选择了前述6个四面体之中的预定的四面体时,实现基于下式的运算处理的多个运算电路,该式为P=K+(W-K)·xf/E-(W-T)·(xf-zf)/E-(T-S)·(xf-yf)/E ...(柒)其中,P,为表示前述输出信号的组的值,K,为前述基准数据的值,即,关于前述四面体的各顶点之中的前述第1点的输出色值,
W,为关于前述四面体的各顶点之中的前述第2点的输出色值,S,为关于前述四面体的各顶点之中的除了前述第1及第2点的剩余的2点之中的、为接近于前述第1点的一方的点的第3点的输出色值,T,为关于前述四面体的各顶点之中的除了前述第1、第2及第3点的剩余的第4点的输出色值,E,为前述立方体区域的一边的长度,xf、yf、zf,为表示成为前述内插对象的立方体区域中的通过前述低位比特部的组而确定的坐标位置的值。
本发明的第2色变换装置,与本发明的第1色变换装置同样地,起到以下效果能够通过减少乘法器的个数而实现小型化,并谋求灰平衡的稳定化。
在前述第1色变换装置或第2色变换装置中,能够为以下构成前述内插单元,具备用于实现前述式(叁)或式(柒)的5个减法器和3个乘法器和1个加法器。
本发明的第3色变换装置,具备3维查找表,其将表示颜色的3个输入信号可取得的3维色空间分割为多个立方体区域,对关于各立方体区域的顶点的输出色值进行存储,并将前述输入信号的每一个分为高位比特部和低位比特部,基于前述高位比特部的组,将前述输出色值作为基准数据输出,和内插单元,其将成为内插对象的前述立方体区域分割为以连结作为前述基准数据所存储的第1点和离该第1点最远的第2点的对角线为棱线的6个四面体,基于前述低位比特部的组而选择前述四面体中的一个,在关于该所选择的四面体的各顶点的前述输出色值之间进行内插运算,由此生成对应于前述输入信号的每一个的输出信号的组;前述内插单元,具备进行前述内插运算的内插运算部;前述内插运算部,构成为至少具备3个乘法器,当前述3个输入信号位于灰轴上时,使在前述3个乘法器之中的2个乘法器中发生的量化误差得到消除。
前述构成的色变换装置,因为能够将乘法器以3个进行设计,所以能够谋求装置的小型化。进而,因为当3个输入信号位于灰轴上时,在前述3个乘法器之中的2个乘法器中发生的量化误差被消除地所构成,所以相比较于现有技术,能够谋求灰平衡的稳定化。从而,本发明的第3色变换装置,起到以下效果能够通过减少乘法器的个数而实现小型化,并谋求灰平衡的稳定化。
还有,本发明,并不限于作为上述的色变换装置的方式,也可以以作为具备其的图像显示装置的方式而实现。


图1是表示应用作为本发明的一实施例的色变换装置的液晶投影机100的整体的构成的框图。
图2是表示示于图1中的色变换电路110的详情的框图。
图3是概念性地表示由四面体选择部20进行的四面体的选择处理的状况的说明图。
图4是表示在本实施例和现有技术中相同的、从立方体区域来分割6个立方体的方法的说明图。
符号说明100...液晶投影机110...色变换电路130...液晶显示驱动电路140...液晶显示面板150...光源部151...灯152...透镜160...投影透镜200...屏幕10...3D-LUT
20...四面体选择部30...低位比特选择输出部40...内插运算部41、42、43、44、45...减法器46、47、48、49...乘法器50...加法器51...除法器K...基准数据W...最白色侧数据T1、T2、T3、T4、T5、T6...四面体具体实施方式
以下,对本发明的实施方式基于实施例按以下的顺序进行说明。
A.液晶投影机的概略构成B.色变换电路C.作用、效果D.其他的实施方式A.液晶投影机的概略构成图1,是表示应用了作为本发明的一实施例的色变换装置的液晶投影机的整体的构成的框图。该液晶投影机100,主要具备色变换电路110,液晶显示驱动电路130,液晶显示面板140,光源部150,和投影透镜160;使输入到色变换电路110中的图像信号显示于屏幕200上。还有,图像信号,可以是通过未图示的相机、扫描仪、个人计算机等的输入装置实时地输入到色变换电路110中的情况,和从未图示的计算机可读取的存储媒介物读出到色变化电路110中的情况的任一种。在此,在计算机可读取的存储媒介物中,可以是ROM、RAM、CD-ROM、FD、MD等的任一种。
