无线电设备和用于控制无线电设备的方法

文档序号:7556293阅读:147来源:国知局
专利名称:无线电设备和用于控制无线电设备的方法
技术领域
各实施例一般涉及无线电设备和用于控制无线电设备的方法。
背景技术
在通常使用的无线电通信系统中,多个不同的无线电系统可以共存。例如,可以存在以下无线电系统中的一个或多个或其它无线电系统:
毫微微蜂窝:毫微微蜂窝基站可以充当向用户提供蜂窝接入的本地基站(BS);
WLAN (基于IEEE 802.lla/b/g/n/ac/ad):无线LAN设备通常可以在2.4GHz波段(或5GHz波段)中操作。可能存在与类似于ZigBee的其他系统相干扰的风险;
ZigBee (基于IEEE 802.15.4):此无线电接入技术(RAT)通常可以在2.4GHz波段中操作。可能存在与类似于WLAN的其它系统相干扰的风险。“手动”参数化一般是为了保证无线电通信系统与多个不同无线电系统的有限干扰水平的唯一解决方案。


在图中,相同的参考标号在不同的视图中一般自始至终指的是相同的部分。附图不一定是按比例,而是通常着重于举例说明本发明的原理。在以下说明中,将参照以下附图来描述本发明的各种实施例,在附图中:
图1示出依照实施例的无线电系统的部署方案;
图2示出依照实施例的具有家庭/办公室内干扰的无线电系统的部署方案;
图3示出依照实施例的具有家庭/办公室间干扰的无线电系统的部署方案;
图4示出依照实施例的具有资源的家庭/办公室间共享的无线电系统的部署方案;
图5示出依照实施例的具有家庭/办公室间资源共享的无线电系统的部署方案;
图6示出依照实施例的无线电设备(其还可以被称为无线资源控制器);
图7示出依照实施例的无线电设备(其还可以被称为无线资源控制器);
图8示出依照实施例的无线电通信设备(其还可以被称为无线资源控制器);
图9示出依照实施例的无线电设备(其还可以被称为本地资源管理器设备);
图10示出依照实施例的无线电设备(其还可以被称为本地资源管理器设备);
图11示出举例说明依照实施例的用于控制无线电设备(无线资源控制器)的方法的流程 图12示出举例说明依照实施例的用于控制无线电设备(无线资源控制器)的方法的流程 图13示出举例说明依照实施例的用于控制无线电设备(本地资源管理器设备)的方法的流程 图14示出举例说明依照实施例的用于控制无线电设备(本地资源管理器设备)的方法的流程 图15示出依照实施例的无线资源控制器的部署方案;
图16示出依照实施例的与家庭/办公室设备内的本地资源控制器通信的无线资源控制器的方案;
图17示出依照实施例的用于检测附近无线资源控制器的信标广播的方案;
图18示出依照实施例的用于检测远处无线资源控制器的信标广播的方案;以及图19示出根据实施例的建立物理或虚拟链路并协商资源使用的相邻无线资源控制器的方案。
具体实施例方式在各种实施例中,可以提供无线电设备(无线资源控制器WRC,如下面将更详细地解释的),可以向其分配一个或多个无线电通信设备(例如一个或多个接入点、一个或多个基站、一个或多个WLAN无线电接入技术(RAT)、一个或多个ZigBee RAT、和/或一个或多个蓝牙RAT)。无线资源控制器可以与其它无线资源控制器协商用于为其分配的无线电通信设备的无线电资源。在已就无线电资源达成一致之后,无线资源控制器可以通过与无线电通信设备中的无线电设备(本地资源控制器LRC,如下面将更详细地解释的)交换信息,来向无线电通信设备分配其已经 与其它无线资源控制器达成一致的无线电资源。以下详细说明参照附图,附图以图解的方式示出可以实施本发明的特定细节和实施例。可以利用其它实施例,并且在不脱离本发明的范围的情况下,可以进行结构、逻辑、以及电气修改。各种实施例不一定是互相排斥的,因为可以将某些实施例与一个或多个其它实施例组合以形成新的实施例。因此,不应以限制性的意义来理解以下详细说明,并且由随附权利要求来限定本发明的范围。词语“示例性”在本文中用来意指“充当示例、实例、或例示”。在本文中被描述为“示例性”的任何实施例或设计不一定被理解为相对于其它实施例或设计是优选或有利的。根据各种实施例的无线电通信设备可以是被配置为用于无线通信的设备。在各种实施例中,无线电通信设备可以是终端用户移动设备(MD)。在各种实施例中,无线电通信设备可以是任何种类的移动电话、个人数字助理、移动计算机、或被配置为用于与移动通信基站或接入点通信的任何其它移动设备,且还可以被称为用户设备(UE)。在各种实施例中,无线电通信设备可以是毫微微蜂窝基站或家庭节点B基站。在各种实施例中,可以结合依照IEEE 802.16m的高级基站(高级BS、ABS)和高级移动站(高级MS、AMS)。根据各种实施例的无线电设备可以包括例如在由终端用户移动设备执行的处理中使用的存储器。在实施例中使用的存储器可以是易失性存储器,例如DRAM (动态随机存取存储器)或非易失性存储器,例如PROM(可编程只读存储器)、EPR0M(可擦除PR0M)、EEPR0M(电可擦除PR0M)、或闪速存储器,例如浮栅存储器、电荷俘获存储器、MRAM (磁阻随机存取存储器)或PCRAM (相变随机存取存储器)。在实施例中,可以将“电路”理解为任何种类的逻辑实现实体,其可以是专用电路或存储在存储器中的处理器执行软件、固件、或其任何组合。因此,在实施例中,“电路”可以是硬接线逻辑电路或可编程逻辑电路,诸如可编程处理器,例如微处理器(例如复杂指令集计算机(CISC)处理器或精简指令集计算机(RISC)处理器)。“电路”还可以是处理器执行软件,例如任何种类的计算机程序,例如使用诸如例如Java的虚拟机代码的计算机程序。依照替换实施例,还可以将下面将更详细地描述的各功能的任何其它种类的实现理解为“电路”。术语“耦合”或“连接”意图分别包括直接“耦合”或直接“连接”以及间接“耦合”或间接“连接”。术语“协议”意图包括为了实现通信定义的任何层的一部分而提供的任何软件段。“协议”可以包括以下各层中的一层或多层的功能:物理层(层I)、数据链路层(层2)、网络层(层3)、或所提及的层或任何上层的任何其它子层。在各种实施例中,可以将无线电设备配置为家庭基站,例如作为家庭节点B,例如作为家庭(e)节点B。在实例中,可以依照3GPP (第三代合作伙伴计划)将‘家庭节点B’理解为最适合于在住宅或团体环境(例如,私人住宅、公共餐馆或小型办公区域)中使用的蜂窝式移动无线电基站的裁减型式。在遍及本说明书的各示例中,术语‘家庭基站’、‘家庭节点B’、‘家庭eNodeB’、‘毫微微蜂窝’、‘毫微微蜂窝基站’指的是同一逻辑实体且在整个说明书中将自始至终被可互换地使用。可以依照3GPP标准来提供毫微微蜂窝基站(FC-BS),不过还可以针对任何其它移动无线电通信标准、例如针对IEEE 802.16m来提供毫微微蜂窝基站(FC-BS)。所谓的‘家庭基站’概念应支持在家接收和发起蜂窝式呼叫,并使用宽带连接(通常为DSL(动态订户线)、电缆调制解调器或光纤)向绕过宏观网络架构(分别包括继承NodeB或E-NodeB)即分别为继承UTRAN (UMTS (通用移动通信系统)陆地无线接入网)或E-UTRAN的运营商的核心网络载送业务。毫微微蜂窝应该用所有现有和未来的手机进行操作,而不是要求客户升级到昂贵的双模手机或UMA (未授权移动接入) 设备。从客户的角度出发,‘家庭NodeB’为用户提供具有用于无论是在家还是在其它地方的所有呼叫的内置个人电话簿的单个移动手机。此外,对于用户而言,仅存在一个合同和一个帐单。在改善的室内网络覆盖以及在增加的业务吞吐量方面可以看到提供‘家庭NodeB’的另一效果。此外,可以减少功率消耗,因为可以预期手机与‘家庭基站’之间的无线电链路质量比手机与继承‘NodeB’之间的链路好得多。在实施例中,可以仅对封闭用户组允许接入‘家庭NodeB’,即可以将通信服务供应局限于特定公司的员工或家庭成员,通常局限于封闭用户组的成员。这种‘家庭基站’在3GPP中可以被称为是‘封闭用户群小区’(CSG小区)。指示是CSG小区的移动无线电小区可能需要将其CSG身份提供给移动无线电通信终端设备(例如UE)。如果其CSG身份被例如列在移动无线电通信终端设备的CSG白名单(被保持在移动无线电通信终端设备中或在相关智能卡中的CSG身份的列表,所述相关智能卡指示特定移动无线电通信终端设备被允许用于通信的移动无线电小区)中的话,此类移动无线电小区可能仅适合于移动无线电通信终端设备。在各种实施例中,家庭基站可以是经由固定线路(例如DSL)连接到移动无线电核心网络或无线地连接到移动无线电宏小区的消费者设备。其可以提供对继承移动设备的接入并增加建筑物中的覆盖度和每个用户的带宽。在各种实施例中,家庭基站可以在开放或封闭模式下运行。在封闭模式下,家庭基站只能提供对所谓的封闭用户群(CSG)的接入。用于此类封闭用户群的示例是例如家庭成员或公司的某些或全部员工。由于‘毫微微蜂窝’实体或‘家庭基站’实体通常将是小尺寸的盒且在物理上受到用户的控制,换言之,在MNO (移动网络运营商)的域之外,其可以漫游地使用,即用户可以决定在其公寓中、而且当其离开家时(例如作为商务旅游者)在旅馆中进行操作。另外,可以仅临时地操作‘家庭NodeB’,即可以将其经常开启和关闭,例如由于用户不想整夜对其进行操作或者当其离开其房间时。为设备提供了各种实施例,并且为方法提供了各种实施例。应理解的是,设备的基本性质也适用于方法,反之亦然。因此,为了简洁起见,可以省略此类性质的重复说明。在各种实施例中,一个或多个(无线电)资源中的(无线电)资源可以被理解为例如传输频率、传输调制方案、传输代码、和/或传输时隙、或所发送信号的任何其它特征。图1示出依照实施例的无线电系统的部署方案100,其表示其中多个不同无线电系统可以共存的环境。例如,可以考 虑以下无线电系统的存在(应理解的是,可以将其它系统直接包括在此考虑中):