色变换电路110,是对于作为数字信号的图像信号进行色变换的电路,实现本发明的色变换装置。还有,在图像信号是模拟信号的情况下,虽然未进行图示,但是为以下构成通过在该色变换电路110之前设置模拟/数字变换电路,在将作为模拟信号的图像信号变换成为作为数字信号的图像信号之后,进行色变换。
液晶显示驱动电路130,是对液晶显示面板140进行驱动的电路。液晶显示面板140,是对以液晶显示驱动电路130所生成的信号进行图像化的面板,将从光源部150所射出的光调制而将在投影中需要的光朝向屏幕200侧进行射出。
光源部150,为用于对图像进行投影的光源,主要具有发出光的灯151,和对从该灯151所发出的光进行聚光的透镜152。投影透镜160,是将从光源部150所投影的光放大而使之显示于屏幕上的透镜。
屏幕200,具有对从液晶投影机100的投影透镜160所投影的投影图像进行显示的投影面。该屏幕200,既可以是作为液晶投影机100而装配为一体的背投影型,另外,也可以是为分体的前投影型。
上述构成的液晶投影机100如下地进行工作。色变换电路110,对于所输入的图像信号进行色变换,向液晶显示驱动电路130输出图像信号。液晶显示驱动电路130,使液晶显示面板140反映色变换了的图像信号。液晶显示面板140,通过来自液晶显示驱动电路130的控制,将来自光源部150的光基于图像信号进行调制而使之进行透射。所调制过的光,通过投影透镜160而向屏幕200所投影,在屏幕200上图像得到显示。
B.色变换电路以下,关于色变换电路110的具体性构成及工作而进行说明。图2,是表示示于图1中的色变换电路110的详情的框图。该色变换电路110,如进行图示地,具备3D-LUT10,四面体选择部20,低位比特选择输出部30及内插运算部40。
构成作为色变换电路110的输入信号的图像信号的R、G、B信号,分别分割为高位比特部和低位比特部,各高位比特部发送给3D-LUT10,而各低位比特部则分别发送给四面体选择部20和低位比特选择输出部30。若以R、G、B信号的每一个的比特数为k(k为2以上的整数,优选k≥8。在此,k=8),则高位比特部为高位n比特,而低位比特部为除了高位n比特的低位(k-n)比特。
3D-LUT10为作为分别对应于R、G、B每个信号的高位比特部的组合的输出色值,而将k比特的R信号数据和k比特的G信号数据和k比特的B信号数据存储的存储器电路。3D-LUT10,相应于所输入的R、G、B每种信号的高位比特部的组合,将上述的(3×k)比特的数据输出。还有,如此的存储器电路,通过以下能够实现采用具有(n+n+n)比特的地址的RAM,将(n+n+n)比特的地址,从高位比特按顺序,分配为R信号的高位n比特、G信号的高位n比特、B信号的高位n比特,并将(3×k)比特的输出,例如,从最高位比特按k比特,分配为与R信号数据、G信号数据及B信号数据的输出。
若依照于上述构成的3D-LUT10,则将按照R、G、B的3色的3维色空间分割为多个立方体区域,表示关于各立方体区域的顶点的输出色值(k比特的R信号数据和k比特的G信号数据和k比特的B信号数据)。在本实施例的3D-LUT10中,成为以下构成将关于对应于R、G、B每个信号的高位比特部的组合的顶点的R信号数据、G信号数据、B信号数据的组作为基准数据K进行输出,并进一步将3种数据W、S、T输出。关于这3种数据W、S、T后面进行详述。还有,以下,将输出上述基准数据K的顶点,称为K点。将前述立方体区域的一边的长度设为E。
四面体选择部20,通过参照R、G、B每个信号的低位比特部的大小关系,从分割前述立方体区域所得到的6个四面体之中选择一个,将该选择结果输出。即,对基于低位比特部的组而确定的点到底位于前述6个四面体的哪个,通过参照各低位比特部的大小关系而进行判定,将对该所判定的四面体进行标识的标识信号V作为选择结果输出。
上述的6个四面体,与在“背景技术”的部分利用图4进行了说明的现有技术相同,以x=y,y=z、z=x的3个平面所分割出来。从而,6个四面体T1~T6(参照图3),可由以下的6个条件式表示。式(1)、式(2)、式(3)、式(4)、式(5)、式(6),分别表示第1四面体T1、第2四面体T2、第3四面体T3、第4四面体T4、第5四面体T5、第6四面体T6。
x≥z≥y...(1)x≥y>z...(2)y>x≥z...(3)y>z>x...(4)z≥y>x...(5)z>x≥y...(6)图3,是概念性地表示由四面体选择部20进行的四面体的选择处理的状况的说明图。如进行图示地,若设通过R、G、B每个信号的低位比特部的组而确定的坐标位置A为(xf,yf,zf),则通过研究该xf、yf、zf的大小关系而对到底符合于上述式(1)~(6)的哪式进行判定,可知A(xf,yf,zf)到底位于哪个四面体T1~T6。在图式的例中,A(xf,yf,zf)满足式(2)的条件,可知位于第2四面体T2中。该结果,如示于图2中地,四面体选择部20,将对该第2四面体T2进行标识的标识信号V作为选择结果进行输出。
从四面体选择部20所输出的四面体的标识信号V,发送给3D-LUT10和低位比特选择输出部30。3D-LUT10,如前述地,在作为关于根据R、G、B每个信号的高位比特部的组合而确定的K点的输出色值的基准数据K以外,还将3种数据W、S、T输出,关于其中的数据S、T,相应于上述标识信号V而确定。
关于上述3种数据W、S、T以下进行详述。示于图3中的xyz坐标中的原点,相当于对应于R、G、B每个信号的高位比特部的组合的K点。将立方体区域的8个顶点之内的离K点最远的点作为W点。该W点,也是立方体区域之内的最白色侧的点。上述6个四面体区域,以连结K点和W点的对角线为棱线地所分割。将关于如此的W点的输出色值作为最白色侧数据W,3D-LUT10对其进行输出。
相应于从四面体选择部20所发送来的标识信号V而选择一个四面体,在图3的例中是第2四面体T2,将该所选择的四面体T2的除上述K点和W点以外的2点之中的、与K点接近的一侧的点作为S点。然后将四面体T2之内的剩余的1点作为T点。3D-LUT10,将关于S点的输出色值的数据S、和关于T点的输出色值的数据T输出。还有,不管从四面体选择部20所发送来的标识信号V为哪个四面体,都将该四面体的除上述K点和W点以外的2点之中的、与K点接近的一侧的点作为S点,将四面体T2之内的剩余的1点作为T点。
低位比特选择输出部30,分别将R、G、B信号输入而对R、G、B每个信号的低位比特部进行选择而进行输出。低位比特选择输出部30,具有3个输出端子H、M、N,相应于从四面体选择部20所送来的标识信号V而确定将R、G、B信号的哪个低位比特从哪个输出端子H、M、N进行输出。具体地,如以下的(a)~(f)地确定。
(a)当选择了第1四面体T1时,即,xf≥zf≥yf时,使从输出端子H所输出的信号h为R信号的低位比特部的值xf,使从输出端子M所输出的信号m为B信号的低位比特部的值zf,使从输出端子N所输出的信号n为G信号的低位比特部的值yf。(即,h=xf,m=zf,n=yf)(b)当选择了第2四面体T2时,即,xf≥yf>zf时,h=xf,m=yf,n=zf(c)当选择了第3四面体T3时,即,yf>xf≥zf时,h=yf,m=xf,n=zf(d)当选择了第4四面体T4时,即,yf>zf>xf时,h=yf,m=zf,n=xf(e)当选择了第5四面体T5时,即,zf≥yf>xf时,h=zf,m=yf,n=xf(f)当选择了第6四面体T6时,即,zf>xf≥yf时,h=zf,m=xf,n=yf。
还有,在图2中,与图3的例示同样地,设在四面体选择部20中选择了第2四面体T2,进行以下图示分别从低位比特选择输出部30的输出端子H、输出端子M、输出端子N,输出了xf、yf、zf。以下,首先,设分别从输出端子H、输出端子M、输出端子N输出了xf、yf、zf而继续说明。
内插运算部40,由5个减法器41、42、43、44、45,3个乘法器46、47、48、49,1个加法器50,和一个除法器51所构成;进行采用了从3D-LUT10所输出的基准数据K,最白色侧数据W及关于S点、T点的输出色值的数据S、T,和从低位比特选择输出部30所输出的xf、yf、zf的内插运算处理。