-毫微微蜂窝:毫微微蜂窝(FC)基站(BS)可以充当向用户提供蜂窝接入的本地BS ;
-WLAN (基于IEEE 802.lla/b/g/n/ac/ad):无线LAN设备通常可以在2.4GHz波段(或5GHz波段)中操作。可能存在与像ZigBee的其他系统相干扰的风险;
-ZigBee (基于IEEE 802.15.4):此无线电接入技术(RAT)通常可以在2.4GHz波段中操作。可能存在与像WLAN的其它系统相干扰的风险。在异构家庭/办公室方案100中,示出了具有多个房间102、104、106、108、110(通
常具有建筑物的多个部分)的建筑物148。可以在每个房间中(通常在建筑物的每个部分中)提供诸如例如毫微微蜂窝基站、WLAN RAT (例如WLAN接入点、WLAN AP)或ZigBee RAT之类的无线电通信设备。可以在第一房间102中提供第一 WLAN RAT 112、第一 ZigBee RAT 116和第一毫微微蜂窝基站120。可以在第二房间104中提供第二 WLAN RAT 114和第二毫微微蜂窝基站122。可以在第三房间106中提供第三毫微微蜂窝基站124。可以在第四房间108中提供第二 ZigBee RAT 118和第四毫微微蜂窝基站126。可以在第五房间110中提供第五毫微微蜂窝基站128。在每个房间中,可以操作其他无线电通信设备,诸如终端用户移动设备(MD),诸如用户设备(UE)。在第一房间102中,可以操作第一 MD 130。在第二房间104中,可以操作第二 MD 132和第三MD 134。在第三房间106中,可以操作第四MD 136。在第四房间108中,可以操作第五MD 138。在第五房间110中,可以操作第六MD 140、第七MD 142和第八MD 144。可以在建筑物148外面提供无线电基站146,诸如宏小区基站,诸如继承无线电基站。图1示出表示每个家庭/办公室操作无线系统的典型异构多家庭/办公室背景的典型使用方案。依照各种实施例,可以由不同的WRC来管理这些系统中的每一个系统。虽然图1示出例如可能存在于家庭部署或办公室方案中的部署,但应理解的是,各种实施例的应用不限于此类方案。每当存在无线电通信设备时,可以应用各种实施例。虽然对各种实施例给出的方案是以家庭/办公室为中心的,但所有实施例和实现方式都可以被直接扩展至其它情形,例如工厂环境等。根据各种实施例,可以通过在家庭/办公室中引入无线电设备(无线资源控制器(WRC))来提供适当的干扰管理机制,以便解决各种类型的家庭/办公室内和/或家庭/办公室间干扰。结果给出一些干扰方案。图2示出依照实施例的具有家庭/办公室内干扰的无线电系统的部署方案200。部署方案200的基本布局与图1中相同,并且省略其重复解释。在部署方案200中,可以在同样的家庭/办公室内、例如在房间102中操作第一WLAN RAT 112和第一 ZigBee RAT 116。如箭头202所指示的,可以将其假设为在2.4GHz波段中操作和干扰。可能存在第一房间102中的第一 WLAN RAT 112和第一 ZigBee RAT 116之间的家庭/办公室内干扰。结果,两个系统的性能可能降低。图3示出依照实施例的具有家庭/办公室间干扰的无线电系统的部署方案300。部署方案300的基本布局与图1中相同,并且省略其重复解释。在部署方案300中,第二 WLAN RAT 114和第一 ZigBee RAT 116可以在不同的家庭/办公室中操作,例如在不同但相邻的公寓中,例如在第一房间102中和在第二房间104中。如箭头302所指示的,可以将其假设为在2.4GHz波段中操作和干扰。可能存在第一房间102中的第二 WLAN RAT 114与第二房间104中的第一 ZigBee RAT 116之间的家庭/办公室间干扰。结果,两个系统的性能可能降低。图4示出依照实施例的具有资源的家庭/办公室间共享的无线电系统的部署方案400。部署方案400的基本布局与图1中相同,并且省略其重复解释。在第三房间106中,可以提供第三WLAN RAT 404。在部署方案400中,·多个WLAN可能竞争同一频谱。多个WLAN可以在不同的家庭/办公室(例如在不同但相邻的公寓中)操作。例如,如箭头402所指示的,可以将第一房间102中的第一 WLAN RAT 116、第二房间104中的第二 WLAN RAT 114和第三房间中的第三WLAN RAT 404假设为共享同一频带以进行操作。在WLAN的数目足够大的情况下,系统性能可能降低。依照各种实施例,可以提供如何处理此类情况的构架。图5示出依照实施例的具有家庭/办公室间资源共享的无线电系统的部署方案500。部署方案500的基本布局与图1中相同,并且省略其重复解释。在部署方案500中,多个毫微微蜂窝BS (充当本地蜂窝BS)可以在不同的家庭/办公室(例如在不同、但相邻的公寓中)操作。如箭头502所指示的,可以将第一房间102中的第一毫微微蜂窝BS 120、第二房间104中的第二毫微微蜂窝BS 122、第三房间106中的第三毫微微蜂窝BS 124、第四房间108中的第四毫微微蜂窝BS 126、和第五房间110中的第五毫微微蜂窝BS 128假设为共享相同的无线电资源以进行操作。在毫微微蜂窝的数目足够大的情况下,可用无线电资源可能不足。不是所有的毫微微蜂窝都可以获得足够的资源。在各种实施例中,可以提供如何处理此类情况的构架。各种实施例将解决上述各种方案并提供用于估计和管理各种类型的干扰的设备和方法,包括上文举例说明的干扰类型。虽然使用术语“家庭/办公室”环境,但所有实施例可以直接扩展至其它情形,诸如工厂环境等。图6示出依照实施例的无线电设备600 (其还可以被称为无线资源控制器600)。无线电设备600可以包括:信号发送机602,其被配置为发送信号,该信号被以一定的强度进行发送;响应接收机604,其被配置为从接收到所发送信号的无线电通信设备(未示出)接收对所发送信号的响应消息,该响应消息标识接收到的消息;以及估计电路606,其被配置为基于所述无线电通信设备已进行响应的信号的强度来估计来自无线电设备600的无线电通信设备的可到达性。信号发送机602、响应接收机604和估计电路606可以例如经由诸如例如电缆或计算机总线之类的电连接608或经由任何其它适当的电连接相互耦合以交换电信号。在各种实施例中,可到达性可以包括距离(例如几何距离)、信号的衰减、或用于两个设备之间的位置关系的任何其它度量。在各种实施例中,可到达性可以包括涉及距离(例如几何距离)、信号的衰减、或用于两个设备之间的位置关系的任何其它度量中的任何一个的任何度量。在各种实施例中,信号发送机602还可以被配置为发送多个信号,该信号被以不同的强度进行发送。在各种实施例中,可以将信号的强度理解为传输强度,例如所发送信号的传输功率。在各种实施例中,可以将信号的强度理解为表示最大跳数,可以从接收信号并中继信号的设备中继所述信号。应理解的是,在这种情况下可以将关于距离无线电设备600的当前跳数的信息添加至中继信号,增加I。在各种实施例中,还可以将信号发送机602配置为给信号提供用于区分各发送信号的强度的区别特征。在各种实施例中,所述区别特征可以包括以下特征中的至少一个:相应信号的发送时间(即,发送信号的时间点;可以在不同的时间点发送具有不同强度的信号以便其为可区别的);相应信号的发送持续时间(即,期间发送信号的持续时间;可以针对不同长度的时间间隔来发送具有不同强度的信号以便其为可区别的);相应信号的发送频率;与相应信号一起发送的代码;以及金氏码,如下文将更详细地解释的,其与相应信号一起发送。

在各种实施例中,还可以将信号发送机602配置为通过广播来发送信号。在各种实施例中,还可以将信号发送机602配置为在专用信道上通过广播来发送信号。在各种实施例中,所发送信号可以包括无线电设备600的标识符。在各种实施例中,还可以将信号发送机602配置为根据以下无线电通信技术族中的一个的至少一个无线电通信技术来发送信号。-近程无线电通信技术族;
-大城市区系统无线电通信技术族;
-蜂窝式广域无线电通信技术族;
-无线电通信技术族,其包括其中以随机方式来提供对无线电资源的接入的无线电通信技术;以及
-无线电通信技术族,其包括其中以中央控制方式来提供对无线电资源的接入的无线电通信技术。在各种实施例中,还可以将信号发送机602配置为根据以下无线电通信技术中的至少一种来发送信号:蓝牙无线电通信技术、超宽带(UWB)无线电通信技术、无线局域网无线电通信技术(例如根据IEEE 802.11 (例如IEEE 802.1 In)无线电通信标准))、IrDA (红外数据组织)、Z波和ZigBee、HiperLAN/2((高性能无线电LAN ;可替换的类似ATM 5 GHz标准化技术)、IEEE 802.lla(5 GHz),IEEE 802.llg(2.4 GHz),IEEE 802.lln、IEEE 802.1lVHT(VHT =甚高吞吐量),例如用于6GHz以下VHT的IEEE 802.1lac和用于60 GHz处的VHT的IEEE 802.llad、微波存取全球互通(WiMax)(例如根据IEEE 802.16无线电通信标准,例如固定WiMax或移动WiMax)、WiPro、HiperMAN (高性能无线电城域网)、IEEE 802.16m高级空中接口、全球移动通信系统(GSM)无线电通信技术、通用分组无线业务(GPRS)无线电通信技术、GSM演进的增强数据速率(EDGE)无线电通信技术、和/或第三代合作伙伴计划(3GPP)无线电通信技术(例如UMTS (通用移动通信系统)、FOMA (自由移动的多媒体接入)、3GPP LTE (长期演进)、高级3GPP LTE (高级长期演进))、CDMA2000 (码分多址2000)、CDPD(蜂窝式数字分组数据)、Mobitex、3G (第三代)、CSD (电路交换数据)、HSCSD (高速电路交换数据)、UMTS (3G)(通用移动通信系统(第三代))、W-CDMA (UMTS)(宽带码分多址(通用移动通信系统))、HSPA (高速分组接入)、HSDPA (高速下行链路分组接入)、HSUPA (高速上行链路分组接入)、HSPA+ (高速分组接入加)、UMTS-TDD (通用移动通信系统-时分双工)、TD-CDMA(时分-码分多址)、TD-CDMA (时分-同步码分多址)、3GPP Rel.8 (准4G)(第三代合作伙伴计划版本8 (准第四代))、UTRA (UMTS陆地无线电接入)、E - UTRA (演进UMTS陆地无线电接入)、高级LTE (4G)(高级长期演进(第4代))、cdmaOne (2G)、CDMA2000 (3G)(码分多址2000 (第三代))、EV-D0 (最优化演进数据或仅演进数据)、AMPS (IG)(高级移动电话系统(第一代))、TACS/ETACS (完全接入通信系统/扩展完全接入通信系统)、D_AMPS (2G)(数字AMPS (第二代))、PTT (按键通话)、MTS (移动电话系统)、MTS (改进型移动电话系统)、AMTS(高级移动式电话系统)、OLT (Norwegian for Offentlig Landmobil Telefoni,公共陆上移动电话)、MTD (Mobiltelefonisystem D或移动电话系统D的瑞典语缩写)、Autotel/PALM(公用自动化陆地移动)、ARP (Autoradiopuhelin “汽车无线电电话”的芬兰语)、NMT (北欧移动电话)、Hicap (NTT (日本电报电话)的高容量版本)、⑶I3D (蜂窝式数字分组数据)、Mobitex, DataTAC, iDEN (集成数字增强网络)、I3DC (个人数字蜂窝)、CSD (电路交换数据)、PHS (个人手持式电话系统)、WiDEN (宽带集成数字增强网络)、iBurst、和未授权移动接入(UMA,也称为3GPP通用接入网络,或GAN标准))。在各种实施例 中,所述响应消息可以是根据以下无线电通信技术族之一的至少一个无线电通信技术的消息:
-近程无线电通信技术族;
-大城市区系统无线电通信技术族;
-蜂窝式广域无线电通信技术族;
-无线电通信技术族,其包括其中以随机方式来提供对无线电资源的接入的无线电通信技术;以及
-无线电通信技术族,其包括其中以中央控制方式来提供对无线电资源的接入的无线电通信技术。在各种实施例中,所述响应消息可以是根据以下无线电通信技术中的至少一个的消息:蓝牙无线电通信技术、超宽带(UWB)无线电通信技术、无线局域网无线电通信技术(例如根据IEEE 802.11 (例如IEEE 802.1ln)无线电通信标准))、IrDA (红外数据组织)、Z波和ZigBee、HiperLAN/2 ((高性能无线电LAN ;可替换的类似于ATM 5 GHz标准化技术)、IEEE 802.1la (5 GHz)、IEEE 802.1lg (2.4 GHz)、IEEE 802.lln、IEEE 802.1lVHT (VHT=甚高吞吐量),例如用于6GHz以下VHT的IEEE 802.1lac和用于60 GHz的VHT的IEEE802.llad、微波存取全球互通(WiMax)(例如根据IEEE 802.16无线电通信标准,例如固定WiMax或移动WiMax)、WiPro、HiperMAN (高性能无线电城域网)、IEEE 802.16m高级空中接口、全球移动通信系统(GSM)无线电通信技术、通用分组无线电业务(GPRS)无线电通信技术、GSM演进增强数据速率(EDGE)无线电通信技术、和/或第三代合作伙伴计划(3GPP)无线电通信技术(例如UMTS (通用移动通信系统)、F0MA (自由移动的多媒体接入)、3GPP LTE(长期演进)、高级3GPP LTE (高级长期演进))、CDMA2000 (码分多址2000) XDTO (蜂窝式数字分组数据)Mobitex、3G (第三代)、CSD (电路交换数据)、HSCSD (高速电路交换数据)、UMTS(3G)(通用移动通信系统(第三代))、W-CDMA (UMTS)(宽带码分多址(通用移动通信系统))、HSPA (高速分组接入)、HSDPA (高速下行链路分组接入)、HSUPA (高速上行链路分组接入)、HSPA+ (高速分组接入加)、UMTS-TDD (通用移动通信系统-时分双工)、TD-CDMA (时分-码分多址)、TD-CDMA (时分-同步码分多址)、3GPP Rel.8 (准4G)(第三代合作伙伴计划版本8 (准第四代))、UTRA (UMTS陆地无线电接入)、E - UTRA (演进UMTS陆地无线电接入)、高级 LTE (4G)(高级长期演进(第 4 代))、cdmaOne (2G)、CDMA2000 (3G)(码分多址 2000 (第三代))、EV-D0 (最优化演进数据或仅演进数据)、AMPS (IG)(高级移动电话系统(第一代))、TACS/ETACS (完全接入通信系统/扩展完全接入通信系统)、D_AMPS (2G)(数字AMPS (第二代))、PTT (按键通话)、MTS (移动电话系统)、MTS (改进型移动电话系统)、AMTS (高级移动式电话系统)、0LT (Norwegian for Offentlig Landmobil Telefoni,公共陆上移动电话)、MTD (Mobiltelefonisy stem D或移动电话系统D的瑞典语缩写)、Autotel/PALM (公用自动化陆地移动)、ARP (Autoradiopuhelin “汽车无线电电话”的芬兰语)、NMT (北欧移动电话)、Hicap (NTT (日本电报电话)的高容量版本)、CDI3D (蜂窝式数字分组数据)、Mobitex、DataTAC, iDEN (集成数字增强网络)、PDC (个人数字蜂窝)、CSD (电路交换数据)、PHS (个人手持式电话系统)、WiDEN (宽带集成数字增强网络)、iBurst、和未授权移动接入(UMA,也称为3GPP通用接入网络,或GAN标准))。在各种实施例中,所述响应消息可以与由所述多个信号中的信号发送的消息相同。在各种实施例中,所述响应消息可以与由所述多个信号中的信号发送的消息不同。在各种实施例中,所述响应消息可以包括所接收到的信号的标识符。在各种实施例中,所述响应消息可以包括无线电通信设备的标识符。在各种实施例中,无线电设备600还可以包括被配置为基于响应消息识别无线电通信设备的无线电通信设备识别电路(未示出)。在各种实施例中,估计电路606还可以被配置为:如果接收到对以预定强度发送的信号的响应,则估计无线电通信设备的从无线电设备600的可到达性小于预定可到达性。在各种实施例中,估计电路606还可以被配置为:如果未接收到对以预定强度发送的信号的响应,则估计无线电通信设备的从无线电设备600的可到达性高于预定可到达性。在各种实施例中,估计电路606还可以被配置为:如果接收到对以第一预定强度发送的信号的响应,而未接收到对以第二预定强度发送的信号的响应,则估计无线电通信设备的从无线电设备600的可到达性小于第一预定可到达性且高于第二预定可到达性。在各种实施例中,无线电设备600可以被配置为与跟作为无线电通信设备的无线电设备600相同类型的另一无线电设备通信。换言之,所述无线电通信设备可以是与无线电设备600相同的类型。图7示出依照实施例的无线电设备700(其还可以被称为无线资源控制器(WRC))。类似于图6的无线电设备600,无线电设备700可以包括:信号发送机602,其被配置为发送信号,该信号被以一定强度发送;响应接收机604,其被配置为从已接收到所发送信号的无线电通信设备(未示出)接收对所发送信号的响应消息,所述响应消息标识所接收到的消息;以及估计电路606,其被配置为基于无线电通信设备已进行响应的信号的强度来估计无线电通信设备的从无线电设备700的可到达性。如下文将更详细地解释的,无线电设备708还可以包括被管理设备确定电路702。如下文将更详细地解释的,无线电设备700还可以包括要求确定电路704。如下文将更详细地解释的,无线电设备700还可以包括自控请求接收电路708。如下文将更详细地解释的,无线电设备700还可以包括无线电资源本地协商电路710。如下文将更详细地解释的,无线电设备700还可以包括无线电资源全局协调电路712。如下文将更详细地解释的,无线电设备700还可以包括可到达性分类电路714。