具体地,从3D-LUT10所输出的基准数据K,通过乘法器49而发送给加法器50,并发送给第1减法器41的减算值输入端子。最白色侧数据W,被发送给第1减法器41的被减值输入端子,并被发送给第2减法器42的被减值输入端子。关于T点的输出色值的数据T,被发送给第2减法器42的减算值输入端子,并被发送给第4减法器44的被减值输入端子。关于S点的输出色值的数据S,被发送给第4减法器44的减算值输入端子。上述的结果,从第1减法器41输出W-K的运算结果,从第2减法器42输出W-T的运算结果,从第4减法器44输出T-S的运算结果。
另一方面,低位比特选择输出部30的输出端子H连接于第1乘法器46的一个端子和第3减法器43的被减值输入端子和第5减法器45的被减值输入端子,输出端子M连接于第5减法器45的减算值输入端子,输出端子N连接于第3减法器43的减算值输入端子。该结果,当以四面体选择部20选择了第2四面体T2时,从第3减法器43输出xf-zf的运算结果,从第5减法器45输出xf-yf的运算结果。
第1减法器41的输出(W-K)被发送给第1乘法器46,其与来自前述的低位比特选择输出部30的输出端子H的输出xf一起,从第1乘法器46输出(W-K)·xf的运算结果。第2减法器42的输出(W-T)和第3减法器43的输出(xf-zf)被发送给第2乘法器47,从第2乘法器47输出(W-T)·(xf-zf)的运算结果。第4减法器44的输出(T-S)和第5减法器45的输出(xf-yf)被发送给第3乘法器48,从第3乘法器48输出(T-S)·(xf-yf)的运算结果。
第1乘法器46的输出(W-K)·xf和第2乘法器47的输出(W-T)·(xf-zf)和第3乘法器48的输出(T-S)·(xf-yf),输入到加法器50。进而,如前述地,在加法器50中,通过乘法器49而输入从3D-LUT10所输出的基准数据K。乘法器49,乘以立方体区域的一边的长度E,因为E通常为1、2、4、8、16、...等的2的幂乘,所以仅进行比特移位。这些的结果,从加法器50,输出以下式(7)所示的输出值Q。
Q=K·E+(W-K)·xf-(W-T)·(xf-zf)-(T-S)·(xf-yf) ...(7)通过将加法器50的输出值Q输入到除法器51,输出以下式(8)所示的输出值P。除法器51,以立方体区域的一边的长度E去除,因为E通常为1、2、4、8、16、...等的2的幂乘,所以仅进行比特移位。
P=K+(W-K)·xf/E-(W-T)·(xf-zf)/E-(T-S)·(xf-yf)/E...(8)若依照于如以上地所构成的本实施例的色变换电路110,则输出以前述式(8)所示的输出值P。关于式(8)的意义以下进行说明。
如在“发明内容”的部分说明过地,在“背景技术”的部分说明过的第2个四面体T2中的内插方法,能够为前述的式(伍)。在此,在以下重新写一下式(伍)。
U(x,y,z)=K+(W-K)·xf-(W-T)·(xf-zf)-(T-S)·(xf-yf) ...(伍)式(伍),若将所述立方体区域的一边的长度E考虑进去,则与表示色变换电路110的输出值P的前述的式(8)相同。从而,本实施例的色变换电路110,能够与记载于特公昭58-16180号公报中的现有技术的色变换电路同样地通过内插处理而进行色变换。
表示前述的色变换电路110的输出值P的式(8),如前述地,是xf≥yf>zf成立而选择了第2四面体T2时的式子。相对于此,通过将xf代换为从低位比特选择输出部30的输出端子H所输出的信号h,将yf代换为从低位比特选择输出部30的输出端子M所输出的信号m,将zf代换为从低位比特选择输出部30的输出端子N所输出的信号n,能够将式(8)应用于选择了6个四面体T1~T6之中的任一个四面体的情况。进行了上述的向h、m、n的代换后的结果成为下式(9)P=K+(W-K)·h/E-(W-T)·(h-n)/E-(T-S)·(h-m)/E ...(9)其中,h、m、n,为通过上述(a)~(f)而确定的信号。