信号发送机602、响应接收机604、估计电路606、被管理设备确定电路702、要求确定电路704、自控请求接收电路708、无线电资源本地协商电路710、无线电资源全局协商电路712和可到达性分类电路714可以例如经由诸如像电缆或计算机总线等电连接608或经由任何其它适当电连接来相互耦合以交换电信号。在各种实施例中,可到达性可以包括距离(例如几何距离)、信号的衰减、或用于两个设备之间的位置关系的任何其它度量。在各种实施例中,可到达性可以包括涉及距离(例如几何距离)、信号的衰减、或用于两个设备之间的位置关系的任何其它度量中的任何一个的任何度量。在各种实施例中,信号发送机602还可以被配置为发送多个信号,该信号被以不同的强度进行发送。在各种实施例中,如下文将更详细地解释的,可以将被管理设备确定电路702配置为确定被分配给无线电设备700以进行无线电资源管理的一个或多个被管理设备。在各种实施例中,可以将要求确定电路704配置为确定已确定的被管理设备的要求。在各种实施例中,所述要求可以包括以下各项中的至少一个的要求:所要求的服务质量;所要求的当前服务质量;所要求的未来服务质量;所要求的发送速率;所要求的当前发送速率;所要求的未来发送速率;所要求的接收速率;所要求的当前接收速率;所要求的未来接收速率;所要求的发送和接收速率;所要求的当前发送和接收速率;所要求的未来发送和接收速率;所要求的数据发送量;所要求的数据接收量;所要求的数据发送和接收量;期望的无线电资源;期望的当前无线电资源;期望的未来无线电资源;以及指示是否允许干扰的信息;指示当前是否允许干扰的信息;以及指示未来是否将允许干扰的信息。在各种实 施例中,可以将自控请求接收电路708配置为从被管理设备接收指示被管理设备请求控制其本身的自控请求。在各种实施例中,无线电设备700还可以包括被配置为确定已确定的被管理设备的性质的性质确定电路(未示出)。在各种实施例中,所述性质可以包括以下各项中的至少一个:无线电资源的能力;所使用的无线电资源;当前使用的无线电资源;未来使用的无线电资源;以及连接到被管理设备的一个或多个终端的要求。在各种实施例中,连接到被管理设备的所述一个或多个终端的要求可以包括以下各项中的至少一个:所要求的服务质量;所要求的当前服务质量;所要求的未来服务质量;所要求的发送速率;所要求的当前发送速率;所要求的未来发送速率;所要求的接收速率;所要求的当前接收速率;所要求的未来接收速率;所要求的发送和接收速率;所要求的当前发送和接收速率;所要求的未来发送和接收速率;所要求的数据发送量;所要求的数据接收量;所要求的数据发送和接收量;所期望的无线电资源;所期望的当前无线电资源;所期望的未来无线电资源;指示是否允许干扰的信息;指示当前是否允许干扰的信息;以及指示未来是否将允许干扰的信息。在各种实施例中,可以将无线电资源本地协商电路710配置为协商多个已确定的被管理设备之间的无线电资源。在各种实施例中,还可以将无线电资源本地协商电路710配置为不协商用于已从其接收到自控请求的被管理设备的无线电资源。在各种实施例中,还可以将无线电资源全局协商电路712配置为与无线电通信设备协商用于被管理设备的无线电资源。在各种实施例中,还可以将无线电资源全局协商电路712配置为:基于无线电通信设备的从无线电设备700的估计可到达性,与无线电通信设备协商用于被管理设备的无线电资源。在各种实施例中,还可 以将无线电资源本地协商电路710配置为:基于无线电资源全局协商电路712的协商来协商多个已确定的被管理设备之间的无线电资源。在各种实施例中,可以将可到达性分类电路714配置为:根据相应的无线电通信设备的相应的估计可到达性,将多个无线电通信设备分类为多个可到达性类别。在各种实施例中,还可以将无线电资源全局协商电路712配置为:基于无线电通信设备的可到达性类别来协商无线电资源。在各种实施例中,还可以将可到达性分类电路714配置为:根据相应的无线电通信设备的相应的估计可到达性,将所述多个无线电通信设备分类成两个可到达性类别。在各种实施例中,还可以将可到达性分类电路714配置为:将具有低于预定阈值的估计可到达性的无线电通信设备分类为第一可到达性类别,并将具有在预定阈值以上的估计可到达性的无线电通信设备分类为第二可到达性类别。在各种实施例中,还可以将无线电资源全局协商电路712配置为:在专属使用级别上与第一可到达性类别中的无线电通信设备协商用于被管理设备的无线电资源。应以这样的方式来理解专属使用级别,即以每个无线电资源仅被一个无线电通信设备或被无线电设备700使用的方式来协商无线电资源的分配。在各种实施例中,可以向无线电设备分配全局资源池(或全局集合)。在各种实施例中,还可以将无线电资源全局协商电路712配置为:在无线电资源协商级别上与第一可到达性类别中的无线电通信设备协商用于被管理设备的无线电资源。在各种实施例中,可以独立于发送功率来协商无线电资源,即,一旦无线电设备700或无线电通信设备已被分配无线电资源,则可以在没有发送功率限制的情况下使用无线电资源。在各种实施例中,还可以将无线电资源全局协商电路712配置为:在同时使用级别上与第二可到达性类别中的无线电通信设备协商用于被管理设备的无线电资源。在各种实施例中,还可以将无线电资源全局协商电路712配置为:在发送能量协商级别上与第二可到达性类别中的无线电通信设备协商用于被管理设备的无线电资源。在各种实施例中,还可以将无线电资源全局协商电路712配置为:在干扰避免级别上与第二可到达性类别中的无线电通信设备协商用于被管理设备的无线电资源。在各种实施例中,还可以将无线电资源全局协商电路712配置为:在不可能实现干扰避免的情况下,在干扰最小化级别上与第二可到达性类别中的无线电通信设备协商用于被管理设备的无线电资源。在各种实施例中,当对于第二类别的无线电通信设备而言协商不成功时,可以将第二类别的无线电通信设备重新分类到第一类别中。在各种实施例中,所协商的资源可以包括以下各项中的至少一个:发送功率;频率;调制;以及时隙。在各种实施例中,无线电设备700可以被配置为与跟作为无线电通信设备的无线电设备700相同类型的另一无线电设备通信。换言之,所述无线电通信设备可以是与无线电设备700相同的类型。图8示出依照实施例的·无线电通信设备800 (其还可以称为无线资源控制器)。无线电通信设备800可以包括:接收机802,其被配置为从无线电设备(图8中未示出)接收信号;估计电路804,其被配置为基于所接收到的信号估计无线电通信设备800的从无线电设备的可到达性;选择器806,其被配置为基于所估计的可到达性选择多组信息中的一组信息;发送机808,其被配置为将所选的信息组发送到无线电设备;被管理设备确定电路810,其被配置为确定被分配给无线电通信设备以用于无线电资源管理的一个或多个被管理设备;以及无线电资源本地协商电路812,其被配置为在多个已确定被管理设备之间协商无线电资源。接收机802、估计电路804、选择器806、发送机808、被管理设备确定电路810、以及无线电资源本地协商电路812可以例如经由诸如像电缆或计算机总线等电连接814或经由任何其它适当的电连接相互耦合以交换电信号。在各种实施例中,可以根据无线电设备700的被管理设备确定电路702来配置无线电通信设备800的被管理设备确定电路810。在各种实施例中,可以根据无线电设备700的无线电资源本地协商电路710来配置无线电通信设备800的无线电资源本地协商电路812。在各种实施例中,无线电通信设备800可以包括参照图6的无线电设备600或图7的无线电设备700描述的任何其它性质、特征或子设备。在各种实施例中,例如可以根据无线电设备600 (或无线电设备700)加以配置、及同时可以根据无线电通信设备800加以配置的两个或更多无线资源控制器可以进行通信。在各种实施例中,那两个或更多设备可以具有相同的类型,即具有相同的配置。图9示出依照实施例的无线电设备900 (其还可以称为本地资源管理器设备或本地资源控制器(LRC))。无线电设备900可以包括无线电通信电路902 ;服务质量确定电路904,其被配置为确定指示无线电通信电路902的服务质量要求的服务质量信息;发送机906,其被配置为向无线资源控制器(未示出;无线资源控制器可以是无线电设备(无线资源控制器),类似于图6中所示的无线电设备600或图7中所示的无线电设备700)发送所确定的服务质量信息;接收机908,其被配置为从无线资源控制器接收无线电资源管理信息;服务质量估计电路910,其被配置为使用无线电资源管理信息来估计是否能够满足服务质量要求;以及无线电资源配置器912,其被配置为基于所述估计且基于接收到的无线电资源管理信息来配置无线电通信电路902。在各种实施例中,无线电资源管理信息可以表示用于无线电设备的配置信息,例如被分配给无线电设备的无线电资源或将在无线电设备中应用的算法。在各种实施例中,如上文所解释的,可以在被管理设备中提供LRC 900。在各种实施例中,还可以将接收机908配置为接收分组并基于分组的报头来识别包括无线电管理信息的分组。在各种实施例中,还可以将接收机908配置为接收分组并基于分组的内容来识别包括无线电管理信息的分组。在各种实施例中,还可以将接收机908配置为专有地接收无线电管理信息。在各种实施例中,无线电资源管理信息可以包括指定分配给无线电设备900的无线电资源的信息。 在各种实施例中,无线电资源管理信息可以包括表示无线电设备900的无线电上下文的上下文信息。在各种实施例中,无线电设备900还可以包括无线电资源信息确定电路(未示出),其被配置为基于上下文信息来确定指定分配给无线电设备900的无线电资源的信息。