从而,本实施例的色变换电路110,不管在关于将立方体区域进行分割所得到的哪个四面体T1~T6的区域中,都能够与记载于特公昭58-16180号公报中的现有技术的色变换电路同样地通过内插处理而进行色变换。
还有,本实施例中的3D-LUT10相当于本发明的“3维查找表”,而3D-LUT10的对W点、T点、S点进行输出的功能和低位比特选择输出部30和内插运算部40则相当于本发明的“内插单元”。
C.作用、效果若依照于如以上地所构成的本实施例的色变换电路110,则从式(8)或式(9)来看,因为能够将乘法器以3个(乘法器49只是移位寄存器)进行设计,所以能够谋求装置的小型化。进而,当3个输入信号位于灰轴上时,即xf=yf=zf时(h=m=n时),式(8)或式(9)中的第2项和第3项,必定成为0。即使在负责第2项、第3项的乘法器中发生量化误差也必定成为0。因此,因为仅有可能仅在负责第1项的乘法器中发生量化误差,所以相比较于现有技术,能够谋求灰平衡的稳定化。即,本实施例的色变换电路110,起到以下效果能够通过减少乘法器的个数而实现小型化,并谋求灰平衡的稳定化。
D.其他的实施方式还有,本发明并不限于上述的实施例、实施方式,可以在不脱离其主旨的范围内在各种方式下进行实施。
(1)变形例1虽然在前述实施例中,表示颜色的3个输入信号,是R、G、B信号,但是代替于此,能够为表示辉度(Y)的辉度信号(Y信号),表示从B信号减去了Y信号的色差(U)的第1色差信号(U信号),和表示从R信号减去了Y信号的色差(V)的第2色差信号(V信号)。而且,只要是表示颜色的3个输入信号,就能够换成任何的信号。
(2)变形例2前述实施例中的R、G、B每个信号的高位比特部及低位比特部的各自的比特数能够换为与前述实施例的例不相同的比特数。只要满足与以实施例说明过的比特长度有关的各条件,就能够换成任何的比特数。
(3)变形例3虽然在前述实施例中,色变换电路110,为实现基于前述的式(8)或式(9)的运算处理的构成,但是并非一定按照这些式子,只要是至少具备3个乘法器,当前述3个输入信号位于灰轴上时,在前述3个乘法器之中的2个乘法器发生的量化误差可被消除的构成,就能够为任何的构成。
(4)变形例4虽然在前述实施例中,以应用本发明的色变换装置的液晶投影机为例而进行说明,但是并不限定于此,在采用了DMD(Digital MicromirrorDevice,数字微镜器件)的投影机、CRT(Cathode Ray Tube,阴极射线管)、PDP(Plasma Display Panel,等离子体显示面板)、FED(Field EmissionDisplay,场致发射显示器)、EL(Electro Luminescence,电致发光)、直视型液晶显示装置等的各种的图像显示装置中也可以进行应用。还有,DMD为美国德克萨斯仪器公司的商标。而且,在彩色打印机、彩色复印机等中也可以进行应用。
权利要求
1.一种色变换装置,其具备3维查找表,其将表示颜色的3个输入信号可取得的3维色空间分割为多个立方体区域,对关于各立方体区域的顶点的输出色值进行存储,并将前述输入信号的每一个分为高位比特部和低位比特部,基于前述高位比特部的组,将前述输出色值作为基准数据输出,和内插单元,其将成为内插对象的前述立方体区域分割为以连结作为前述基准数据所存储的第1点和离该第1点最远的第2点的对角线为棱线的6个四面体,基于前述低位比特部的组而选择前述四面体中的一个,在关于该所选择的四面体的各顶点的前述输出色值之间进行内插运算,由此生成对应于前述输入信号的每一个的输出信号的组;其特征在于前述内插单元,具备实现基于下式的运算处理的多个运算电路,该式为P=K+(W-K)·h/E-(W-T)·(h-n)/E-(T-S)·(h-m)/E,其中,P,为表示前述输出信号的组的值,K,为前述基准数据的值,即,关于前述四面体的各顶点之中的前述第1点的输出色值,W,为关于前述四面体的各顶点之中的前述第2点的输出色值,S,为关于前述四面体的各顶点之中的除了前述第1及第2点之外的剩余的2点之中的、为接近于前述第1点的一方的点的第3点的输出色值,T,为关于前述四面体的各顶点之中的除了前述第1、第2及第3