在各种实施例中,还可以将无线电资源配置器912配置为:如果服务质量估计电路910估计能够满足服务质量要求,则基于接收到的无线电资源管理信息分配无线电资源。在各种实施例中,还可以将无线电资源配置器912配置为:如果服务质量估计电路910估计不能满足服务质量要求,则不分配无线电资源。在各种实施例中,作为替代,可以由无线电设备900来执行进一步协商。在各种实施例中,所述服务质量要求可以包括以下各项中的至少一个:所要求的发送速率;所要求的当前发送速率;所要求的未来发送速率;所要求的接收速率;所要求的当前接收速率;所要求的未来接收速率;所要求的发送和接收速率;所要求的当前发送和接收速率;所要求的未来发送和接收速率;所要求的数据发送量;所要求的数据接收量;所要求的数据发送和接收量;所期望的无线电资源;所期望的当前无线电资源;所期望的未来无线电资源;所期望的发送功率;所期望的当前发送功率;所期望的未来发送功率;指示是否允许干扰的信息;指示当前是否允许干扰的信息;以及指示未来是否将允许干扰的信肩、O在各种实施例中,还可以根据以下无线电通信技术族之一的至少一个无线电通信技术来配置无线电通信电路902。-近程无线电通信技术族;
-大城市区系统无线电通信技术族;
-蜂窝式广域无线电通信技术族;-无线电通信技术族,其包括其中以随机方式提供对无线电资源的接入的无线电通信技术;以及
-无线电通信技术族,其包括其中以中央控制方式提供对无线电资源的接入的无线电通信技术。在各种实施例中,还可以根据以下无线电通信技术中的至少一个来配置无线电通信电路902:蓝牙无线电通信技术、超宽带(UWB)无线电通信技术、无线局域网无线电通信技术(例如根据IEEE 802.11 (例如IEEE 802.1ln)无线电通信标准))、IrDA (红外数据组织)、Z波和ZigBee、HiperLAN/2 ((高性能无线电LAN ;可替换的类似于ATM 5 GHz标准化技术)、IEEE 802.1la (5 GHz)、IEEE 802.1lg (2.4 GHz)、IEEE 802.lln、IEEE 802.1lVHT(VHT =甚高吞吐量),例如用于6GHz以下VHT的IEEE 802.1lac和用于60 GHz的VHT的IEEE 802.llad、微波存取全球互通(WiMax)(例如根据IEEE 802.16无线电通信标准,例如固定WiMax或移动WiMax)、WiPro、HiperMAN (高性能无线电城域网)、IEEE 802.16m高级空中接口、全球移动通信系统(GSM)无线电通信技术、通用分组无线电服务(GPRS)无线电通信技术、GSM演进增强数据速率(EDGE)无线电通信技术、和/或第三代合作伙伴计划(3GPP)无线电通信技术(例如UMTS (通用移动通信系统)、FOMA (自由移动的多媒体接入)、3GPP LTE (长期演进)、高级3GPP LTE (高级长期演进))、CDMA2000 (码分多址2000)、CDPD(蜂窝式数字分组数据)Mobitex、3G (第三代)、CSD (电路交换数据)、HSCSD (高速电路交换数据)、UMTS (3G)(通用移动通信系统(第三代))、W-CDMA (UMTS)(宽带码分多址(通用移动通信系统))、HSPA ( 高速分组接入)、HSDPA (高速下行链路分组接入)、HSUPA (高速上行链路分组接入)、HSPA+ (高速分组接入加)、UMTS-TDD (通用移动通信系统-时分双工)、TD-CDMA(时分-码分多址)、TD-CDMA (时分-同步码分多址)、3GPP Rel.8 (准4G)(第三代合作伙伴计划版本8 (准第四代))、UTRA (UMTS陆地无线电接入)、E - UTRA (演进UMTS陆地无线电接入)、高级LTE (4G)(高级长期演进(第4代))、cdmaOne (2G)、CDMA2000 (3G)(码分多址2000 (第三代))、EV-D0 (最优化演进数据或仅演进数据)、AMPS (IG)(高级移动电话系统(第一代))、TACS/ETACS (完全接入通信系统/扩展完全接入通信系统)、D_AMPS (2G)(数字AMPS (第二代))、PTT (按键通话)、MTS (移动电话系统)、MTS (改进型移动电话系统)、AMTS(高级移动式电话系统)、OLT (Norwegian for Offentlig Landmobil Telefoni,公共陆上移动电话)、MTD (Mobiltelefonisystem D或移动电话系统D的瑞典语缩写)、Autotel/PALM(公用自动化陆地移动)、ARP (Autoradiopuhelin “汽车无线电电话”的芬兰语)、NMT (北欧移动电话)、Hicap (NTT (日本电报电话)的高容量版本)、⑶I3D (蜂窝式数字分组数据)、Mobitex、DataTAC、iDEN (集成数字增强网络)、I3DC (个人数字蜂窝)、CSD (电路交换数据)、PHS (个人手持式电话系统)、WiDEN (宽带集成数字增强网络)、iBurst、和未授权移动接入(UMA,也称为3GPP通用接入网络,或GAN标准))。在各种实施例中,可以提供无线电设备(未示出),所述无线电设备(其还可以称为无线资源控制器(WRC))可以包括无线电资源协商电路,其被配置为基于与一个或多个第二无线电通信设备的无线电资源的全局协商,本地地协商用于分配给无线电设备的一个或多个第一无线电通信设备的无线电资源。在各种实施例中,可以将LRC 900配置为从WRC接收重配置信息。在各种实施例中,可以将LRC 900配置为在已从WRC接收到重配置信息之后重新分配资源。在各种实施例中,可以将LRC 900配置为在已从WRC接收到重配置信息之后重复上述分配过程。图10示出依照实施例的无线电设备1000 (其还可以被称为本地资源管理器设备或本地资源控制器(LRC))。无线电设备1000可以包括无线电通信电路1002 ;接收机1004,其被配置为接收无线电资源管理信息;以及无线电通信电路配置器1006,其被配置为基于接收到的无线电资源管理信息来动态地(例如,以短时间间隔;例如以预定的固定时间间隔;例如,每当无线电设备1000附近的无线电配置改变时;例如,每当在无线电设备1000的附近开启或关闭另一无线电通信设备时)配置无线电设备1000的无线电通信电路1002。无线电通信电路1000、接收机1004和无线通信电路配置器1006可以例如经由诸如像电缆或计算机总线等电连接1008或经由任何其它适当的电连接相互耦合以交换电信号。图11示出举例说明依照实施例的、用于控制无线电设备(无线资源控制器)的方法的流程图1100。在1102中,可以发送信号,该信号被以一定的强度进行发送。在1104中,可以从已接收到所发送信号的无线电通信设备接收对所发送信号的响应消息,该响应消息标识所接收到的消息。在1106中,可以基于无线电通信设备已进行响应的信号的强度来估计无线电通信设备的从无线电设备的可到达性。在各种实施例中,可到达性 可以包括距离(例如几何距离)、信号的衰减、或用于两个设备之间的位置关系的任何其它度量。在各种实施例中,可到达性可以包括涉及距离(例如几何距离)、信号的衰减、或用于两个设备之间的位置关系的任何其它度量中的任何一个的任何度量。在各种实施例中,可以发送多个信号,该信号被以不同的强度加以发送。在各种实施例中,可以为信号提供用于区分各发送信号的强度的区别特征。在各种实施例中,所述区别特征可以包括以下特征中的至少一个:相应信号的发送时间;相应信号的发送持续时间;相应信号的发送频率;与相应信号一起发送的代码;以及与相应信号一起发送的金氏码。在各种实施例中,可以通过广播来发送信号。在各种实施例中,可以在专用信道上通过广播来发送信号。在各种实施例中,所发送的信号可以包括无线电设备的标识符。在各种实施例中,所述响应消息可以与由所述多个信号中的信号发送的消息相同。在各种实施例中,所述响应消息可以不同于由所述多个信号中的信号发送的消
肩、O在各种实施例中,所述响应消息可以包括接收到的信号的标识符。在各种实施例中,所述响应消息可以包括所述无线电通信设备的标识符。在各种实施例中,可以基于响应消息来识别无线电通信设备。在各种实施例中,如果接收到对以预定强度发送的信号的响应,则可以估计无线电通信设备的从无线电设备的可到达性小于预定可到达性。在各种实施例中,如果未接收到对以预定强度发送的信号的响应,则可以估计无线电通信设备的从无线电设备的可到达性高于预定可到达性。在各种实施例中,如果接收到对以第一预定强度发送的信号的响应,而未接收到对以第二预定强度发送的信号的响应,则可以评估无线电通信设备的从无线电设备的可到达性小于预定第一可到达性且高于预定第二可到达性。在各种实施例中,可以确定分配给无线电设备以进行无线电资源管理的一个或多个被管理设备。在各种实施例中,可以确定已确定的被管理设备的要求。在各种实施例中,所述要求可以包括以下各项中的至少一项的要求:所要求的服务质量;所要求的当前服务质量;所要求的未来服务质量;所要求的发送速率;所要求的当前发送速率;所要求的未来发送速率;所要求的接收速率;所要求的当前接收速率;所要求的未来接收速率;所要求的发送和接收速率;所要求的当前发送和接收速率;所要求的未来发送和接收速率;所要求的数据发送量;所要求的数据接收量;所要求的数据发送和接收量;所期望的无线电资源;所期望的当前无线电资源;所期望的未来无线电资源;以及指示是否允许干扰的信息;指示当前是否允许干扰的信息;以及指示未来将是否允许干扰的信息。 在各种实施例中,可以从被管理设备接收指示被管理设备请求控制其本身的自控请求。在各种实施例中,可以确定已确定的被管理设备的性质。

在各种实施例中,所述性质可以包括以下各项中的至少一个:无线电资源的能力;所使用的无线电资源;当前使用的无线电资源;未来使用的无线电资源;以及连接到被管理设备的一个或多个终端的要求。在各种实施例中,连接到被管理设备的所述一个或多个终端的要求可以包括以下各项中的至少一项:所要求的服务质量;所要求的当前服务质量;所要求的未来服务质量;所要求的发送速率;所要求的当前发送速率;所要求的未来发送速率;所要求的接收速率;所要求的当前接收速率;所要求的未来接收速率;所要求的发送和接收速率;所要求的当前发送和接收速率;所要求的未来发送和接收速率;所要求的数据发送量;所要求的数据接收量;所要求的数据发送和接收量;所期望的无线电资源;所期望的当前无线电资源;所期望的未来无线电资源;指示是否允许干扰的信息;指示当前是否允许干扰的信息;以及指示未来将是否允许干扰的信息。在各种实施例中,可以在多个已确定的被管理设备之间协商无线电资源。在各种实施例中,可以不协商用于已从其接收到自控请求的被管理设备的无线电资源。在各种实施例中,可以针对被管理设备与无线电通信设备协商无线电资源。在各种实施例中,可以基于无线电通信设备的从无线电设备的估计可到达性,针对被管理设备与无线电通信设备协商无线电资源。在各种实施例中,可以基于与无线电通信设备的协商,在多个已确定的被管理设备之间协商无线电资源。在各种实施例中,可以根据相应无线电通信设备的相应估计可到达性,将多个无线电通信设备分类为多个可到达性类别。在各种实施例中,可以基于无线电通信设备的可到达性类别来协商无线电资源。在各种实施例中,可以根据相应无线电通信设备的相应估计可到达性,将所述多个无线电通信设备分类为两个可到达性类别。在各种实施例中,可以将具有低于预定阈值的估计可到达性的无线电通信设备分类到第一可到达性类别中,并且可以将具有在预定阈值之上的估计可到达性的无线电通信设备分类到第二可到达性类别中。在各种实施例中,可以在专属使用级别上针对被管理设备与第一可到达性类别中的无线电通信设备协商无线电资源。在各种实施例中,可以向无线电设备分配全局资源池(或全局集合)。在各种实施例中,可以在无线电资源协商级别上针对被管理设备与第一可到达性类别中的无线电通信设备协商无线电资源。在各种实施例中,可以在同时使用级别上针对被管理设备与第二可到达性类别中的无线电通信设备协商无线电资源。在各种实施例中,可以在发送能量协商级别上针对被管理设备与第二可到达性类别中的无线电通信设备协商无线电资源。在各种实施例中,可以在干扰避免级别上针对被管理设备与第二可到达性类别中的无线电通信设备协商无线电资源。在各种实施例中,在不·可能实现干扰避免的情况下,可以在干扰最小化级别上针对被管理设备与第二可到达性类别中的无线电通信设备协商无线电资源。在各种实施例中,当对于第二类别的无线电通信设备而言协商不成功时,可以将第二类别的无线电通信设备重新分类到第一类别中。在各种实施例中,所协商的资源可以包括以下各项中的至少一个:发送功率、频率、调制、以及时隙。在各种实施例中,所述无线电设备可以与跟作为无线电通信设备的无线电设备相同类型的另一无线电设备通信。换言之,所述无线电通信设备可以具有与无线电设备相同的类型。图12示出举例说明依照实施例的、用于控制无线电通信设备(无线资源控制器)的方法的流程图1200。在1202中,可以接收来自无线电设备的信号。在1204中,可以基于接收到的信号来估计无线电通信设备的从无线电设备的可到达性。在1206中,可以基于估计的可到达性来选择多组信息中的一组信息。在1208中,可以发送所选的信息组。在1210中,可以确定被分配给无线电通信设备以进行无线电资源管理的一个或多个被管理设备。在1212中,可以在多个已确定的被管理设备之间协商无线电资源。在各种实施例中,用于控制无线电通信设备的方法可以包括如上文参照图11所述的用于控制无线电设备的方法的任何其它特征或步骤。图13示出举例说明依照实施例的、用于控制无线电设备(本地资源管理器设备)的方法的流程图1300。在1302中,可以确定指示无线电设备的无线电通信电路的服务质量要求的服务质量信息。在1304中,可以将所确定的服务质量信息发送到无线资源控制器。在1306中,可以接收来自无线资源控制器的无线电资源管理信息。在1308中,可以使用无线电资源管理信息来估计是否能够满足服务质量要求。在1310中,可以基于所述估计并基于接收到的无线电资源管理信息来配置无线电通信电路。在各种实施例中,无线电资源管理信息可以表示用于无线电设备的配置信息,例如被分配给无线电设备的无线电资源或将在无线电设备中应用的算法。在各种实施例中,可以接收分组,且可以基于该分组的报头来识别包括无线电管理信息的分组。在各种实施例中,可以接收分组,且可以基于该分组的内容来识别包括无线电管理信息的分组。在各种实施例中,可以接收专有无线电管理信息。在各种实施例中,所述无线电资源管理信息可以包括指定分配给无线电设备的无线电资源的信息。 在各种实施例中,所述无线电资源管理信息可以包括表示无线电设备的无线电上下文的上下文信息。在各种实施例中,可以基于上下文信息来确定指定分配给无线电设备的无线电资源的信息。在各种实施例中,如果服务质量估计电路估计能够满足服务质量要求,则可以基于接收到的无线电资源管理信息来分配无线电资源。在各种实施例中,如果服务质量估计电路估计不能满足服务质量要求,则可以不分配无线电资源。在各种实施例中,作为替代,可以执行进一步的协商。在各种实施例中,服务质量要求可以包括以下各项中的至少一个:所要求的发送速率;所要求的当前发送速率;所要求的未来发送速率;所要求的接收速率;所要求的当前接收速率;所要求的未来接收速率;所要求的发送和接收速率;所要求的当前发送和接收速率;所要求的未来发送和接收速率;所要求的数据发送量;所要求的数据接收量;所要求的数据发送和接收量;所期望的无线电资源;所期望的当前无线电资源;所期望的未来无线电资源;所期望的发送功率;所期望的当前发送功率;所期望的未来发送功率;指示是否允许干扰的信息;指示当前是否允许干扰的信息;以及指示未来将是否将允许干扰的信肩、O在各种实施例中,可以提供用于控制无线电设备(无线资源控制器(WRC))的方法。该方法可以包括基于与一个或多个第二无线电通信设备的无线电资源的全局协商,来本地地协商用于分配给无线电设备的一个或多个第一无线电通信设备的无线电资源。在各种实施例中,LRC可以从WRC接收重配置信息。在各种实施例中,在已从WRC接收到重配置信息之后,LRC可以重新分配资源。在各种实施例中,在已从WRC接收到重配置信息之后,LRC可以重复上述分配过程。图14示出举例说明依照实施例的、用于控制无线电设备(本地资源管理器设备)的方法的流程图1400。在1402中,可以接收无线电资源管理信息。在1404中,可以基于接收到的无线电资源管理信息来动态地(例如,以短时间间隔;例如,以预定的固定时间间隔;例如,每当无线电设备附近的无线电配置改变时;例如,每当在无线电设备附近开启或关闭另一无线电通信设备时)配置无线电设备的无线电通信电路。根据各种实施例,可以解决以下问题:
I)相邻无线资源控制器(WRC)的识别:WRC可能期望获取关于相邻WRC的知识。然后,WRC能够联系这些相 邻WRC,以便协商资源的高效使用。在各种实施例中,可以提供一种方法,其使得WRC能够检测到相邻WRC,即使其被其它运营商操作,或者即使其仅在有限的持续时间内被部署。这可以通过可以触发来自相邻WRC的信息交换的信标信号的传输来实现。可以通过使用专用信标频率或通过到现有无线标准上的封装(例如,作为WLAN帧内的有效载荷等)在空中发送此信标信号。2)家庭/办公室内网络信息交换:一旦WRC已获取关于相邻WRC的知识,则WRC可以互相交换关于其正控制的家庭/办公室网络的信息。这可以涉及到覆盖类似于WLAN、ZigBee、蓝牙等系统的单家庭/办公室环境。3)家庭/办公室间资源协商:一旦WRC具有关于相邻系统的工作参数的知识,则可以发起资源协商阶段,以便调整多家庭/办公室环境内的资源分配。可以期望找到可以允许使干扰最小化、避免干扰乃至抑制干扰的总体参数化。应注意的是,相邻系统还可以在总体上包括相邻宏网络。根据各种实施例,可以提供用于解决家庭/办公室间和家庭/办公室内干扰管理的完整构架。系统间干扰可以涉及在同一频带中操作的互相干扰的不同RAT (无线电接入技术)。对于ISM波段内的干扰(例如2.4GHz波段,在ZigBee和WiFi之间具有干扰,例如一具有与新型IEEE 802.1ln有关的特定问题,因为固有的大的40MHz模式对于ZigBee而言可能是个挑战),一般要求“用手”来配置两个系统,从而使得可以避免干扰或使其最小化。系统内干扰可以涉及在同一频带中操作的互相干扰的相同RAT。通常可以通过“用手”参数化来避免各种WLAN接入点(AP)的部署所固有的同信道干扰方面,以便保证多APWLAN网络内的有限的干扰水平。系统饱和可能涉及毫微微蜂窝部署中的有限无线电资源的问题。在部署在给定区域中的一定数目的毫微微蜂窝处,通常有限资源的问题可能未得到解决,并且通常“用手”、例如通过运营商所拥有的最优化软件来进行各毫微微蜂窝的适当参数化。根据各种实施例,可以提供用于竞争给定覆盖区域内的资源的不同无线无线电系统的自动和高效管理的设备和 方法。根据各种实施例,可以提供用于识别相邻WRC和家庭/办公室内网络信息交换的设备和方法。假设WRC可以位于家庭/办公室中。其可以具有关于相邻WRC的部分知识(例如,如果其被同一运营商控制),但是其可能不具有关于所有可能的相邻WRC的存在和参数化的知识。例如,移动WRC的使用可以引起高度时变的WRC部署且可以期望附近WRC的主动检测。根据各种实施例,可以以可以区别相邻WRC的各种类别的方式来执行相邻WRC的检测。在各种实施例中,可以考虑以下类别:
I)期望主动资源共享的(附近)相邻WRC:可以将非常接近于所考虑的WRC的相邻WRC(和相关的家庭/办公室内网络)假设为期望资源的主动管理。即,所考虑的WRC可以期望联系这些附近的WRC并协商资源的高效共享。2)期望相互功率控制的(远距离)相邻WRC:如果WRC潜在地进行干扰,但与先前的情况相比位于更大的可到达性中,则可以假设输出功率控制和协商过程可能是足够的,以便限制相互干扰。图15示出依照实施例的无线资源控制器1506的部署方案1500。可以在空中(通常,WRC支持用于相关设备的空中传输的RAT标准)、例如通过空中接口 1514、或经由电缆(例如通过电缆链路1516)来控制家庭/办公室环境内的由例如WLAN RAT 1508、蓝牙RAT1510和ZigBee RAT 1512之类的各种(例如近程等)设备的WRC进行的家庭/办公室内控制。通常可以通过因特网网关1504来馈送电缆途径(可以固有地假设单个家庭/办公室内的所有无线设备可以连接到同一网关1504)。网关1504可以连接到因特网1502。图16示出与家庭/办公室设备内的本地资源控制器通信的无线资源控制器的方案1600。方案1600的系统的基本布局类似于图15的方案1500,并且因此省略对类似设备的重复说明。根据各种实施例,应用的方案不要求对现有标准进行任何修改。根据各种实施例,可能期望的是,可以向现有设备实施方式(WLAN、蓝牙等)添加本地资源管理器设备或本地资源控制器(LRC)以便i)与WRC相交互,及ii)本地地在遵循由WRC施加的限制的设备内执行空中资源的管理。如图16中所示,可以将LRC添加到上控制链。可以为WLAN RAT1602提供WLAN LRC 1604,可以为蓝牙RAT 1606提供蓝牙LRC 1608,并且可以为ZigBeeRAT 1610 提供 ZigBee LRC 1612。WLAN RAT 1606、蓝牙 RAT 1606 和 ZigBee RAT 1610 的LRC 1604、1608、1612中的每一个可以与WRC 1506交换信息。在各种实施例中,可以以以下方式中的至少一个方式在现有无线市场中实现LRC:
I)根据各种实施例:可以仅由现有接入点/基站(AP/BS)设备的固件更新来实现LRC;可以将以各种LRC为目标的数据封装到无线电信道上(例如,对ZigBee LRC使用ZigBee帧、对蓝牙LRC使用蓝牙帧、对WiFi LRC使用WiFi帧等)。可以例如在帧的相应报头位中将载送LRC数据的帧标记为新类型。然后,AP /BS的新固件可以检测相应的帧,可以提取数据且可以将数据递送到新安装的LRC软件。然后,LRC软件可以利用相应的上下文和/或资源选择约束信息,且可以相应地修改内部资源管理。LRC信息可以施加对应该为其它无线电接入技术(RAT)保留的某些频带的排除。空中接口的使用可以局限于给定时隙。2)根据各种实施例,可以以类似于上文所述方式的方式来实现LRC,然而,LRC可以具有特定目标地址(通常,为IP (网际协议)地址),且可以通过LRC地址的识别自动地将信息路由到AP/BS内的LRC。然后,可以在空中或通过有线链路来传送数据。3)根据各种实施例,可以实现用于使用专用控制信道(例如感知导频信道(CPC))的LRC。该LRC可以包括可以被调谐到专用控制信道的载波频率的新型接收机。其可以提取相应的信息。在各种实施例中,LRC可以执行无线电资源管理(RRM)。在各种实施例中,无线电资源管理可以涉及用于控制诸如发送功率、信道分配、切换标准、调制方案、错误编码方案等参数的策略和算法。目的可以是尽可能高效地利用有限的无线电频谱资源和无线电网络基础设施。RRM可能涉及多用户和多小区网络容量问题,而不是点到点信道容量。可以考虑用单个用户的信道编码和源编码,尽管不可能在多个用户和相邻基站共享同一频率信道时实现最大信道容量。高效动态RRM方案可以按照幅值的顺序增加系统容量,其可以通过引入高级信道编码和源编码方案而比可能的大。RRM在受到同信道干扰而不是噪声限制的系统中尤其重要,所述系统例如是均匀地覆盖大区域的广播网络和蜂窝式系统、和由可以重新使用相同信道频率的许多相邻接入点组成的无线网络。根据各种实施例,WRC可以通过以下步骤来执行检测相邻WRC的过程:
I)WRC可以广播包括例如以下各项的“信标”信号:
a)“信标 ID”;b)时间戳;
c)广播WRC的通信参数(诸如IP地址等);
d)指示用于回程链路的资源使用方法,如果目标节点需要发送应答(通常导致避免“上行链路干扰”),这可以例如通过经修改的CSMA (载波侦听多址接入)方法等来解决;
e)使得相邻WRC能够检测信标信号的数字“检测序列”。在信标信号的“物理检测”的情况下,可以使用具有良好自相关性质的序列,诸如金氏码族的序列。在通过现有链路广播的“虚拟”信标的情况下,可能不要求此类检测序列。可以在专用信道上广播此“信标”信号。可替换地,可以将其结合在另一系统的帧中,诸如WLAN等。并且,通过将信标包括在适当无线电接入技术(RAT)的有效负荷中,可以实现“虚拟”传输。下面将举例说明该原理。可以以只有第一类别的相邻WRC (“期望主动资源共享的(附近)相邻WRC”)能够对信号进行解码的方式来广播此第一信标。例如,这可以通过适当地选择信标信号的输出功率来实现。这将参照图17来举例说明。图17示出依照实施例的、用于附近无线资源控制器的检测的信标广播的方案1700。方案1700的基本布局与图1中的相同,并且省略其重复解释。在方案1700中,在第二房间104中,可以提供第一无线资源控制器1702。在第三房间106中,可以提供第二无线资源控制器1704。应注意的是,第一无线资源控制器1702在图17中被示为在第二毫微微蜂窝基站122在图1中所处的位置上,并且第二无线资源控制器1704在图17中被示为在第三毫微微蜂窝基站124在图1中所处的位置上。此外,应注意的是,虽然可以在公共设备中与毫微微蜂窝基站一起提供无线资源控制器,但并不要求这样,即,依照各种实施例,可以提供无线资源控制器作为单独设备(即作为独立设备)。在方案1700中,可以假设第一无线资源控制器1702广播信标,例如具有第一强度的信标(即信标信号)。在方案1700中,此外可以假设所广播的信标信号的强度是这样的,即使得所发送的信标信号的覆盖范围是覆盖区域1706。因此,第二无线资源控制器1704可以接收信标信号,并且第一无线资源控制器1702可以通过第二无线资源控制器1704对第一无线资源控制器1702的响应,而将第二无线资源控制器1704识别为(附近的)相邻WRC。在各种实施例中,可选地,正在发送信标的WRC可以告知WRC所有者(通常为运营商)很快将在给定区域中发送信标。然后,WRC所有者可以激活相关WRC中的信标检测程序。II)相邻WRC可以检测该信标信号并对其进行解码。其可以使用包括在信标中的通信参数,以便将例如以下数据传送给已发送信标的WRC (例如通过使用IP经由中枢链路(backbone)来传送数据):
a)所接收到的信标的“信标ID”;
b)已接收到信标的WRC的通信参数(诸如IP地址);
c)相关WRC正控制的家庭/办公室内网络的参数化。III)已发送信标的WRC可以发送第二信标(在选择不同信标ID的各实施例中)。如下文将参照图18举例说明的,可以覆盖第二类别的相邻WRC(期望相互功率控制的(远距离)相邻WRC )。
图18示出依照实施例的、用于检测远处无线资源控制器的信标广播的方案1800。方案1800的基本布局与图17中的相同,并且省略其重复解释。在方案1800中,在第一房间102中,可以提供第三无线资源控制器1802。在第四房间108中,可以提供第四无线资源控制器1804。在第五房间110中,可以提供第五无线资源控制器1806。应注意的是,无线资源控制器在图18中被示为在第二毫微微蜂窝基站在图1中所处的位置上。此外应注意的是,虽然可以在公共设备中与毫微微蜂窝基站一起提供无线资源控制器,但并不要求这样,即,可以提供无线资源控制器作为单独设备(即作为独立设备)。在方案1800中,可以假设第一无线资源控制器1702广播信标,例如具有第二强度的信标(即信标信号)。在方案1800中,还可以假设所广播的信标信号的强度是这样的,即使得所发送的信标信号的覆盖范围是覆盖区域1808。因此,第二无线资源控制器1704、第三无线资源控制器1802、第四无线资源控制器1804和第五无线资源控制器1806可以接收信标信号。第一无线资源控制器1702在已如上文参照图17所述的那样确定了第二无线资源控制器1704是(附近)相邻WRC之后,可以通过第三WRC 1802、第四WRC 1804和第五WRC1806的响应来确定第三WRC 1802、第四WRC 1804和第五WRC 1806是(远距离)相邻WRC。依照各种实施例,为了区分目标是“附近”和“远距离”相邻BS的信标信号,可以例如通过从“金氏码”族中选择不同的代码序列来使用不同的“检测序列”。可替换地,可以在信标有效负荷内执行类型指示。IV)相邻WRC可以检测第二信标信号且可以将其解码。其可以使用包含在信标中的通信参数,以便将例如以下数据传送给已发送信标的WRC (例如通过使用IP经由中枢链路来传送数据):