点之外的剩余的第4点的输出色值,E,为前述立方体区域的一边的长度,h、m、n,为表示成为前述内插对象的立方体区域中的、通过前述低位比特部的组而确定的坐标位置的xf、yf、zf之中的任一个,基于表示根据前述低位比特部的组选择哪个四面体的xf、yf、zf的大小关系如下地确定xf≥zf≥yf时,h=xf,m=zf,n=yfxf≥yf>zf时,h=xf,m=yf,n=zfyf>xf≥zf时,h=yf,m=xf,n=zfyf>zf>xf时,h=yf,m=zf,n=xfzf≥yf>xf时,h=zf,m=yf,n=xfzf>xf≥yf时,h=zf,m=xf,n=yf。
2.按照权利要求1所述的色变换装置,其特征在于前述内插单元,具备用于实现前述式的5个减法器、3个乘法器和1个加法器。
3.一种色变换装置,其具备3维查找表,其将表示颜色的3个输入信号可取得的3维色空间分割为多个立方体区域,对关于各立方体区域的顶点的输出色值进行存储,并将前述输入信号的每一个分为高位比特部和低位比特部,基于前述高位比特部的组,将前述输出色值作为基准数据输出,和内插单元,其将成为内插对象的前述立方体区域分割为以连结作为前述基准数据所存储的第1点和离该第1点最远的第2点的对角线为棱线的6个四面体,基于前述低位比特部的组而选择前述四面体中的一个,在关于该所选择的四面体的各顶点的前述输出色值之间进行内插运算,由此生成对应于前述输入信号的每一个的输出信号的组;其特征在于具备在基于前述低位比特部的组而选择了前述6个四面体之中的预定的四面体时,实现基于下式的运算处理的多个运算电路,该式为P=K+(W-K)·xf/E-(W-T)·(xf-zf)/E-(T-S)·(xf-yf)/E,其中,P,为表示前述输出信号的组的值,K,为前述基准数据的值,即,关于前述四面体的各顶点之中的前述第1点的输出色值,W,为关于前述四面体的各顶点之中的前述第2点的输出色值,S,为关于前述四面体的各顶点之中的除了前述第1及第2点之外的剩余的2点之中的、为接近于前述第1点的一方的点的第3点的输出色值,T,为关于前述四面体的各顶点之中的除了前述第1、第2及第3点之外的剩余的第4点的输出色值,E,为前述立方体区域的一边的长度,xf、yf、zf,为表示成为前述内插对象的立方体区域中的、通过前述低位比特部的组而确定的坐标位置的值。
4.按照权利要求3所述的色变换装置,其特征在于前述内插单元,具备用于实现前述式的5个减法器、3个乘法器和1个加法器。
5.一种色变换装置,其具备3维查找表,其将表示颜色的3个输入信号可取得的3维色空间分割为多个立方体区域,对关于各立方体区域的顶点的输出色值进行存储,并将前述输入信号的每一个分为高位比特部和低位比特部,基于前述高位比特部的组,将前述输出色值作为基准数据输出,和内插单元,其将成为内插对象的前述立方体区域分割为以连结作为前述基准数据所存储的第1点和离该第1点最远的第2点的对角线为棱线的6个四面体,基于前述低位比特部的组而选择前述四面体中的一个,在关于该所选择的四面体的各顶点的前述输出色值之间进行内插运算,由此生成对应于前述输入信号的每一个的输出信号的组;其特征在于前述内插单元,具备进行前述内插运算的内插运算部;前述内插运算部,构成为至少具备3个乘法器,当前述3个输入信号位于灰轴上时,使在前述3个乘法器之中的2个乘法器中发生的量化误差消除。
6.一种图像显示装置,其特征在于具备权利要求1~5中的任何一项所述的色变换装置。
全文摘要
本发明,通过减少乘法器的个数而实现小型化,并谋求灰平衡的稳定化。色变换电路(110),具备3D-LUT(10),四面体选择部(20),低位比特选择输出部(30)及内插运算部(40)。内插运算部(40),为实现基于下式的运算处理的电路,该式为P=K+(W-K)·x
文档编号H04N1/56GK101047772SQ20071009131
公开日2007年10月3日 申请日期2007年3月29日 优先权日2006年3月29日
发明者小山文夫 申请人:精工爱普生株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1