a)接收到的信标的“ 信标ID”;
b)已接收到信标的WRC的通信参数(诸如IP地址);
c)相关WRC正控制的家庭/办公室内网络的参数化。 依照各种实施例,在上面的程序之后,可以执行相邻WRC的检测。在各种实施例中,在检测到(相邻)、可能是干扰的WRC之后,可以获取它们的其它知识。例如,可以例如使用信标来估计相邻干扰的多路径信道和干扰特性。在这种情况下,可以例如通过使用干扰抵消技术在接收机处抑制相应的干扰,以便可以增加系统的吞吐量和/或传输质量。通常,关于干扰的信息越精确,改善可能就越大。在各种实施例中,通过在所涉及的WRC之间进一步交换诸如信道和干扰特性等信息,可以采用类似于预编码、多用户MMO (多输入多输出)、以及网络MMO等高级协作通信技术。同样地,可以实现所涉及的系统的更高吞吐量和/或传输质量。可以对家庭/办公室内和家庭/办公室间网络应用干扰抵消和协作通信方法。可以在诸如家庭/办公室内网络等方案中使用协作通信概念,其中,可以密集地设置FC-BS且可以对其进行协调。根据各种实施例,如上文详述的,可以在检测相邻WRC之后直接提供家庭/办公室间资源协商。依照各种实施例,基于上述程序,所考虑的WRC可以至少具有以下知识:
a)相邻WRC(“附近”和“远距离”的WRC)的存在;
b)相邻WRC的通信参数(诸如IP地址);以及
c)相邻WRC正控制的家庭/办公室内网络的参数化。
依照各种实施例,资源使用协商可以按如下方式从“远距离”相邻WRC开始:
i)最初发起信标的广播的WRC可以向每个“远距离相邻WRC”提出最大输出功率水平。可以为由WRC管理的所有RAT (通常包括蜂窝接入、WLAN、ZigBee、蓝牙等)提供该最大输出功率。ii)在各种实施例中,如果“远距离相邻WRC”对提出的最大输出功率达成一致,则可以向最初发起信标广播的WRC提出类似最大输出水平。如果两者对所提出的水平达成一致,则可以终止该过程。如果从“远距离相邻WRC”接收到的提议是不可接受的,则重复程序可以如下:最初发起信标的广播的WRC可以提出不同的最大输出功率水平、可以等待应答
等o
iii)如果不能达成对最大输出功率水平的协议,则可以将相关的“远距离相邻WRC”视为“附近相邻WRC”,且可以如下文详述的那样处理资源协商过程。依照各种实施例,当与“远距离相邻WRC”的协商过程结束时,如下文详述的,协商可以从具有完全避免干扰的最初目标的“附近相邻WRC”开始:
i)最初发起信标的广播的WRC可以提出用于由相关WRC管理的整个家庭/办公室内网络的无线电资源共享策略(例如,其包括蜂窝接入、WLAN、ZigBee、蓝牙等)。这些资源共享策略可以包括关于下述内容的提议:i)频谱使用(即,共享频率,使得相邻系统可以在不同的波段上进行操作),ii)时隙使用(在同一波段中共享时隙,使得相邻系统可以在相同的波段上进行操作,但是在不同的时间段占用这些波段),iii)发送功率使用,iv)关于某些RAT的关闭的提议(即,如果一个相邻家庭/办公室操作占用2.4GHz波段的许多系统,则可以向其提出将这些中的一个关闭以便释放资源)等。ii)依照各种实施例,如果“远距离相邻WRC”对所提出的资源共享策略达成一致,则可以对最初发起信标广播的WRC提出类似的资源共享策略。如果两者对所提出的资源共享策略达成一致,则可以终止该过程。如果从“远距离相邻WRC”接收到的提议是不可接受的,则重复程序可以如下:最初发起信标的广播的WRC可以提出不同的资源共享策略、可以
等待应答等。iii)如果未发现可以导致避免干扰的协议,则目标可以从“干扰避免”变成“干扰最小化”以及“干扰抑制”。然后,可以再次从步骤i)开始协商。依照各种实施例,特定RAT (例如WLAN、ZigBee等)可以向毫微微蜂窝BS请求其期望进行自我控制或通过其控制的网络来进行控制(例如中央WLAN节点可以要求控制所有WLAN资源分配机制)。然后,可以开始协商过程以便确定这是否可以得到许可且其可以被许可到什么程度。依照各种实施例,上述程序可以解决异构多家庭/办公室环境中的干扰管理的问题,例如异构无线环境中的家庭/办公室内和家庭/办公室间管理的问题。依照各种实施例,可以提供WRC以便避免、限制、以及抑制与其它相邻系统的干扰,执行以下操作:
1)所考虑的WRC可以开始检测过程以便获取关于相邻WRC和其正管理的无线系统的知识;
2)通过采用所获取的知识,所考虑的WRC可以开始与“远距离相邻WRC”协商最大输出功率水平;3)通过采用所获取的知识,所考虑的WRC可以开始与“附近相邻WRC”协商资源共享策
略;
4)所考虑的WRC可以依照所协商的输出功率水平和资源共享策略来操作其家庭/办公室内网络。这在最佳情况下可以导致无干扰的操作;否则,可以使干扰水平最小化。图19示出依照实施例的、建立物理或虚拟链路并协商资源使用的相邻无线资源控制器的方案1900。在方案1900中,为第一家庭/办公室IeOO1提供无线资源控制器150615并且为第二家庭/办公室16002提供无线资源控制器15062。第一家庭/办公室Ieoo1和第二家庭/办公室16002中的无线电设备的布局类似于图16中所不的布局1600,并省略其重复说明,但是为参考符号提供用于第一家庭/办公室IGOO1中的图16的布局1600的设备的索引I,且为参考符号提供用于第二家庭/办公室16002中的图16的布局1600的设备的索引2。依照各种实施例,如箭头1902所指示的,第一无线资源控制器1506i可以与第二无线资源控制器15062进行协商。依照各种实施例,无线电通信设备的本地资源控制器可以使特定设备实施方式(WLAN、蓝牙等)与无线资源控制器·对接。典型任务是:
1)从WRC接收资源使用约束,诸如
a)一般波段使用限制(例如,可以仅允许占用给定波段的一部分);
b)时间限制(例如,关于何时可以允许设备进行发送的信息,从而使得可以避免或减少干扰);
2)设备的实现专用控制,从而使得可以满足资源使用约束。这可以包括LRC与相关设备的较低层(通常为MAC (媒体接入控制)层)的供应商专用交互。虽然已参照特定实施例特别地示出并描述了本发明,但本领域的技术人员应理解的是,在不脱离随附权利要求所限定的本发明的精神和范围的情况下可以对其进行形式和细节方面的各种修改。因此由随附权利要求来指示本发明的范围,并且因此意图包含在权利要求的等价物的意义和范围内的所有修改。
权利要求
1.一种无线电设备,包括: 无线电通信电路; 服务质量确定电路,其被配置为确定指示所述无线电通信电路的服务质量要求的服务质量信息; 发送机,其被配置为将所确定的服务质量信息发送到无线资源控制器; 接收机,其被配置为从所述无线资源控制器接收无线电资源管理信息; 服务质量估计电路,其被配置为使用所述无线电资源管理信息来估计是否能够满足所述服务质量要求;以及 无线电资源配置器,其被配置为基于所述估计并基于接收到的无线电资源管理信息来配置所述无线电通信电路。
2.权利要求1的无线电设备, 其中,所述无线电资源管理信息表示从以下各项组成的组中选择的至少一个信息: 所述无线电设备的配置信息; 分配给所述无线电设备的无线电资源;以及 将在所述无线电设备中应 用的算法。
3.权利要求1的无线电设备, 其中,所述接收机被配置为接收分组,并基于分组的报头来识别包括无线电管理信息的分组。
4.权利要求1的无线电设备, 其中,所述无线电资源配置器还被配置为:如果所述服务质量估计电路估计能够满足服务质量要求,则基于接收到的无线电资源管理信息来分配无线电资源。
5.一种无线电设备,包括: 无线电通信电路; 接收机,其被配置为接收无线电资源管理信息;以及 无线电通信电路配置器,其被配置为基于接收到的无线电资源管理信息来动态地配置所述无线电设备的所述无线电通信电路。
全文摘要
本发明提供了一种无线电设备。该无线电设备可以包括信号发送器,其被配置为发送多个信号,该信号被以不同的强度发送;响应接收机,其被配置为从已接收到所述多个所发送信号中的相应发送信号的无线电通信设备处接收对所发送信号之一的响应消息,该响应消息标识所接收到的消息;以及估计电路,其被配置为基于所述无线电通信设备已对其进行响应的信号的强度来估计所述无线电通信设备的从所述无线电设备的可到达性。
文档编号H04W72/08GK103228051SQ20131020324
公开日2013年7月31日 申请日期2010年11月8日 优先权日2009年11月8日
发明者C.德勒韦斯, M.D.米克, C.罗姆, 许文 申请人:英特尔移动通信有限责任公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1